Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (5): 851-863.doi: 10.3864/j.issn.0578-1752.2025.05.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-Wide Survey and Development of Novel SSR Markers in Erianthus fulvus

LUO ZhengYing1(), HU Xin2,3(), WU ZhuanDi2,3, QIAN ZhenFeng1, TIAN ChunYan2,3, LIU XinLong2,3(), LI FuSheng1()   

  1. 1 College of Agronomy and Biotechnology, Yunnan Agricultural University/The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Kunming 650201
    2 Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biology and Genetic Breeding (Yunnan), Ministry of Agriculture and Rural Affairs, Kaiyuan 661699, Yunnan
    3 National Key Laboratory for Biological Breeding of Tropical Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205
  • Received:2024-08-04 Accepted:2024-09-27 Online:2025-03-07 Published:2025-03-07
  • Contact: LIU XinLong, LI FuSheng

Abstract:

【Objective】 Erianthus fulvus, serving as a crucial wild resource for sugarcane, is capable of enhancing the stress tolerance and yield of varieties. In order to utilize E. fulvus for sugarcane breeding, it is important to systematically identify and develop simple sequence repeat (SSR) loci in the E. fulvus genome, screen for polymorphic SSR markers, analyse the genetic diversity characteristics of E. fulvus resources and then develop SSR markers associated with important traits. 【Method】Using the SSRminer module in the software TBtools, a comprehensive exploration of SSR loci was conducted on the diploid E. fulvus whole genome sequence. The obtained data were statistically analyzed to reveal their distribution patterns and regularities within the genome. The Batch Target Region Primer Design function was employed for batch designing SSR primers, and the specificity of the primers was evaluated using the Primer check tool. To comparethe SSR polymorphism betweenE. fulvus and sugarcane, amplification experiments were performed on 50 pairs of randomly synthesized SSR primers and 14 pairs of SSR primers sourced from sugarcane across 6 E. fulvus germplasms. 【Result】A total of 152 707 SSR loci, which were distributed on E. fulvus genome with an average density of 5.64 kb/locus, were identified. The majority were located in intergenic regions. In terms of SSR type distribution, mononucleotide, dinucleotide, and trinucleotide had the highest density. Dinucleotide SSR types exhibited the greatest variation in motif repeat numbers, while pentanucleotide motif repeat variations were the least. Across the entire genome, 883 distinct SSR motif repeat types were identified, with A/T and AT/TA being the most abundant. A total of 144 692 pairs of SSR primers, of which 85 025 pairs exhibited high specificity, were designed. These specific primers displayed a distribution characteristic of dense ends and sparse middles on the genome. Amplification experiments showed that 42 out of the 50 randomly synthesized SSR primer pairs yielded stable and clear bands in E. fulvus, with 32 exhibiting polymorphisms, yielding a polymorphism rate of 64.0%. In contrast to the 14 sugarcane SSR primers, the E. fulvus SSR primers demonstrated superior amplification efficacy and greater polymorphism. After screening, 16 pairs of SSR primers with good polymorphism and clear amplification bands were determined from the 32 effective SSR primer pairs. These 16 pairs of primers amplified a total of 72 bands, with polymorphism information content (PIC) ranging from 0.63 to 0.83, and an average PIC value of 0.74, indicating their effectiveness and practicality in polymorphism analysis and molecular marker research of E. fulvus germplasm resources. 【Conclusion】This study comprehensively identified SSR loci in the E. fulvus genome, revealing the high abundance and diversity of SSR distribution features. Sixteen pairs of highly specific and polymorphic SSR primers were successfully screened.

Key words: Erianthus fulvus, genome, simple sequence repeat, specific amplification, polymorphic analysis

Table 1

Tested Erianthus fulvus accessions and their traits"

编号
No.
种质名称
Name
株高
Plant height (cm)
有效茎
<BOLD>P</BOLD>roductive stem
茎径
Stalk diameter (cm)
采集地
Origin
1 贵州2020-41 Guizhou 2020-41 32 55 0.41 贵州省兴仁市 Xingren, Guizhou
2 贵州2020-83 Guizhou 2020-83 30 59 0.35 贵州省普安县 Puan, Guizhou
3 贵州2012-171 Guizhou 2012-171 52 95 0.55 贵州省平坝区 Pingba, Guizhou
4 四川2013-14 Sichuan 2013-14 30 110 0.34 四川省盐源县 Yanyuan, Sichuan
5 四川2013-18 Sichuan 2013-18 26 84 0.35 四川省得荣县 Derong, Sichuan
6 云南2009-39 Yunnan 2009-39 41 129 0.43 云南省香格里拉市 Shangrila, Yunnan

Fig. 1

Quantitative distribution of SSR in different regions of Erianthus fulvus genome"

Table 2

Distribution of various types of SSR markers on Erianthus fulvus genome"

染色体
Chr.
单核苷酸
Mononucleotide
二核苷酸
Dinucleotide
三核苷酸
Trinucleotide
四核苷酸
Tetranucleotide
五核苷酸
Pentanucleotide
六核苷酸
Hexanucleotide
合计
Total
染色体长度
Chromosome length (Mb)
频率
(kb/个)
Frequency
Chr.01 12102 5225 3879 275 138 35 21654 117.958 5.447
Chr.02 10355 4625 3722 287 100 33 19122 101.827 5.325
Chr.03 9666 4304 3069 238 83 34 17394 94.001 5.404
Chr.04 8400 3764 2899 214 71 23 15371 85.168 5.541
Chr.05 8163 4540 3503 293 105 27 16631 101.333 6.093
Chr.06 6641 3215 2338 164 77 28 12463 77.063 6.183
Chr.07 6547 3386 2454 280 69 21 12757 72.906 5.715
Chr.08 5755 3169 2187 147 73 19 11350 62.755 5.529
Chr.09 6949 3199 2385 151 81 21 12786 73.208 5.726
Chr.10 7186 3247 2437 214 72 23 13179 72.480 5.500
合计Total 81764 38674 28873 2263 869 264 152707 858.700 5.646
比例Ratio (%) 53.54 25.33 18.91 1.48 0.17 0.57 100

Fig. 2

Distribution of repetition times of different motif types"

Table 3

SSR motif repeat types and their frequency in Erianthus fulvus"

SSR重复单元
SSR repeat unit
重复基序类型数
No. of repeat motif types
重复基序类型
Repeat motif types
重复基序数量
No. of repeat motifs
占本类型比例
Self scale (%)
总体比例
Overall scale (%)
单核苷酸
Mononucleotide
4 A/T
C/G
72070
9694
88.14
11.85
47.19
6.35
二核苷酸
Dinucleotide
12 AT/TA
AG/CT
GA/TC
其他Others
15555
7625
6039
9545
40.22
19.72
15.62
24.68
10.19
4.99
3.95
6.25
三核苷酸
Trinucleotide
60 AAG/CTT
GGC/GCC
CGC/GCG
GAG/CTC
其他Others
1939
1811
1791
1622
21710
6.72
6.27
6.20
5.62
75.19
1.27
1.19
1.17
1.06
14.22
四核苷酸
Tetranucleotide
213 TTAA/AATA
AAAT/ATTT
TATT/TTTA
其他Others
171
146
121
1825
7.56
6.45
5.35
80.65
0.11
0.10
0.08
1.20
五核苷酸
Pentanucleotide
179 AGGGA/TCCCT
Others
14
250
5.30
94.70
0.01
0.16
六核苷酸
Hexanucleotide
415 TATAGA/TCTATA
ATCTAT/ATAGAT
其他Others
41
40
788
4.72
4.60
90.68
0.03
0.03
0.52
合计Total 883 152707 100

Fig. 3

Density distribution of specific SSR primers on Erianthus fulvus chromosomes"

Fig. 4

The polymorphism of SSR primers among 6 Erianthus fulvus germplasms C1-C50 and B1-B14 represent 50 pairs of E. fulvus SSR primers and 14 pairs of sugarcane SSR primers, respectively. The left band is the DNA Marker, and the PCR products from different primers were separated by the black vertical lines. The order of 6 E. fulvus samples was as follows: Guizhou 2020-41, Guizhou 2020-83, Guizhou 2012-171, Sichuan 2013-14, Sichuan 2013-18, and Yunnan 09-39"

Table 4

Screened 16 pairs of primers with significant polymorphism"

序号
No.
引物名称
Primer name
引物序列
Primer sequence (5′-3′)
退火
温度
Tm
(℃)
预期产
物大小Product size (bp)
总条带数
Totol bands
多态性
条带数
Polymorphic bands
多态性比例
Percentage of polymorphic bands (%)
多态性
信息
PIC
C2 Erufi.01G0016800_1231_1267_1 F: GCGTGGGTCATACAATCAGC 55 260 4 4 100 0.69
R: TCACCGTGGTCCAGTAAAACA
C3 Erufi.01G0040420_4442_4492_1 F: GTGGCGGACCCAGGATTT 55 275 3 3 100 0.63
R: TGCAACAAATCATCACGGCT
C5 Erufi.01G0048750_226_258_1 F: CGCATCGAGCCATGGGAT 55 245 3 3 100 0.63
R: TCCTCGTACCCGATCCCG
C7 Erufi.02G0005560_1571_1631_1 F: AGCCTACCCCAACTTGCT 55 252 4 4 100 0.9
R: GGCCTGATTTTGGGTCTGGA
C9 Erufi.02G0022700_1697_1727_1 F: GGAGGGCATCACATCATTGC 55 224 6 6 100 0.80
R: CCTGGGCTCTTTCGGTGG
C11 Erufi.02G0041280_2595_2621_1 F: GGCCAGGATGATCCAGCC 55 245 7 7 100 0.81
R: TCCAGCATATGACGCCCAC
C12 Erufi.03G0008120_4062_4088_1 F: AAGGAAGCGAACGAGGCC 55 254 4 4 100 0.66
R: TGGAAGTGGTCGTCGCAA
C14 Erufi.03G0018800_963_997_1 F: GGAATGCCCTGGTTGGATT 55 221 3 3 100 0.72
R: TCACGTTGACAGTGATCAAGT
C18 Erufi.04G0000530_5476_5544_1 F: AGCCCCGGTAGTCACACT 55 235 4 4 100 0.80
R: GCATCAGCCAAACTGCCA
C28 Erufi.06G0007490_1977_2023_1 F: CCAAGGCCATCGCACTGA 55 221 6 6 100 0.82
R: CGAAGCTCTCCACCACGG
C30 Erufi.06G0016290_955_987_1 F: AATTTAGCAGCCGCCCCA 55 246 3 3 100 0.73
R: ACCGTGGTACGATCCCCA
C31 Erufi.06G0025250_3167_3207_1 F: ACCTGCAGATGAGAAGTCTCT 55 262 3 3 100 0.72
R: ACAGCGCACACAACAGGA
C34 Erufi.07G0007060_723_755_1 F: GCCGCTGTGATCTCGTCA 55 190 7 7 100 0.77
R: ACTGCCCTGACCTCCCAA
C39 Erufi.08G0009320_21599_21623_1 F: TGTGTTGCAGGAAACAAGTCA 55 277 5 5 100 0.74
R: ACCATGTTCCAGACAGTCAGT
C40 Erufi.08G0016710_156_210_1 F: GAGAAGGGGAGCGATGGC 55 260 6 6 100 0.77
R: CGCACCTGTACCGGATCC
C49 Erufi.10G0023270_6715_6749_1 F: TGGGGTTCACTGGTGCAT 55 263 4 2 50 0.63
R: GCACAATGCACCTGGTAACA
B1 mSSCIR1 F: CTTGTGGATTGGATTGGAT 55 130 5 5 100 0.73
R: AGGAAATGGATTGCTCAGG
B2 mSSCIR26 F: AAAATCAGACAAACAGCAT 55 115 3 2 66.7 0.29
R: AGAAGAAGCAGATACAGGT
B3 mSSCIR53 F: TGGTCTACTGAAGTTCGTG 52 197 1 1 100 0
R: TGCTTCTAAGTCAACCAAA
B4 mSSCIR66 F: AGGTGATTTAGCAGCATA 55 120 1 1 100 0
R: CACAAATAAACCCAATGA
B5 SMC21SA F: CGTGAGCTTGGGTAGCTG 50 120 4 4 100 0.7
R: AAACATTCCCCATTGCTATC
B6 SMC119CG F: TTCATCTCTAGCCTACCCCAA 55 106 0 0 / /
R: AGCAGCCATTTACCCAGGA
B7 SMC226 F: GAGGCTCAGAAGCTGGCAT 50 136 1 1 100 0
R: ACCCTCTATTTCCGAGTTGGT
B8 SMC336BS F: ATTCTAGTGCCAATCCATCTCA 50 190 6 6 100 0.76
R: CATGCCAACTTCCAAACAGAC
B9 SMC477 F: CCAACAACGAATTGTGCATGT 55 168 0 0 / /
R: CCTGGTTGGCTACCTGTCTTCA
B10 SMC720BS F: CGCACCGACGCACGTCT 55 100 1 0 0 0
R: GCCAATGGAACGGGTCTA
B11 SMC863 F: CGGTCGCTGTTGCATTGTAG 55
296 0 0 / /
R: TGGATCACTCAATCTCACTTCG
B12 SMC1490CL F: AGCGATGGGTGCTGACAT 55 140 0 0 / /
R: CAGGTTGCGTCTTCCAGCT
B13 So10H(CT)19 F: GACCGTGTTACTGCATGGTG 55 107 1 0 0 0
R: CAAGAAGCGGGAATTTGTCT
B14 SoChr01B(CA)7 F: CTTCCACTCTCCCCTCCTCT 55 163 4 3 75 0.74
R: AGGGTGGTGCTACAACTTGG
[1]
曹哲群, 肖芙荣, 陈疏影, 何丽莲, 李富生. 7个蔗茅野生种及其后代材料苗期耐寒性鉴定. 作物杂志, 2017(5): 43-48.
CAO Z Q, XIAO F R, CHEN S Y, HE L L, LI F S. Identification of cold tolerance in seven wild sugarcane and three offsprings at seedling stage. Crops, 2017(5): 43-48. (in Chinese)
[2]
李嫒甜, 李富生, 李翠英, 肖培先, 张永港, 康宁. 含有蔗茅血缘的甘蔗新品系在德宏蔗区的适应性评价. 中国糖料, 2018, 40(5):1-5, 9.
LI A T, LI F S, LI C Y, XIAO P X, ZHANG Y G, KANG N. Evaluation on adaptability of new sugarcane lines containing the blood of Erianthus fulvus in Dehong. Sugar Crops of China, 2018, 40(5): 1-5, 9. (in Chinese)
[3]
罗冉, 吴委林, 张旸, 李玉花. SSR分子标记在作物遗传育种中的应用. 基因组学与应用生物学, 2010, 29(1):137-143.
LUO R, WU W L, ZHANG Y, LI Y H. SSR marker and its application to crop genetics and breeding. Genomics and Applied Biology, 2010, 29(1): 137-143. (in Chinese)
[4]
LIU S, YIN X G, LU J N, LIU C, BI C, ZHU H B, SHI Y Z, ZHANG D, WEN D Y, ZHENG J, CUI Y, LI W J. The first genetic linkage map of Ricinus communis L. based on genome-SSR markers. Industrial Crops and Products, 2016, 89: 103-108.
[5]
PARIDA S K, PANDIT A, GAIKWAD K, SHARMA T R, SRIVASTAVA P S, SINGH N K, MOHAPATRA T. Functionally relevant microsatellites in sugarcane Unigenes. BMC Plant Biology, 2010, 10: 251.
[6]
JAMES B T, CHEN C X, RUDOLPH A, SWAMINATHAN K, MURRAY J E, NA J K, SPENCE A K, SMITH B, HUDSON M E, MOOSE S P, MING R. Development of microsatellite markers in autopolyploid sugarcane and comparative analysis of conserved microsatellites in Sorghum and sugarcane. Molecular Breeding, 2012, 30(2): 661-669.
[7]
SINGH R B, SINGH B, SINGH R K. Development of potential dbEST-derived microsatellite markers for genetic evaluation of sugarcane and related cereal grasses. Industrial Crops and Products, 2019, 128: 38-47.
[8]
XIAO N Y, WANG H B, YAO W, ZHANG M Q, MING R, ZHANG J S. Development and evaluation of SSR markers based on large scale full-length transcriptome sequencing in sugarcane. Tropical Plant Biology, 2020, 13(4): 343-352.
[9]
LIU L, WANG H B, LI Y H, CHEN S Q, WU M X, DOU M J, QI Y Y, FANG J P, ZHANG J S. Genome-wide development of interspecific microsatellite markers for Saccharum officinarum and Saccharum spontaneum. Journal of Integrative Agriculture, 2022, 21(11): 3230-3244.
[10]
KUI L, MAJEED A, WANG X H, YANG Z J, CHEN J, HE L L, DI Y N, LI X Z, QIAN Z F, JIAO Y M, WANG G Y, LIU L F, XU R, GU S J, YANG Q H, CHEN S Y, LOU H B, MENG Y, XIE L Y, XU F, SHEN Q Q, SINGH A, GRUBER K, PAN Y B, HAO T T, DONG Y, LI F S. A chromosome-level genome assembly for Erianthus fulvus provides insights into its biofuel potential and facilitates breeding for improvement of sugarcane. Plant Communications, 2023, 4(4): 100562.
[11]
WANG T Y, WANG B Y, HUA X T, TANG H B, ZHANG Z Y, GAO R T, QI Y Y, ZHANG Q, WANG G, YU Z H, HUANG Y J, ZHANG Z, MEI J, WANG Y H, ZHANG Y X, LI Y H, MENG X, WANG Y J, PAN H R, CHEN S Q, LI Z, SHI H H, LIU X L, DENG Z H, CHEN B S, ZHANG M Q, GU L F, WANG J P, MING R, YAO W, ZHANG J S. A complete gap-free diploid genome in Saccharum complex and the genomic footprints of evolution in the highly polyploid Saccharum genus. Nature Plants, 2023, 9(4): 554-571.
[12]
ALI A, PAN Y B, WANG Q N, WANG J D, CHEN J L, GAO S J. Genetic diversity and population structure analysis of Saccharum and Erianthus genera using microsatellite (SSR) markers. Scientific Reports, 2019, 9(1): 395.
[13]
赵锦龙, 王先宏, 李富生, 何丽莲, 娄红波, 杨清辉, 何顺长, 唐荣平. 基于SSR标记的甘蔗野生种蔗茅遗传多样性分析. 分子植物育种, 2014, 12(2):323-331.
ZHAO J L, WANG X H, LI F S, HE L L, LOU H B, YANG Q H, HE S C, TANG R P. Genetic diversity of wild sugarcane species Erianthus fulvus based on SSR. Molecular Plant Breeding, 2014, 12(2): 323-331. (in Chinese)
[14]
徐志军, 赵胜, 胡小文, 孔冉, 苏俊波, 刘洋. 基于甘蔗AP85-441和R570基因组参考序列的微卫星位点鉴定和SSR标记开发. 热带作物学报, 2020, 41(4):722-729.

doi: 10.3969/j.issn.1000-2561.2020.04.013
XU Z J, ZHAO S, HU X W, KONG R, SU J B, LIU Y. Development, characterization and speciality of microsatellite markers in AP85-441 and R570 genomic reference sequences. Chinese Journal of Tropical Crops, 2020, 41(4): 722-729. (in Chinese)
[15]
PARIDA S K, KALIA S K, KAUL S, DALAL V, HEMAPRABHA G, SELVI A, PANDIT A, SINGH A, GAIKWAD K, SHARMA T R, SRIVASTAVA P S, SINGH N K, MOHAPATRA T. Informative genomic microsatellite markers for efficient genotyping applications in sugarcane. Theoretical and Applied Genetics, 2009, 118(2): 327-338.

doi: 10.1007/s00122-008-0902-4 pmid: 18946655
[16]
王玉龙, 黄冰艳, 王思雨, 杜培, 齐飞艳, 房元瑾, 孙子淇, 郑峥, 董文召, 张新友. 四倍体野生种花生A.monticola全基因组SSR的开发与特征分析. 中国农业科学, 2019, 52(15): 2567-2585. doi: 10.3864/j.issn.0578-1752.2019.15.002.
WANG Y L, HUANG B Y, WANG S Y, DU P, QI F Y, FANG Y J, SUN Z Q, ZHENG Z, DONG W Z, ZHANG X Y. Development and characterization of whole genome SSR in tetraploid wild peanut (Arachis monticola). Scientia Agricultura Sinica, 2019, 52(15): 2567-2585. doi: 10.3864/j.issn.0578-1752.2019.15.002. (in Chinese)
[17]
LIU S R, AN Y L, LI F D, LI S J, LIU L L, ZHOU Q Y, ZHAO S Q, WEI C L. Genome-wide identification of simple sequence repeats and development of polymorphic SSR markers for genetic studies in tea plant (Camellia sinensis). Molecular Breeding, 2018, 38(5): 59.
[18]
HARR B, SCHLÖTTERER C. Long microsatellite alleles in Drosophila melanogaster have a downward mutation bias and short persistence times, which cause their genome-wide under representation. Genetics, 2000, 155(3): 1213-1220.
[19]
童治军, 焦芳婵, 肖炳光. 普通烟草及其祖先种基因组SSR位点分析. 中国农业科学, 2015, 48(11):2108-2117. doi: 10.3864/j.issn.0578-1752.2015.11.003.
TONG Z J, JIAO F C, XIAO B G. Analysis of SSR loci in Nicotina tabacum genome and its two ancestral species genome. Scientia Agricultura Sinica, 2015, 48(11): 2108-2117. doi: 10.3864/j.issn.0578-1752.2015.11.003. (in Chinese)
[20]
ZHAO C Z, QIU J J, AGARWAL G, WANG J S, REN X Z, XIA H, GUO B Z, MA C L, WAN S B, BERTIOLI D J, VARSHNEY R K, PANDEY M K, WANG X J. Genome-wide discovery of microsatellite markers from diploid progenitor species, Arachis duranensis and A. ipaensis, and their application in cultivated peanut (A. hypogaea). Frontiers in Plant Science, 2017, 8: 1209.
[21]
ZENG Q Y, HUANG Z H, WANG Q N, WU J Y, FENG X M, QI Y W. Genome survey sequence and the development of simple sequence repeat (SSR) markers in Erianthus arundinaceus. Sugar Tech, 2021, 23(1): 77-85.
[22]
郑燕, 张耿, 吴为人. 禾本科植物微卫星序列的特征分析和比较. 基因组学与应用生物学, 2011, 30(5):513-520.
ZHENG Y, ZHANG G, WU W R. Characterization and comparison of microsatellites in Gramineae. Genomics and Applied Biology, 2011, 30(5): 513-520. (in Chinese)
[23]
原志敏. 玉米全基因组SSRs分子标记开发与特征分析[D]. 雅安: 四川农业大学, 2013.
YUAN Z M. Development and characterization of SSR markers providing genome-wide coverageand high resolution in maize[D]. Yaan: Sichuan Agricultural University, 2013. (in Chinese)
[24]
LAWSON M J, ZHANG L Q. Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes. Genome Biology, 2006, 7(2): R14.
[25]
OLIVEIRA K M, PINTO L R, MARCONI T G, MOLLINARI M, ULIAN E C, CHABREGAS S M, FALCO M C, BURNQUIST W, GARCIA A A F, SOUZA A P. Characterization of new polymorphic functional markers for sugarcane. Genome, 2009, 52(2): 191-209.

doi: 10.1139/g08-105 pmid: 19234567
[26]
FERNANDEZ-SILVA I, EDUARDO I, BLANCA J, ESTERAS C, PICÓ B, NUEZ F, ARÚS P, GARCIA-MAS J, MONFORTE A J. Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theoretical and Applied Genetics, 2008, 118(1): 139-150.
[27]
HWANG J H, AHN S G, OH J Y, CHOI Y W, KANG J S, PARK Y H. Functional characterization of watermelon (Citrullus lanatus L.) EST-SSR by gel electrophoresis and high resolution melting analysis. Scientia Horticulturae, 2011, 130(4): 715-724.
[28]
BUSHMAN B S, LARSON S R, MOTT I W, CLIFTEN P F, WANG R R C, CHATTERTON N J, HERNANDEZ A G, ALI S, KIM R W, THIMMAPURAM J, GONG G, LIU L, MIKEL M A. Development and annotation of perennial Triticeae ESTs and SSR markers. Genome, 2008, 51(10): 779-788.

doi: 10.1139/G08-062 pmid: 18923529
[29]
SINGH R K, SRIVASTAVA S, SINGH S P, SHARMA M L, MOHOPATRA T, SINGH N K, SINGH S B. Identification of new microsatellite DNA markers for sugar and related traits in sugarcane. Sugar Tech, 2008, 10(4): 327-333.
[30]
PARTHIBAN S, GOVINDARAJ P, SENTHILKUMAR S. Comparison of relative efficiency of genomic SSR and EST-SSR markers in estimating genetic diversity in sugarcane. 3 Biotech, 2018, 8(3): 144.

doi: 10.1007/s13205-018-1172-8 pmid: 29484283
[1] ZHANG TianYu, LI Bai, ZANG JinPing, CAO HongZhe, DONG JinGao, XING JiHong, ZHANG Kang. Genome-Wide Identification and Expression Analysis of HMG Family Genes in Botrytis cinerea [J]. Scientia Agricultura Sinica, 2025, 58(4): 704-718.
[2] ZHOU GuangFei, MA Liang, MA Lu, ZHANG ShuYu, ZHANG HuiMin, SONG XuDong, ZHANG ZhenLiang, LU HuHua, HAO DeRong, MAO YuXiang, XUE Lin, CHEN GuoQing. Genome-Wide Association Study of Husk Traits in Maize [J]. Scientia Agricultura Sinica, 2025, 58(3): 431-442.
[3] ZHANG Ying, SHI TingRui, CAO Rui, PAN WenQiu, SONG WeiNing, WANG Li, NIE XiaoJun. Genome-Wide Association Study of Drought Tolerance at Seedling Stage in ICARDA-Introduced Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1658-1673.
[4] ZHAO ZhenJian, WANG Kai, CHEN Dong, SHEN Qi, YU Yang, CUI ShengDi, WANG JunGe, CHEN ZiYang, YU ShiXin, CHEN JiaMiao, WANG XiangFeng, TANG GuoQing. Integrated Aanalysis of Genome and DNA Methylation for Screening Key Genes Related to Pork Quality Traits [J]. Scientia Agricultura Sinica, 2024, 57(7): 1394-1406.
[5] LI FaJi, CHENG DunGong, YU XiaoCong, WEN WeiE, LIU JinDong, ZHAI ShengNan, LIU AiFeng, GUO Jun, CAO XinYou, LIU Cheng, SONG JianMin, LIU JianJun, LI HaoSheng. Genome-Wide Association Studies for Canopy Activity Related Traits and Its Genetic Effects on Yield-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(4): 627-637.
[6] LI BOTIAN, LI CHUNQI, LIU GUOPING, XIE JUN, ZENG PAN, ZHAO RUNZE, LI TONG, PEI JIE, GUO LIWEI, WU RUI, TAN LEI. Molecular Epidemic Characteristics and Genetic Variation Analysis of Porcine Circovirus 3 in Some Pig Farms in Central China from 2020 to 2022 [J]. Scientia Agricultura Sinica, 2024, 57(3): 613-626.
[7] LI Pei, HE ZhiLin, TAN YueXia, ZHAO WanTong, FENG JinYing, CHEN GuiHu, YAN Chi, WANG ZiHao, HUANG Ping, JIANG Dong. Genetic Diversity Analysis of Mandarin and Excellent Germplasm Screening Based on Whole-Genome Resequencing Data and Phenotypic Traits [J]. Scientia Agricultura Sinica, 2024, 57(23): 4761-4773.
[8] CHEN Niu, YU ChengMin, CUI BaiMing, REN CaiXia, YANG LiYing, DONG Yu, LIU Lin, ZHENG YinYing. Isolation, Genome Determination and Lysis Function Analysis of Phage Kuerle of Erwinia amylovora [J]. Scientia Agricultura Sinica, 2024, 57(2): 295-305.
[9] REN CaiXia, LIU Lin, LIU ShengXue, BU Fang DI, XIANG BenChun, ZHENG YinYing, CUI BaiMing. Complete Genome Sequence Analysis and Infectious Clone Construction of Mume Virus A Peach Isolate pp in Xinjiang [J]. Scientia Agricultura Sinica, 2024, 57(19): 3810-3822.
[10] BAI BingNan, QIAO Dan, GE Qun, LUAN YuJuan, LIU XiaoFang, LU QuanWei, NIU Hao, GONG JuWu, GONG WanKui, ELAMEER ELSAMMAN, YAN HaoLiang, LI JunWen, LIU AiYing, SHI YuZhen, WANG HaiZe, YUAN YouLu. QTN Mining and Candidate Gene Screening of Upland Cotton (Gossypium hirsutum L.) Seed-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(15): 2901-2913.
[11] GUI CuiLin, MA Liang, WANG YinYing, XIE FuGui, ZHAO CaiHong, WANG WenMiao, LI Xin, WANG Qing, GAO XiQuan. Identification of Resistant Germplasms and Mining of Candidate Genes Associated with Resistance to Stalk Rot Caused by Synergistic Infection with Fusarium spp. in Maize [J]. Scientia Agricultura Sinica, 2024, 57(13): 2509-2524.
[12] ZHANG YuMei, DING WenTao, LAN XinLong, LI QingHua, HU RunFang, GUO Na, LIN GuoQiang, ZHAO JinMing. Genome Wide Association Analysis of Soluble Sugar Content in Fresh Seeds of Soybean Landraces [J]. Scientia Agricultura Sinica, 2024, 57(11): 2079-2091.
[13] SHOU XinYue, LIU Zhi, CHEN YueHan, LI ChenHui, SUN BinCheng, SUN RuJian, HAN DeZhi, LU WenCheng, SHEN YongHui, WANG XiaoBo, YAN Long. Genome-Wide Association Analysis of Soybean Nodulation-Related Traits in the Northern Hebei [J]. Scientia Agricultura Sinica, 2024, 57(11): 2102-2113.
[14] LUO Na, AN BingXing, WEI LiMin, WEN Jie, ZHAO GuiPing. Identification of Molecular Markers Associated with Body Size Traits Through Genome-Wide Association Analysis in Wenchang Chickens [J]. Scientia Agricultura Sinica, 2024, 57(10): 2046-2060.
[15] LI ShengYou, WANG ChangLing, YAN ChunJuan, ZHANG LiJun, SUN XuGang, CAO YongQiang, WANG WenBin, SONG ShuHong. Evaluation of Drought Resistance in Soybean Germplasm and Identification of Candidate Drought-Resistant Genes [J]. Scientia Agricultura Sinica, 2024, 57(10): 1857-1869.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!