Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (11): 2081-2095.doi: 10.3864/j.issn.0578-1752.2025.11.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Gain Analysis of Agronomic Traits of Brassica rapa L. in Northern China from 2006 to 2022

ZHANG TianYu1(), LIU LiJun2, YANG Gang1, WU JunYan1, PU YuanYuan1, MA Li2, WANG WangTian3, LU XiaoMing1, MA YuanQiang1, SUN WanCang1()   

  1. 1 College of Agronomy, Gansu Agricultural University, Lanzhou 730070
    2 State Key Laboratory of Aridland Crop Science, Lanzhou 730070
    3 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070
  • Received:2024-11-26 Accepted:2025-01-09 Online:2025-06-01 Published:2025-06-09
  • Contact: SUN WanCang

Abstract:

【Objective】 Based on the experimental results from 2006 to 2022 of 81 winter turnip rape varieties across eight representative ecological zones (extremely arid, arid, and semi-arid regions) including Jiuquan, Zhangye, Wuwei, Lanzhou, Qingyang, Pingliang, Tianshui, and Longxi. The objective was to investigate the evolution of agronomic traits, to offer insights for breeding research and the cultivation of winter rapeseed in northern China. 【Method】 The tested varieties were classified into strong cold tolerant and moderately cold tolerant. The major agronomic traits were subjected to genetic gain analysis, correlation analysis, path analysis, and principal component analysis. The results illustrate, significant enhancements in the agronomic characteristics of northern winter rapeseed over the 17-year period.【Result】 For the strong cold tolerant varieties, plant height, branching position, number of branches, number of siliques per plant, and yield per plant showed a gradual increase, with an average annual increase of 0.87%, 1.07%, 0.0837%, 6.09%, and 0.0281%, respectively. The number of siliques and 1000-grain weight showed a downward trend, with average annual decrease of 0.0289% and 0.012%, respectively. For moderately cold tolerant variety, plant height, branching position, number of branches, number of siliques per plant, and yield per plant also increased, with average annual increase of 2.18%, 2.19%, 1.27%, 0.117%, and 0.0776%, respectively. The number of branches and 1000-grain weight decreased, with average annual decrease of 0.109% and 0.00702%, respectively. Correlation analysis showed a highly significant positive correlation between yield per plant and the number of siliques per plant. Path analysis of agronomic traits and yield per plant revealed that for the strong cold tolerant varieties, the number of siliques per plant (0.961) contributed most to seed yield per plant, followed by the seeds per silique (0.365). The largest contribution of cold tolerant varieties to the yield per plant was the branch position (1.173), followed by the number of siliques per plant (0.544). Path analysis of yield per plant and climatic factors showed that strong cold tolerant varieties were greatly affected by accumulated temperature of 10 °C, while cold-resistant varieties were greatly affected by negative accumulated temperature of 0 °C. Principal component analysis (PCA) screened out three principal components with a cumulative contribution rate of 78.617% of the overall variance, among which the number of siliques per plant, branch position, and 1000-grain weight were the main factors causing the differences among these varieties.【Conclusion】 Substantial advancements have been achieved in the genetic enhancement breeding of agronomic characteristics of winter rapeseed in northern China. The yield per plant has been steadily increasing. The plant type has also been greatly improved. The number of siliques per plant was the main factor to increase the yield of Brassica rapa L.. The adaptability of strong cold tolerant varieties to the external environment surpasses that of moderately cold tolerant varieties.

Key words: Brassica rapa L., agronomic traits, law of evolution, path analysis, principal component analysis

Table 1

Coefficient of variation of main agronomic traits of Brassica rapa L. in 2006-2022"

品种类型
Breed type
年份
Year
株高
Plant height (cm)
分枝部位Branch
location (cm)
分枝数
No. of branches
单株角果数
No. of siliques per plant
角果粒数
No. of
siliques
千粒重
Thousand grain weight (g)
单株产量
Single plant yield (g)
强抗寒性品种
Strong cold resistant varieties
2006 105.10 7.00 13.10 158.10 21.80 3.00 8.30
2007 124.20 26.00 10.85 197.60 22.89 3.10 12.45
2008 122.32 20.68 13.63 188.35 26.50 2.82 11.40
2009 109.75 7.53 10.50 144.75 22.25 2.87 6.07
2010 109.60 7.53 10.58 144.68 22.25 2.88 6.08
2011 106.05 6.60 11.08 190.25 24.13 2.75 9.92
2012 93.00 15.50 8.48 164.25 21.25 3.13 11.88
2013 114.36 19.68 11.93 187.51 19.67 2.97 9.06
2014 127.30 32.41 11.16 178.37 23.79 2.73 10.39
2015 143.25 49.09 10.10 189.73 18.99 3.06 9.24
2016 120.20 30.22 10.99 158.66 24.07 2.74 9.98
2017 125.38 21.99 9.48 203.33 23.33 2.46 8.85
2018 101.07 20.09 13.24 272.60 18.83 2.59 12.82
2019 138.31 29.54 9.78 262.56 24.24 2.44 17.59
2020 122.79 26.90 11.80 197.51 22.65 3.00 11.76
2021 123.81 29.03 13.99 227.98 23.06 2.92 11.26
2022 118.23 20.85 15.32 294.09 23.21 3.01 13.67
平均数Average 117.92 21.80 11.53 197.67 22.52 2.85 10.63
最大值Maximum 143.25 49.09 15.32 294.09 26.50 3.13 17.59
最小值Minimum 93.00 6.60 8.48 144.68 18.83 2.44 6.07
标准差STDEV 12.95 11.16 1.81 43.71 1.99 0.21 2.80
变异系数CV (%) 10.98 51.17 15.66 22.11 8.84 7.33 26.31
一般抗寒性品种
General cold resistant varieties
2006 90.10 9.90 16.30 249.40 20.60 3.00 12.50
2007 124.20 29.75 11.40 249.10 24.50 2.72 16.09
2008 105.18 13.30 12.35 224.70 17.01 3.31 12.82
2009 107.00 4.10 11.00 225.00 23.40 2.81 10.17
2010 106.90 4.16 11.10 224.94 23.40 2.82 10.23
2011 101.44 6.92 12.25 184.11 24.55 2.68 8.18
2012 87.50 5.67 10.15 163.50 21.03 3.07 12.94
2013 109.53 19.35 19.98 257.33 21.55 3.06 14.42
2014 125.22 36.22 11.44 200.84 20.92 2.64 11.37
2015 139.50 48.71 9.46 179.44 20.08 2.82 9.05
2016 119.82 33.53 12.25 158.43 22.53 2.60 8.21
2017 133.09 42.44 8.21 184.24 23.94 2.52 9.26
2018 100.49 21.60 12.90 288.24 20.05 2.64 14.99
2019 138.42 39.37 8.77 267.48 25.11 2.76 15.55
2020 166.55 70.80 8.95 230.50 24.20 3.16 13.80
2021 125.55 30.56 16.76 269.08 22.13 2.95 13.32
2022 114.02 22.99 11.42 245.03 23.92 2.88 13.86
平均数Average 117.32 25.84 12.04 223.61 22.29 2.85 12.16
最大值Maximum 166.55 70.80 19.98 288.24 25.11 3.31 16.09
最小值Minimum 87.50 4.10 8.21 158.43 17.01 2.52 8.18
标准差STDEV 19.99 18.36 3.09 39.19 2.15 0.22 2.57
变异系数CV (%) 17.04 71.05 25.65 17.53 9.66 7.59 21.16

Fig. 1

Changes in main agronomic traits of Brassica rapa L. from 2006 to 2022"

Table 2

Heritability and genetic gain of agronomic traits in Brassica rapa L."

性状
Characteristics
抗寒类型
Cold-resistant type
广义遗传力
Generalized heritability (%)
遗传增益 Genetic gains (%)
2006-2022 2006-2010 2011-2016 2017-2022
株高
Plant height (cm)
强抗寒性Strong cold resistance 22.20 18.22 4.22 62.84 -7.30
一般抗寒性General cold resistance 15.60 36.87 35.37 57.34 17.89
分枝部位
Branch location (cm)
强抗寒性Strong cold resistance 12.50 10.82 -1.01 59.05 -19.52
一般抗寒性General cold resistance 19.90 27.4 -11.85 105.89 -11.82
分枝数
No. of branches
强抗寒性Strong cold resistance 54.70 7.58 -22.15 -0.89 39.42
一般抗寒性General cold resistance 42.50 1.31 -34.43 -0.04 38.39
单株角果数
No. of siliques per plant
强抗寒性Strong cold resistance 36.80 312.77 236.62 -232.50 830.60
一般抗寒性General cold resistance 24.60 32.27 -321.24 -126.35 544.41
角粒数
No. of siliques
强抗寒性Strong cold resistance 18.20 1.60 8.46 -0.21 -2.60
一般抗寒性General cold resistance 37.10 3.78 29.31 -15.00 -2.97
千粒重
Thousand grain weight (g)
强抗寒性Strong cold resistance 72.40 0.07 -3.66 -0.18 3.37
一般抗寒性General cold resistance 81.10 -0.27 -5.22 -1.28 5.69
单株产量
Single plant yield (g)
强抗寒性Strong cold resistance 53.10 17.83 17.18 0.69 32.65
一般抗寒性General cold resistance 36.30 1.99 -31.37 0.23 37.10

Fig. 2

Changes in key climatic factors from 2006 to 2022"

Fig. 3

Correlation analysis of main agronomic traits of Brassica rapa L. and climatic factors A: Strong cold resistant varieties; B: General cold resistant varieties; *: The significance at P<0.05 level; **: The significance at P<0.01 level; X1: 0 ℃ accumulated temperature; X2: 5 ℃ accumulated temperature; X3: 10 ℃ accumulated temperature; X4: 0 ℃ negative accumulated temperature; X5: Precipitation; X6: Illumination time; Y1: Plant height; Y2: Branch location; Y3: No. of branches; Y4: No. of silicones per plant; Y5: No. of siliques; Y6: Thousand grain weight; Y7: Single plant yield. The same as below"

Table 3

Path analysis of individual plant yield, agronomic traits, and climatic factors in strong cold-resistant varieties"

因子Interaction factor 相关系数Correlation coefficient 直接通径系数Direct path coefficient 间接通径系数 Indirect path coefficient
X1 X2 X3 X4 X5 X6 Y1 Y2 Y3 Y4 Y5 Y6
X1 -0.104 0.380 0.267 0.284 -0.062 -0.055 -0.051 -0.062 0.018 0.136 0.024 -0.128 0.134
X2 -0.339 -0.101 -0.071 -0.090 0.032 -0.034 -0.009 0.014 -0.006 0.008 0.036 0.044 -0.020
X3 -0.464 -0.363 -0.271 -0.321 0.064 -0.046 -0.061 0.059 0.040 0.011 0.162 0.104 -0.130
X4 -0.174 -0.015 0.068 0.033 0.073 0.006 -0.070 -0.144 -0.056 0.094 -0.028 0.048 -0.001
X5 0.180 0.261 -0.038 0.087 0.033 -0.004 0.018 0.014 0.019 -0.097 -0.003 -0.065 -0.048
X6 -0.517 -0.221 -0.012 0.008 0.015 0.015 0.006 -0.006 -0.010 -0.001 -0.038 0.000 -0.004
Y1 0.286 0.150 -0.025 -0.021 -0.025 0.052 0.008 -0.010 0.121 -0.009 0.035 0.033 -0.030
Y2 0.379 -0.013 -0.001 -0.001 0.001 -0.002 -0.001 0.001 -0.010 0.001 -0.004 0.001 0.000
Y3 0.156 -0.541 -0.194 0.042 0.016 0.122 0.201 0.008 0.033 0.040 -0.260 -0.059 -0.083
Y4 0.770 0.961 0.061 -0.343 -0.429 0.065 -0.012 -0.415 0.227 0.272 0.462 -0.038 -0.280
Y5 0.204 0.365 -0.123 -0.157 -0.105 -0.042 -0.091 -0.002 0.079 -0.042 0.040 -0.014 -0.106
Y6 -0.220 0.348 0.123 0.069 0.125 0.001 -0.064 -0.015 -0.068 -0.002 0.053 -0.101 -0.101

Table 4

Path analysis of individual plant yield, agronomic traits, and climatic factors in general cold-resistant varieties"

因子Interaction factor 相关系数Correlation coefficient 直接通径系数Direct path coefficient 间接通径系数 Indirect path coefficient
X1 X2 X3 X4 X5 X6 Y1 Y2 Y3 Y4 Y5 Y6
X1 0.397 0.190 0.134 0.142 -0.031 -0.027 -0.025 -0.011 -0.001 0.064 0.072 -0.022 0.024
X2 0.232 0.173 0.015 0.073 0.279 0.191 -0.077 0.068 0.024 0.342 -0.214 0.246 -0.054
X3 0.183 0.720 0.538 0.637 -0.127 0.091 0.122 -0.114 -0.138 0.218 0.149 -0.113 0.063
X4 -0.295 -0.773 0.529 0.656 0.031 0.002 -0.130 -0.288 -0.070 0.066 0.031 -0.116 0.071
X5 0.322 0.401 -0.058 0.134 0.051 -0.005 0.028 0.117 0.115 0.004 0.115 0.129 -0.082
X6 -0.419 0.131 0.036 -0.024 -0.045 -0.046 -0.019 0.022 0.006 -0.063 0.076 0.023 0.080
Y1 0.061 -1.058 0.063 0.083 0.167 -0.529 -0.309 0.088 -0.991 0.459 -0.011 -0.401 0.090
Y2 0.108 1.173 -0.005 -0.033 -0.224 0.467 0.336 -0.025 1.100 -0.438 -0.027 0.248 -0.111
Y3 0.222 -0.018 -0.006 -0.007 -0.005 0.007 0.000 -0.004 0.008 0.007 -0.008 0.006 -0.005
Y4 0.775 0.544 0.206 0.133 0.112 -0.096 0.156 -0.154 0.006 -0.012 0.230 0.016 0.108
Y5 -0.003 0.079 -0.009 -0.022 -0.012 0.052 0.025 -0.007 0.030 0.017 -0.025 0.002 -0.035
Y6 0.372 0.222 0.028 0.014 0.019 -0.090 -0.045 -0.066 -0.019 -0.021 0.066 0.044 -0.097

Table 5

Principal component analysis of agronomic characteristics of Brassica rapa L."

主成分 Principal component 特征值 Eigenvalue 贡献率 Contribution (%) 累计贡献率 Accumulative contribution rate (%)
PC1 2.370 33.855 33.855
PC2 1.943 27.758 61.613
PC3 1.190 17.004 78.617
PC4 0.746 10.651 89.268
PC5 0.578 8.251 97.519
PC6 0.143 2.037 99.556
PC7 0.031 0.444 100.000

Fig. 4

Principal component eigenvectors of 7 agronomic traits in Brassica rapa L."

[1]
王瑞元. 2022年我国粮油产销和进出口情况. 中国油脂, 2023, 48(6): 1-7.
WANG R Y. China's grain and oil production, sales, and import-export situation in 2022. China Oils and Fats, 2023, 48(6): 1-7. (in Chinese)
[2]
刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019, 41(4): 485-489.

doi: 10.7505/j.issn.1007-9084.2019.04.001
LIU C, FENG Z C, XIAO T H, MA X M, ZHOU G S, HUANG F H, LI J N, WANG H Z. Development, potential and adaptation of Chinese rapeseed industry. Chinese Journal of Oil Crop Sciences, 2019, 41(4): 485-489. (in Chinese)

doi: 10.7505/j.issn.1007-9084.2019.04.001
[3]
周冬梅, 张仁陟, 孙万仓, 张军, 王鹤龄. 北方旱寒区冬油菜种植气候适宜性研究. 中国农业科学, 2014, 47(13): 2541-2551. doi: 10.3864/j.issn.0578-1752.2014.13.006.
ZHOU D M, ZHANG R Z, SUN W C, ZHANG J, WANG H L. Study on climatic suitability for winter rapeseed planting in arid and cold regions in North China. Scientia Agricultura Sinica, 2014, 47(13): 2541-2551. doi: 10.3864/j.issn.0578-1752.2014.13.006. (in Chinese)
[4]
孙万仓, 武军艳, 方彦, 刘自刚, 曾秀存, 李学才, 史鹏辉, 何丽, 赵彩霞. 强抗寒性白菜型冬油菜品种‘陇油9号’的选育. 甘肃农业大学学报, 2013, 48(6): 52-58.
SUN W C, WU J Y, FANG Y, LIU Z G, ZENG X C, LI X C, SHI P H, HE L, ZHAO C X. Breeding of an elite cold-tolerance Brassica rapa cultivar longyou No.9. Journal of Gansu Agricultural University, 2013, 48(6): 52-58. (in Chinese)
[5]
孙万仓. 抗寒冬油菜品种“陇油6号”培育成功. 北京农业, 2009(26): 50.
SUN W C. The winter resistant rapeseed variety 'Longyou 6' has been successfully cultivated. Beijing Agriculture, 2009(26): 50. (in Chinese)
[6]
曾瑞. 北方新型冬季覆盖作物和景观作物——以强冬性冬油菜陇油7号为例. 甘肃农业, 2020(7): 93-94, 100.
ZENG R. New winter cover crops and landscape crops in northern China - taking strong winter rapeseed Longyou 7 as an example. Gansu Agriculture, 2020(7): 93-94, 100. (in Chinese)
[7]
牛早霞. 北方白菜型冬油菜生长锥高度响应低温胁迫的分子机理[D]. 兰州: 甘肃农业大学, 2022.
NIU Z X. Molecular mechanism of the height of growth conesrespond to low temperature stress in northern winter rapeseed (Brassica rapa L.)[D]. Lanzhou: Gansu Agricultural University, 2022. (in Chinese)
[8]
冷博峰, 李先容, 陈雪婷, 唐晶, 陈卓尔, 张青, 王涛, 田裕, 魏梦升, 闫华, 刘成, 冯中朝. 2008—2019年中国油菜生产性状变化趋势. 中国油料作物学报, 2021, 43(2): 171-185.
LENG B F, LI X R, CHEN X T, TANG J, CHEN Z E, ZHANG Q, WANG T, TIAN Y, WEI M S, YAN H, LIU C, FENG Z C. Variation trend of rapeseed production in China from 2008 to 2019. Chinese Journal of Oil Crop Sciences, 2021, 43(2): 171-185. (in Chinese)

doi: 10.19802/j.issn.1007-9084.2019320
[9]
董朝阳, 张晓莉, 曹小东. 陕西省近年油菜选育品种性状演变. 黑龙江农业科学, 2024(8): 14-18.
DONG Z Y, ZHANG X L, CAO X D. Character evolution of rapeseed breeding varieties in Shaanxi Province in recent years. Heilongjiang Agricultural Sciences, 2024(8): 14-18. (in Chinese)
[10]
ÖZER H, ORAL E, DOĞRU Ü. Relationships between yield and yield components on currently improved spring rapeseed cultivars. Turkish Journal of Agriculture and Forestry, 2002, 23: 603-608.
[11]
THURLING N. Morphophysiological determinants of yield in rapeseed (Brassica campestris and Brassica napus): Ⅱ. Yield components. Australian Journal of Agricultural Research, 1974, 25(5): 711.
[12]
RICHARDS R A, THURLING N. Genetic analysis of drought stress response in rapeseed (Brassica campestris and B. napus): III. physiological characters. Euphytica, 1979, 28(3): 755-759.
[13]
WANG Y H, LI J Y. Molecular basis of plant architecture. Annual Review of Plant Biology, 2008, 59: 253-279.

doi: 10.1146/annurev.arplant.59.032607.092902 pmid: 18444901
[14]
BUSOV V B, BRUNNER A M, STRAUSS S H. Genes for control of plant stature and form. New Phytologist, 2008, 177(3): 589-607.

doi: 10.1111/j.1469-8137.2007.02324.x pmid: 18211474
[15]
WANG H, LI X D, MENG B Y, FAN Y H, KHAN S U, QIAN M C, ZHANG M H, YANG H K, LU K. Exploring silique number in Brassica napus L.: Genetic and molecular advances for improving yield. Plant Biotechnology Journal, 2024, 22(7): 1897-1912.
[16]
MENENDEZ Y C, SANCHEZ D H, SNOWDON R J, RONDANINI D P, BOTTO J F. Unraveling the impact on agronomic traits of the genetic architecture underlying plant-density responses in canola. Journal of Experimental Botany, 2021, 72(15): 5426-5441.
[17]
杜家菊, 陈志伟. 使用SPSS线性回归实现通径分析的方法. 生物学通报, 2010, 45(2): 4-6.
DU J J, CHEN Z W. Method for conducting path analysis using SPSS linear regression. Bulletin of Biology, 2010, 45(2): 4-6. (in Chinese)
[18]
史新海, 隋方功, 宋再华, 王广明, 张延胜, 范深问, 潘信芳, 束春德. 中熟高产玉米杂交种主要农艺性状演变规律的研究. 作物学报, 1996, 22(6): 750-756.
SHI X H, SUI F G, SONG Z H, WANG G M, ZHANG Y S, FAN S W, PAN X F, SHU C D. Study on the evolution of key agronomic traits in medium-maturity, high-yielding maize hybrids. Acta Agronomica Sinica, 1996, 22(6): 750-756. (in Chinese)
[19]
郭凤芝, 林坤, 葛振勇, 曹光, 李延坤, 刘凤洲, 郭凌云, 李思同. 2001—2017年山东省审定小麦高产品种农艺、产量和品质性状演变分析. 山东农业科学, 2019, 51(3): 16-23.
GUO F Z, LIN K, GE Z Y, CAO G, LI Y K, LIU F Z, GUO L Y, LI S T. Evolutionary analysis of agronomic, yield and quality traits of approved high-yield wheat varieties in Shandong Province from 2001 to 2017. Shandong Agricultural Sciences, 2019, 51(3): 16-23. (in Chinese)
[20]
葛昌斌, 秦素研, 乔冀良, 王君, 齐双丽, 卢雯, 张振永. 2001—2021年豫南和江苏淮河以南审定小麦品种农艺、品质性状和病害演变对比分析. 作物杂志, 2023(5): 49-58.
GE C B, QIN S Y, QIAO J L, WANG J, QI S L, LU W, ZHANG Z Y. Comparative analysis of agronomic traits, quality and disease evolution of approved wheat varieties in southern Henan and southern Huai River in Jiangsu from 2001 to 2021. Crops, 2023(5): 49-58. (in Chinese)
[21]
罗江陶, 郑建敏, 邓清燕, 刘培勋, 蒲宗君. 2000—2020年四川小麦育成品种产量增益分析. 中国农业科学, 2024, 57(20): 3945-3956. doi: 10.3864/j.issn.0578-1752.2024.20.001.
LUO J T, ZHENG J M, DENG Q Y, LIU P X, PU Z J. Yield gain analysis of wheat varieties in Sichuan from 2000 to 2020. Scientia Agricultura Sinica, 2024, 57(20): 3945-3956. doi: 10.3864/j.issn. 0578-1752.2024.20.001. (in Chinese)
[22]
朱吉风, 张俊英, 蒋美艳, 江建霞, 杨立勇, 王伟荣, 李延莉, 周熙荣. 中国冬油菜育成品种产量和主要性状变化趋势. 上海农业学报, 2020, 36(2): 13-18.
ZHU J F, ZHANG J Y, JIANG M Y, JIANG J X, YANG L Y, WANG W R, LI Y L, ZHOU X R. The variation trend of the yield and major traits of winter rapeseed varieties in China. Acta Agriculturae Shanghai, 2020, 36(2): 13-18. (in Chinese)
[23]
徐小荣. 制约油菜产量的因子与对策. 种子科技, 2012, 30(4): 44-46.
XU X R. Factors limiting rapeseed yield and corresponding countermeasures. Seed Science & Technology, 2012, 30(4): 44-46. (in Chinese)
[24]
朱德峰, 程式华, 张玉屏, 林贤青, 陈惠哲. 全球水稻生产现状与制约因素分析. 中国农业科学, 2010, 43(3): 474-479. doi: 10.3864/ j.issn.0578-1752.2010.03.005.
ZHU D F, CHENG S H, ZHANG Y P, LIN X Q, CHEN H Z. Analysis of status and constraints of rice production in the world. Scientia Agricultura Sinica, 2010, 43(3): 474-479. doi: 10.3864/j.issn.0578-1752.2010.03.005. (in Chinese)
[25]
XIE X M, ZHANG Y, XU L, XIONG H C, XIE Y D, ZHAO L S, GU J Y, LI H Y, ZHANG J F, DING Y P, ZHAO S R, GUO H J, LIU L X. Mapping of dwarfing gene and identification of mutant allele on plant height in wheat. Molecular Breeding, 2024, 44(11): 79.
[26]
李登海, 张永慧, 杨今胜, 柳京国. 育种与栽培相结合紧凑型玉米创高产. 玉米科学, 2004, 12(1): 69-71.
LI D H, ZHANG Y H, YANG J S, LIU J G. By combining breeding and cultivation techniques, compact-type maize can achieve high yields. Journal of Maize Sciences, 2004, 12(1): 69-71. (in Chinese)
[27]
李登海, 张永慧, 翟延举, 黄舜阶, 徐庆章. 玉米株型在高产育种中的作用: Ⅰ.株型的增产作用. 山东农业科学, 1992(3): 4-8.
LI D H, ZHANG Y H, ZHAI Y J, HUANG S J, XU Q Z. Effect of plant-type on maize breeding for higher yields: Ⅰ. The role of plant-type in increasing yields. Shandong Agricultural Sciences, 1992(3): 4-8. (in Chinese)
[28]
郭娜, 左凯峰, 张淼, 张冰冰, 秦梦凡, 马宁, 刘翔, 李青青, 黄镇, 徐爱遐. 甘蓝型油菜主要株型和产量性状的综合分析. 西北农业学报, 2020, 29(6): 898-906.
GUO N, ZUO K F, ZHANG M, ZHANG B B, QIN M F, MA N, LIU X, LI Q Q, HUANG Z, XU A X. Comprehensive analysis of major plant-type and yield traits in Brassica napus L.. Acta Agriculturae Boreali-occidentalis Sinica, 2020, 29(6): 898-906. (in Chinese)
[29]
高新欢, 张胜全, 马巧云, 田立平, 陈现朝, 张震, 程海辉张立平, 王汉霞. 北部冬麦区水地小麦品种的演变规律. 分子植物育种, http://kns.cnki.net/kcms/detail/46.1068.S.20231204.1739.030.html.
GAO X H, ZHANG S Q, MA Q Y, TIAN L P, CHEN X C, ZHANG Z, CHEN H H, ZHANG L P, WANG H X. Evolution rule of wheat varieties in irrigated-land of northern winter wheat zone. Molecular Plant Breeding, http://kns.cnki.net/kcms/detail/46.1068.S.20231204.1739.030.html. in Chinese)
[30]
郑本川, 崔成, 李浩杰, 张锦芳, 柴靓, 蒋俊, 蒋梁材. 长江流域甘蓝型油菜育种亲本农艺性状的遗传变异、相关及主成分分析. 南方农业学报, 2019, 50(10): 2196-2204.
ZHENG B C, CUI C, LI H J, ZHANG J F, CHAI L, JIANG J, JIANG L C. Genetic variation, correlation and principal component analysis of agronomic traits of breeding parents of Brassica napus L. in Yangtze River. Journal of Southern Agriculture, 2019, 50(10): 2196-2204. (in Chinese)
[31]
倪正斌, 王陈燕, 孙雪辉, 吴昌庚, 孙红芹, 万林生, 严国红. 甘蓝型油菜主要农艺性状相关性及主成分分析. 江西农业学报, 2018, 30(3): 7-10.
NI Z B, WANG C Y, SUN X H, WU C G, SUN H Q, WAN L S, YAN G H. Correlation and principal component analyses of main agronomic traits in Brassica napus. Acta Agriculturae Jiangxi, 2018, 30(3): 7-10. (in Chinese)
[32]
尚丽平, 赵卫国, 郭凯红, 张立坚, 罗斌, 赵亚军, 王灏. 甘蓝型油菜主要农艺性状的主成分分析. 中国农学通报, 2021, 37(28): 9-13.

doi: 10.11924/j.issn.1000-6850.casb2020-0808
SHANG L P, ZHAO W G, GUO K H, ZHANG L J, LUO B, ZHAO Y J, WANG H. Principal component analysis of main agronomic traits in Brassica napus population. Chinese Agricultural Science Bulletin, 2021, 37(28): 9-13. (in Chinese)
[33]
范连益. 湖南油菜主要虫害防治技术. 湖南农业, 2022(12): 10-11.
FAN L Y. Main pest control techniques for rapeseed in Hunan Province. Hunan Agricutural, 2022(12): 10-11. (in Chinese)
[1] LI JiaHui, LI YueQi, ZHOU XiaoFang, FAN GuoYuan, LI AiHua, TAO YongSheng. Analysis of Multidimensional Characterization Methods for Tannin Quality in Dry Red Wine [J]. Scientia Agricultura Sinica, 2025, 58(10): 2022-2034.
[2] MA YuHe, PU YuanYuan, WANG JinXiong, WU JunYan, YANG Gang, ZHAO CaiXia, MA Li, LIU LiJun, WANG WangTian, MIAO ChunQing, GUAN ZhouBo, FAN TingTing, WANG XingRong, MA Rui, LIAN YinTao, SUN WanCang. Analysis of Glucosinolate Content and Component in Brassica rapa L. [J]. Scientia Agricultura Sinica, 2024, 57(21): 4308-4327.
[3] ZHANG Yi, LIU Ying, CHENG CunGang, LI YanQing, LI Zhuang. Effects of Combined Application Proportion of Cow Manure and Chemical Fertilizer on Soil Organic Carbon Pool and Enzyme Activity in Apple Orchard [J]. Scientia Agricultura Sinica, 2024, 57(20): 4107-4118.
[4] RONG YaSi, LI Feng, ZHANG PengYu, WANG DongYong, SU XiaoYu, TIAN Yuan, GAO TongMei. Evaluation of High Temperature Tolerance and Selection of Sesame (Sesamum indicum L.) Cultivars at Full Flowering Stage Based on Principal Components-Cluster Analysis [J]. Scientia Agricultura Sinica, 2024, 57(20): 3957-3973.
[5] YANG Chun, YANG DaiXing, LI Yan, LIANG SiHui, DENG XiaoQiang, QIAO DaHe, CHEN Juan, GUO Yan, LIN KaiQin, CHEN ZhengWu. Comprehensive Analysis of Morphologic Characters and Biochemical Components of Guizhou Dashu Tea Germplasms [J]. Scientia Agricultura Sinica, 2024, 57(19): 3894-3916.
[6] DUAN HuiMin, LIU LingLing, XIA LuLu, YUAN JianLong, CHENG LiXiang, CHEN AiRong, ZHANG Feng. Screening of Low Glycemic Potato Varieties [J]. Scientia Agricultura Sinica, 2024, 57(12): 2295-2308.
[7] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[8] HOU ZhaoYu, GONG YiZhao, QIAN Yi, CHENG ZhuoYa, TAO Jun, ZHAO DaQiu. Evaluation of Heat Tolerance of Herbaceous Peony and Screening of Its Identification Indices [J]. Scientia Agricultura Sinica, 2023, 56(23): 4742-4756.
[9] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[10] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[11] FAN Tao,LI Zhi,JIANG Qing,CHEN ShuLin,OU Xia,CHEN YongYan,REN TianHeng. Development and Effect Evaluation of KASP Markers Closely Linked to Major QTLs of Spike Number Per Unit Area and Grain Length in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(14): 2941-2951.
[12] WANG ShanShan,ZHAO ChenHui,LI HongLian,ZHANG BingBing,LIANG YingHai,SONG HongWei. Analysis of Fruit Aromatic Components of Ten Plum Germplasm Resources in Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(11): 2476-2486.
[13] ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418.
[14] WenJing HU,ChunMei ZHANG,Di WU,ChengBin LU,YaChao DONG,XiaoMing CHENG,Yong ZHANG,DeRong GAO. Screening for Resistance to Fusarium Head Blight and Agronomic Traits of Wheat Germplasms from Yangtze River Region [J]. Scientia Agricultura Sinica, 2020, 53(21): 4313-4321.
[15] ZHU LingXiao,LIU LianTao,ZHANG YongJiang,SUN HongChun,ZHANG Ke,BAI ZhiYing,DONG HeZhong,LI CunDong. The Regulation and Evaluation Indexes Screening of Chemical Topping on Cotton’s Plant Architecture [J]. Scientia Agricultura Sinica, 2020, 53(20): 4152-4163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!