Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (5): 864-876.doi: 10.3864/j.issn.0578-1752.2025.05.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat

ZHANG HongCheng1(), XING ZhiPeng1(), ZHANG RuiHong2, SHAN Xiang2, XI XiaoBo2, CHENG Shuang1, WENG WenAn1, HU Qun1, CUI PeiYuan1, WEI HaiYan1   

  1. 1 Rice Industrial Engineering Technology Research Institute, Yangzhou University/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu
    2 School of Mechanical Engineering, Yangzhou University/Jiangsu Engineering Center for Modern Agricultural Machinery and Agronomy Technology, Yangzhou 225127, Jiangsu
  • Received:2024-07-10 Accepted:2024-09-07 Online:2025-03-07 Published:2025-03-07

Abstract:

【Objective】The aim of this study was to provide the theoretical and technical support for the innovation of green, high-yield, high-quality and high-efficient unmanned cultivation technology system of wheat. 【Method】 According to the situation of accelerating land transfer and large-scale operation, decreasing labor force engaged in agricultural production, and more efficient and comfortable farming methods, the integrated unmanned cultivation technology of wheat was put forward through the integration study of “agronomy-machinery-intelligence”, that is, using new technology, new product and new equipment to simplify and integrate the whole process of wheat production, and complete wheat production with the least number of operations, the least number of machines and unmanned operations. On the basis of exploratory experimental research, the integrated unmanned cultivation technology of wheat (IU) and conventional mechanized high-yield cultivation techniques of wheat in experimental area (CK) were set up as treatments in Dazhong Farm of Yancheng, Jiangsu Province in 2019-2020, 2020-2021 and 2021-2022, to study the traits and differences of wheat yield formation among different technology treatments, analyze the high-yield traits of IU, and put forward the technical approaches of IU. 【Result】 The IU increased wheat yield by 3.0%-5.9% compared with CK, and significant differences were observed between treatments of some varieties or some growing seasons. In terms of yield components, the spike number was IU>CK (significant differences were observed between treatments of some varieties or some growing seasons), the grains per spike were IU>CK (P>0.05), the total grains were IU>CK (P<0.05), and the 1000-kernels weight was IU<CK (P>0.05), indicating that the IU increased wheat yield by stabilizing the grains per spike and 1000-kernels weight, and increasing the spike number. In the production of photosynthetic matter, the culm number, leaf area index, dry matter accumulation at the main growth stages, the leaf area duration and crop growth rate in the main growth periods, and the culm fertility and grain leaf ratio were all expressed as IU>CK (significant differences were observed between treatments of some varieties or some growing seasons), which laid a material foundation for the yield increase of the IU. This paper not only summarized the technical approaches and basic technologies of IU but also discussed the development of IU from the aspects of integrated cultivation, unmanned cultivation, “agronomy-machinery-intelligence” fusion degree, key agronomy technology and comprehensive evaluation. 【Conclusion】 The yield under IU was equivalent or significantly increased to that under CK. And the high-yield cultivation of wheat was realized with less agricultural machinery and labor and unmanned operation, which was an effective way for the development of agricultural modernization production. In the future, multi-faceted collaborative innovation and investment should be strengthened to accelerate the application and large-scale promotion of this technology.

Key words: wheat, integrated cultivation, unmanned cultivation, yield, technical approach

Table 1

Experimental demonstration wheat yield and related parameters based on wheat cultivation and management machine from 2017 to 2019"

年份
Year
地点
Site
品种
Variety
穗数
Spike number
(×104·hm-2)
穗粒数
Grains per spike
千粒重
1000-kernels weight (g)
实产
Yield
(kg·hm-2)
成熟期干物质量
Dry matter at maturity (kg·hm-2)
2017—2018 姜堰
Jiangyan
扬麦23
Yangmai23 (n=6)
501.9±15.3 39.1±1.5 37.9±0.6 7117.4±306.9 18705.2±606.2
2018—2019 姜堰
Jiangyan
扬麦23
Yangmai23 (n=5)
501.7±6.9 38.7±1.7 38.9±0.9 7239.8±223.9 18273.6±611.1
兴化
Xinghua
扬麦23
Yangmai23 (n=8)
519.0±7.8 39.7±1.1 37.9±0.9 7501.9±220.8 18595.6±397.0

Fig. 1

Wheat unmanned machine integrated with cultivation and management and its field operation effect diagram"

Fig. 2

Average daily temperature and precipitation per month during wheat growth season in 2019-2022"

Fig. 3

The culm number at main growth stages and culm fertility of wheat under different cultivation technologies"

Table 2

The yield and its composition of wheat under different cultivation technologies"

年度
Year
品种
Variety
处理
Treatment
穗数
Spike number
(×104·hm-2)
穗粒数
Grains per spike
总实粒数
Total grains
(×104·hm-2)
千粒重
1000-kernels weight (g)
实产
Yield
(kg·hm-2)
2019-2020 农麦88
Nongmai 88
IU 529.5±30.7a 43.9±2.5a 23217.4±30.7a 42.4±1.1a 9472.6±23.5a
CK 516.3±24.3a 42.6±1.7a 21991.5±12.4b 43.3±1.4a 9146.6±18.4a
宁麦13
Ningmai 13
IU 596.1±17.0a 38.7±1.6a 23091.8±27.0a 40.1±1.6a 8922.8±16.8a
CK 567.4±28.2b 38.4±2.3a 21783.3±16.4b 40.9±1.5a 8487.6±20.3b
2020-2021 农麦88
Nongmai 88
IU 524.5±19.7a 42.3±2.0a 22161.1±21.9a 40.8±1.7a 8677.0±28.9a
CK 499.0±18.4b 41.9±2.2a 20929.0±31.1b 41.5±1.7a 8262.4±16.4b
宁麦13
Ningmai 13
IU 568.3±28.0a 39.2±1.6a 22288.3±29.0a 39.1±1.4a 8356.7±11.7a
CK 537.6±26.7b 38.5±1.7a 20675.0±9.1b 40.1±1.9a 7887.4±20.9b
2021-2022 农麦88
Nongmai 88
IU 548.3±21.6a 44.5±2.0a 24388.6±26.3a 42.0±1.4a 9885.1±18.5a
CK 538.4±29.4a 43.1±2.6a 23217.9±8.3b 42.9±1.6a 9595.3±19.3a
宁麦13
Ningmai 13
IU 605.2±19.8a 40.2±1.2a 24305.8±9.1a 40.9±1.3a 9564.9±16.6a
CK 579.3±25.1a 39.4±1.6a 22807.9±276b 41.8±0.6a 9153.8±12.0a

Fig. 4

The leaf area index at main growth stages and the ratio of grain weight and leaf area at booting stage of wheat under different cultivation technologies"

Fig. 5

The dry matter weight at main growth stages and from anthesis stage to maturity stage of wheat under different cultivation technologies"

Fig. 6

The leaf area duration, crop growth rate and net assimilation rate in main growth periods of wheat under different cultivation technologies"

Table 3

Grain yield and related parameters of integrated unmanned cultivation technology experimental demonstration fields for wheat in various bases from 2019 to 2022"

年份
Year
地点
Site
品种
Variety
穗数
Spike number
(×104·hm-2)
穗粒数
Grains per spike
千粒重
1000-kernels weight (g)
实产
Yield
(kg·hm-2)
成熟期干物质量
Dry matter at maturity (kg·hm-2)
2019-2020 姜堰
Jiangyan
扬麦23
Yangmai23 (n=6)
515.5±13.6 41.1±1.1 39.6±0.3 8010.9±216.3 20746.1±871.5
大中农场
Dazhong farm
农麦88
Nongmai88 (n=5)
504.6±10.2 43.6±0.7 42.1±0.9 8886.7±236.3 23525.2±744.2
宁麦13
Ningmai13 (n=5)
569.4±14.4 40.1±0.7 39.8±0.5 8687.3±277.7 23495.1±413.8
2020-2021 泗洪
Sihong
淮麦35
Huaimai35 (n=5)
554.0±22.4 36.0±0.3 41.9±0.6 7893.5±325.1 22678.8±677.2
大中农场
Dazhong farm
农麦88
Nongmai88 (n=8)
510.4±12.1 43.1±0.6 40.9±0.5 8638.2±124.9 22493.5±521.7
宁麦13
Ningmai13 (n=8)
569.4±6.4 38.3±0.9 39.9±0.6 8303.9±271.3 22533.7±558.1
扬麦28
Yangmai28 (n=4)
505.8±21.0 40.6±0.9 41.8±0.8 8201.0±343.0 22764.1±603.1
2021-2022 泗洪
Sihong
淮麦35
Huaimai35 (n=6)
548.2±10.2 36.4±0.6 42.4±0.6 8075.0±285.4 21274.6±742.0
淮麦33
Huaimai33 (n=6)
561.8±9.3 38.3±1.4 40.3±0.7 8327.4±271.0 21758.8±612.5
大中农场
Dazhong farm
农麦88
Nongmai88 (n=8)
559.2±10.6 43.1±1.2 42.1±0.9 9787.8±317.3 24963.0±991.2
宁麦13
Ningmai13 (n=4)
599.8±18.7 39.3±0.5 40.9±0.8 9283.6±276.3 24276.4±857.9
农麦128
Nongmai128 (n=8)
596.6±12.6 39.3±0.9 42.0±0.7 9480.3±323.7 24422.6±828.1
[1]
国家统计局. 中国统计年鉴. https://www.stats.gov.cn/sj/ndsj/2023/indexch.htm.
National Bureau of Statistics. China Statistical Yearbook. https://www.stats.gov.cn/sj/ndsj/2023/indexch.htm. (in Chinese)
[2]
刘慧. 小麦耕种收综合机械化率逾97%——挖掘丰产丰收的农机化潜力. 经济日报, 2022-07-05: 1.
LIU H. The comprehensive mechanization rate of wheat cultivation and harvesting is more than 97%——Excavating the potential of agricultural mechanization for high yield and harvest. Economic Daily, 2022-07-05: 1. (in Chinese)
[3]
张洪程, 胡雅杰, 戴其根, 邢志鹏, 魏海燕, 孙成明, 高辉, 胡群. 中国大田作物栽培学前沿与创新方向探讨. 中国农业科学, 2022, 55(22): 4373-4382. doi: 10.3864/j.issn.0578-1752.2022.22.004.
ZHANG H C, HU Y J, DAI Q G, XING Z P, WEI H Y, SUN C M, GAO H, HU Q. Discussions on frontiers and directions of scientific and technological innovation in China’s field crop cultivation. Scientia Agricultura Sinica, 2022, 55(22): 4373-4382. doi: 10.3864/j.issn.0578-1752.2022.22.004. (in Chinese)
[4]
康孟珍, 王秀娟, 华净, 王浩宇, 王飞跃. 平行农业: 迈向智慧农业的智能技术. 智能科学与技术学报, 2019, 1(2): 107-117.

doi: 10.11959/j.issn.2096-6652.201904
KANG M Z, WANG X J, HUA J, WANG H Y, WANG F Y. Parallel agriculture: Intelligent technology toward smart agriculture. Chinese Journal of Intelligent Science and Technology, 2019, 1(2): 107-117. (in Chinese)
[5]
赵春江. 智慧农业的发展现状与未来展望. 华南农业大学学报, 2021, 42(6): 1-7.
ZHAO C J. Current situations and prospects of smart agriculture. Journal of South China Agricultural University, 2021, 42(6): 1-7. (in Chinese)
[6]
罗锡文, 胡炼, 何杰, 张智刚, 周志艳, 张闻宇, 廖娟, 黄培奎. 中国大田无人农场关键技术研究与建设实践. 农业工程学报, 2024, 40(1): 1-16.
LUO X W, HU L, HE J, ZHANG Z G, ZHOU Z Y, ZHANG W Y, LIAO J, HUANG P K. Key technologies and practice of unmanned farm in China. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(1): 1-16. (in Chinese)
[7]
人民政协网. 我国种植业安全形势判断与战略举措. http://www.rmzxb.com.cn/c/2023-01-31/3284528.shtml.
People's political consultative conference network. China's planting industry security situation judgment and strategic measures. http://www.rmzxb.com.cn/c/2023-01-31/3284528.shtml. (in Chinese)
[8]
叶伟伟, 奚小波, 金亦富, 单翔, 张剑峰, 张瑞宏. 双轴旋耕施肥贴地播种复式作业机设计与试验. 中国农机化学报, 2019, 40(2): 6-12.

doi: 10.13733/j.jcam.issn.2095-5553.2019.02.02
YE W W, XI X B, JIN Y F, SHAN X, ZHANG J F, ZHANG R H. Design and experimental research of double axis rotary tillage fertilizing and land seeding compound operation machine. Journal of Chinese Agricultural Mechanization, 2019, 40(2): 6-12. (in Chinese)
[9]
顾宸嘉, 奚小波, 韩连杰, 张翼夫, 张宝峰, 张瑞宏. 双轴旋耕压槽播种开沟匀覆土作业机设计与试验. 中国农机化学报, 2021, 42(11): 17-22.

doi: 10.13733/j.jcam.issn.20955553.2021.11.04
GU C J, XI X B, HAN L J, ZHANG Y F, ZHANG B F, ZHANG R H. Design and experiment research of double-axis rotary tillage machine for sowing, ditching, and covering soil. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 17-22. (in Chinese)

doi: 10.13733/j.jcam.issn.20955553.2021.11.04
[10]
奚小波, 史扬杰, 单翔, 张琦, 金亦富, 龚俊杰, 张剑峰, 张瑞宏. 基于Bezier曲线优化的农机自动驾驶避障控制方法. 农业工程学报, 2019, 35(19): 82-88.
XI X B, SHI Y J, SHAN X, ZHANG Q, JIN Y F, GONG J J, ZHANG J F, ZHANG R H. Obstacle avoidance path control method for agricultural machinery automatic driving based on optimized Bezier. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(19): 82-88. (in Chinese)
[11]
CUI P Y, CHEN Z X, NING Q Q, WEI H Y, ZHANG H P, LU H, GAO H, ZHANG H C. One-time nitrogen fertilizer application using controlled-release urea ensured the yield, nitrogen use efficiencies, and profits of winter wheat. Agronomy, 2022, 12(8): 1792.
[12]
陈国奇, 宋杰辉, 王茂涛, 邢志鹏, 朱凤, 李尧, 魏海燕, 黄元炬. 稻麦病虫草害飞防技术. 北京: 中国农业出版社, 2020.
CHEN G Q, SONG J H, WANG M T, XING Z P, ZHU F, LI Y, WEI H Y, HUANG Y J. Rice and Wheat Diseases, Pests and Weeds Flying Prevention Technology. Beijing: China Agriculture Press, 2020. (in Chinese)
[13]
CHEN L M, SUN S L, YAO B, PENG Y T, GAO C F, QIN T, ZHOU Y Y, SUN C R, QUAN W. Effects of straw return and straw biochar on soil properties and crop growth: A review. Frontiers in Plant Science, 2022, 13: 986763.
[14]
XU J, HAN H F, NING T Y, LI Z J, LAL R. Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system. Field Crops Research, 2019, 233: 33-40.
[15]
张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响. 作物学报, 2024, 50(4): 981-990.

doi: 10.3724/SP.J.1006.2024.31042
ZHANG Z, ZHAO J Y, SHI Y, ZHANG Y L, YU Z W. Effects of different sowing space on photosynthetic characteristics after anthesis and grain yield of wheat. Acta Agronomica Sinica, 2024, 50(4): 981-990. (in Chinese)

doi: 10.3724/SP.J.1006.2024.31042
[16]
PATEL S K, MANI I, SUNDARAM P K. Effect of subsoil compaction on rooting behavior and yields of wheat. Journal of Terramechanics, 2020, 92: 43-50.
[17]
丁锦峰, 徐东忆, 丁永刚, 朱敏, 李春燕, 朱新开, 郭文善. 栽培模式对稻茬小麦籽粒产量、氮素吸收利用和群体质量的影响. 中国农业科学, 2023, 56(4): 619-634. doi: 10.3864/j.issn.0578-1752.2023.04.003.
DING J F, XU D Y, DING Y G, ZHU M, LI C Y, ZHU X K, GUO W S. Effects of cultivation patterns on grain yield, nitrogen uptake and utilization, and population quality of wheat under rice-wheat rotation. Scientia Agricultura Sinica, 2023, 56(4): 619-634. doi: 10.3864/j.issn.0578-1752.2023.04.003. (in Chinese)
[18]
陈立, 钱晨诚, 徐东忆, 钱彩虹, 李春燕, 丁锦峰, 朱敏, 李天兵, 郭文善, 朱新开. 不同释放期缓释尿素配合一次基施对稻茬冬小麦产量及氮肥利用率的影响. 麦类作物学报, 2022, 42(10): 1231-1239.
CHEN L, QIAN C C, XU D Y, QIAN C H, LI C Y, DING J F, ZHU M, LI T B, GUO W S, ZHU X K. Effect of slow-released urea in different release periods combined with one basal application on yield and nitrogen use efficiency of winter wheat following rice. Journal of Triticeae Crops, 2022, 42(10): 1231-1239. (in Chinese)
[19]
孟志军, 王昊, 付卫强, 刘孟楠, 尹彦鑫, 赵春江. 农业装备自动驾驶技术研究现状与展望. 农业机械学报, 2023, 54(10): 1-24.
MENG Z J, WANG H, FU W Q, LIU M N, YIN Y X, ZHAO C J. Research status and prospects of agricultural machinery autonomous driving. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(10): 1-24. (in Chinese)
[20]
祝清震, 武广伟, 朱志豪, 张恒源, 高原源, 陈立平. 冬小麦精准分层施肥宽苗带播种联合作业机研究. 农业机械学报, 2022, 53(2): 25-35.
ZHU Q Z, WU G W, ZHU Z H, ZHANG H Y, GAO Y Y, CHEN L P. Design and test on winter wheat precision separated layer fertilization and wide-boundary sowing combined machine. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(2): 25-35. (in Chinese)
[21]
XI X B, GU C J, SHI Y J, ZHAO Y, ZHANG Y F, ZHANG Q, JIN Y F, ZHANG R H. Design and experiment of no-tube seeder for wheat sowing. Soil and Tillage Research, 2020, 204: 104724.
[22]
管春松, 崔志超, 高庆生, 王树林, 陈永生, 杨雅婷. 双轴旋耕碎土试验台设计与分层耕作试验. 农业工程学报, 2021, 37(10): 28-37.
GUAN C S, CUI Z C, GAO Q S, WANG S L, CHEN Y S, YANG Y T. Design of biaxial rotary tillage soil test bench and layered tillage test. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(10): 28-37. (in Chinese)
[23]
郭新送, 丁方军, 陈士更, 孟庆羽. 控释肥不同施肥位置及深度对小麦产量及根区土壤养分的影响. 中国农学通报, 2018, 34(4): 9-15.

doi: 10.11924/j.issn.1000-6850.casb17010099
GUO X S, DING F J, CHEN S G, MENG Q Y. Effect of application depth and location of controlled-release fertilizer on wheat yield and soil nutrients of root zone. Chinese Agricultural Science Bulletin, 2018, 34(4): 9-15. (in Chinese)
[24]
赵凌天, 咸云宇, 刘光明, 姜恒鑫, 廖平强, 赵灿, 王维领, 霍中洋. 不同机械化耕播模式对冬小麦幼苗质量和产量的影响. 农业工程学报, 2021, 37(17): 31-38.
ZHAO L T, XIAN Y Y, LIU G M, JIANG H X, LIAO P Q, ZHAO C, WANG W L, HUO Z Y. Effects of different mechanized tillage and sowing modes on the seedling quality and yield of winter wheat. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(17): 31-38. (in Chinese)
[25]
马尚宇, 王艳艳, 黄正来, 韩笑, 张文静, 樊永惠, 马元山. 渍水对小麦生长的影响及耐渍栽培技术研究进展. 麦类作物学报, 2019, 39(7): 835-843.
MA S Y, WANG Y Y, HUANG Z L, HAN X, ZHANG W J, FAN Y H, MA Y S. Research progress of effects of waterlogging on wheat growth and cultivation technique for waterlogging resistance. Journal of Triticeae Crops, 2019, 39(7): 835-843. (in Chinese)
[26]
何明, 高焕文, 董培岩, 崔德杰, 赵文阁. 一年两熟地区保护性耕作深松试验. 农业机械学报, 2018, 49(7): 58-63.
HE M, GAO H W, DONG P Y, CUI D J, ZHAO W G. Sub-soiling experiment on double cropping and conservation tillage adopted area. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7): 58-63. (in Chinese)
[27]
张会娟, 顾峰玮, 吴峰, 徐弘博, 高学梅, 胡志超. 江苏省稻茬麦机械化播种概况与发展. 中国农机化学报, 2021, 42(11): 186-192.

doi: 10.13733/j.jcam.issn.20955553.2021.11.28
ZHANG H J, GU F W, WU F, XU H B, GAO X M, HU Z C. General situation and development on mechanized sowing of wheat after rice in Jiangsu Province. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 186-192. (in Chinese)

doi: 10.13733/j.jcam.issn.20955553.2021.11.28
[28]
YANG X, SHU L, CHEN J N, FERRAG M A, WU J, NURELLARI E, HUANG K. A survey on smart agriculture: Development modes, technologies, and security and privacy challenges. CAA Journal of Automatica Sinica, 8(2): 273-302.
[29]
刘成良, 林洪振, 李彦明, 贡亮, 苗中华. 农业装备智能控制技术研究现状与发展趋势分析. 农业机械学报, 2020, 51(1): 1-18.
LIU C L, LIN H Z, LI Y M, GONG L, MIAO Z H. Analysis on status and development trend of intelligent control technology for agricultural equipment. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1): 1-18. (in Chinese)
[30]
麦逸辰, 卜容燕, 韩上, 雷之萌, 李敏, 王慧, 程文龙, 唐杉, 武际, 朱林. 添加不同外源氮对水稻秸秆腐解和养分释放的影响. 农业工程学报, 2021, 37(22): 210-219.
MAI Y C, BU R Y, HAN S, LEI Z M, LI M, WANG H, CHENG W L, TANG S, WU J, ZHU L. Effects of adding different exogenous nitrogen on rice straw decomposition and nutrient release. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(22): 210-219. (in Chinese)
[31]
高树琴, 胡兆民, 王竑晟, 张晓博, 张玉成. 智慧农业助力粮食生产节本增产增效的“九步法”. 中国科学院院刊, 2024, 39(1): 198-209.
GAO S Q, HU Z M, WANG H S, ZHANG X B, ZHANG Y C. Nine-Step Approach of smart agricultural helps grain production reduce costs, increase yield and efficiency. Bulletin of Chinese Academy of Sciences, 2024, 39(1): 198-209. (in Chinese)
[32]
周冬冬, 张军, 李福建, 葛梦婕, 李必忠, 刘忠红, 张永进, 李春燕, 朱新开. 稻秸还田与耕作方式对小麦产量形成及籽粒品质的影响. 麦类作物学报, 2022, 42(10): 1273-1282.
ZHOU D D, ZHANG J, LI F J, GE M J, LI B Z, LIU Z H, ZHANG Y J, LI C Y, ZHU X K. Effects of rice straw-returning and tillage modes on yield formation and grain quality of winter wheat. Journal of Triticeae Crops, 2022, 42(10): 1273-1282. (in Chinese)
[33]
魏佳朔, 高鸣. 农业劳动力老龄化如何影响小麦全要素生产率增长. 中国农村经济, 2023(2): 109-128.
WEI J S, GAO M. How does the aging of agricultural labor force affect the growth of total factor productivity of wheat? Chinese Rural Economy, 2023(2): 109-128. (in Chinese)
[1] ZHANG Tao, WANG Huan, XIE HongKai, CHEN YinJi. Formation and Structure of Wheat Bran Polysaccharide-Golden Threadfin Bream Surimi Blended Gel [J]. Scientia Agricultura Sinica, 2025, 58(5): 1004-1016.
[2] ZHANG Ling, CAO Lei, CAI Cheng, YAN XinYi, XIANG BoCai, AI Jia, ZHAN XinYang, SONG YouHong, ZHU YuLei. Changes in Seed Vigor and Physiological Index of Winter Wheat Under Natural Aging Condition [J]. Scientia Agricultura Sinica, 2025, 58(5): 877-889.
[3] SHE WenTing, SUN RuiQing, DANG HaiYan, LI WenHu, ZHANG Feng, TIAN Yi, XU JunFeng, DING YuLan, WANG ZhaoHui. Sulfur Concentration and Distribution in Wheat Grain Sampled from Farmers’ Fields in Main Wheat Production Regions of China and Its Affecting Factors [J]. Scientia Agricultura Sinica, 2025, 58(5): 956-974.
[4] ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao. Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse [J]. Scientia Agricultura Sinica, 2025, 58(5): 975-990.
[5] DIAO DengChao, LI YunLi, MENG XiangYu, JI SongHan, SUN YuChen, MA XueHong, LI Jie, FENG YongJia, LI ChunLian, WU JianHui, ZENG QingDong, HAN DeJun, $\boxed{\hbox{WANG ChangFa}}$, ZHENG WeiJun. Cloning and Heat Tolerance Function of Wheat TaGRAS34-5A Gene [J]. Scientia Agricultura Sinica, 2025, 58(4): 617-634.
[6] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[7] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[8] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[9] MU ShuJia, DONG LiXia, LI Guang, YAN ZhenGang, LU YuLan. Optimization of N2O Emission Parameters in Dryland Spring Wheat Farmland Soil Based on Whale Optimization Algorithm [J]. Scientia Agricultura Sinica, 2025, 58(3): 537-547.
[10] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
[11] QIU HaiLong, LI Pan, ZHANG DianKai, FAN ZhiLong, HU FaLong, CHEN GuiPing, FAN Hong, HE Wei, YIN Wen, ZHAO LianHao. Compensatory Effects of Multiple Cropping Green Manure on Growth and Yield Loss of Nitrogen-Reduced Spring Wheat in Oasis Irrigation Areas of Northwest China [J]. Scientia Agricultura Sinica, 2025, 58(3): 443-459.
[12] WANG JiaXin, HU JingYi, ZHANG Wei, WEI Qian, WANG Tao, WANG XiaoLin, ZHANG Xiong, ZHANG PanPan. Effects of Different Mulching Methods on the Production of Photosynthetic Substances and Water Use Efficiency of Intercropped Maize [J]. Scientia Agricultura Sinica, 2025, 58(3): 460-477.
[13] ZHANG FangFang, SONG QiLong, GAO Na, BAI Ju, LI Yang, YUE ShanChao, LI ShiQing. Effects of Long-Term Mulching Practices on Maize Yield, Soil Organic Carbon and Nitrogen Fractions and Indexes Related to Carbon and Nitrogen Pool on the Loess Plateau [J]. Scientia Agricultura Sinica, 2025, 58(3): 507-519.
[14] ZHANG SiJia, YANG Jie, ZHAO Shuai, LI LiWei, WANG GuiYan. The Impact of Diversified Crops and Wheat-Maize Rotations on Soil Quality in the North China Plain [J]. Scientia Agricultura Sinica, 2025, 58(2): 238-251.
[15] SUN RuiQing, DANG HaiYan, SHE WenTing, WANG XingShu, CHU HongXin, WANG Tao, DING YuLan, LUO YiNuo, XU JunFeng, LI XiaoHan, WANG ZhaoHui. Yield Components and Soil Factors Affecting Zinc Concentration in Wheat Grain and Flour in Major Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2025, 58(2): 291-306.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!