Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (16): 3171-3181.doi: 10.3864/j.issn.0578-1752.2024.16.006

• PLANT PROTECTION • Previous Articles     Next Articles

Analysis of the Relationship Between Aphid-Damage and Fusarium Composition, Mycotoxin Pollution on Maize Ears

CHAI HaiYan1,2(), PAN YiYuan1,2, BAI Xue1, MENG LingMin1, ZHANG Wei1, WU HongBin1, WANG YiSheng1, GAO YueBo1, JIA Jiao1(), SU QianFu1()   

  1. 1 Institute of Plant Protection, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China)/Key Laboratory of Integrated Crop Pest Management in Northeast China, Ministry of Agriculture and Rural Affairs, Changchun 130033
    2 College of Plant Protection, Jilin Agricultural University, Changchun 130022
  • Received:2024-03-18 Accepted:2024-06-05 Online:2024-08-16 Published:2024-08-27
  • Contact: JIA Jiao, SU QianFu

Abstract:

【Objective】The objective of this study is to clarify the relationship between maize aphids damage and the occurrence of maize ear rot and the level of mycotoxin pollution in maize kernels, and to provide a reference for establishing a comprehensive control system of maize ear rot and exploring the effective control technology of main Fusarium toxins.【Method】The 105 aphid-damaged maize ears were collected from 46 cities and counties in Jilin Province in 2021. Pathogenic fungi were isolated and identified using tissue isolation and molecular biology methods for aphids, bracts and kernels. The isolation frequency of different Fusarium species on each sample and the proportion of the same Fusarium number isolated from different sample combinations in aphid-infested samples were calculated. The distribution of pathogens in different regions of Jilin Province and the correlation between the species of Fusarium carried by aphids, bracts and kernels were analyzed. Additionally, ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was employed to determine the presence of Fusarium toxin species and content of maize kernels with and without aphid infestation. The detection rate of fumonisin (FB), deoxynivalenol (DON) and zearalenone (ZEA) in samples exceeding the standard was calculated, and the effect of aphid damage on the toxin secretion of Fusarium in kernels was analyzed.【Result】Aphids, bracts and kernels from 105 ears were tested for the Fusarium, the infection rate of aphids was 57.14%, and that of bracts and kernels was 81.90% and 82.86%, respectively. A total of 1 394 Fusarium strains, including 16 pathogenic Fusarium species, were obtained through single spore isolation and purification. Among them, 8, 13 and 12 Fusarium species were isolated from aphids, bracts and kernels, respectively. The dominant Fusarium species on aphids, bracts and kernels were F. verticillioides and F. proliferatum. Three species including F. andiyazi, F. incarnatum and F. temperatum were detected for the first time on maize kernels in Jilin Province. The results of mycotoxin analysis revealed a higher incidence of positive mycotoxin contamination in aphid-damaged maize ears compared to aphid-undamaged ones. All maize samples exhibiting excessive mycotoxin content were damaged by aphids. The identification of corresponding mycotoxin-producing strains was possible in the majority of cases where mycotoxins were detected in aphid-damaged maize ears.【Conclusion】F. verticillioides and F. proliferatum were the dominant Fusarium species isolated from aphids, bracts and kernels. The main Fusarium species isolated from aphids, bracts and kernels on the same maize ear were the same. Aphid damage significantly increased toxin accumulation levels in maize kernels, and the type of toxin was highly correlated with the detection of Fusarium species.

Key words: maize ear rot, Fusarium, maize aphid, mycotoxin

Table 1

Sample number and proportion of aphids, bracts and kernels carrying Fusarium spp. on maize ears in different regions of Jilin Province"

区域
Area
样品数量
Sample
number
蚜虫Aphid 苞叶Bract 籽粒Kernel
数量
Number
占比
Proportion (%)
数量
Number
占比
Proportion (%)
数量
Number
占比
Proportion (%)
东部East 42 13 30.95 31 73.81 29 69.05
中部Centre 48 36 75.00 41 85.42 44 91.67
西部West 15 11 73.33 14 93.33 14 93.33
合计Total 105 60 57.14 86 81.90 87 82.86

Table 2

Sample number and proportion of aphids, bracts and kernels carrying Fusarium species on maize ears"

样品
Sample
1种One species 2种Two species 3种Three species 4种Four species 6种Six species
数量
Number
占比
Proportion (%)
数量
Number
占比
Proportion (%)
数量
Number
占比
Proportion (%)
数量
Number
比例
Proportion (%)
数量
Number
占比
Proportion (%)
蚜虫Aphid 45 42.86 12 11.43 3 2.86 0 0 0 0
苞叶Bract 43 40.95 34 32.38 5 4.76 4 3.81 1 0.95
籽粒Kernel 73 69.52 11 10.48 3 2.86 0 0 0 0

Table 3

Separation frequency of different Fusarium species on maize ears damaged by aphids"

镰孢菌
Fusarium
蚜虫Aphid 苞叶Bract 籽粒Kernel
株数
Number of
strains
分离频率Separation
frequency (%)
株数
Number of
strains
分离频率
Separation
frequency (%)
株数
Number of
strains
分离频率
Separation
frequency (%)
拟轮枝镰孢F. verticillioides 231 47.63 139 35.37 285 55.23
层出镰孢F. proliferatum 134 27.63 132 33.59 127 24.61
亚黏团镰孢F. subglutinans 42 8.66 21 5.34 44 8.53
禾谷镰孢F. graminearum 32 6.60 5 1.27 8 1.55
温带镰孢F. temperatum 18 3.71 11 2.80 6 1.16
变红镰孢F. incarnatum 13 2.68 3 0.76 4 0.78
新知镰孢F. andiyazi 9 1.86 0 0 12 2.33
燕麦镰孢F. avenaceum 6 1.24 0 0 0 0
布氏镰孢F. boothii 0 0 0 0 5 0.97
厚垣镰孢F. chlamydosporum 0 0 40 10.18 6 1.16
木贼镰孢F. equiseti 0 0 15 3.82 4 0.78
藤仓镰孢F. fujikuroi 0 0 14 3.56 13 2.52
亚洲镰孢F. asiaticum 0 0 1 0.25 2 0.39
尖孢镰孢F. oxysporum 0 0 3 0.76 0 0
锐顶镰孢F. acuminatum 0 0 3 0.76 0 0
F. ipomoeae 0 0 6 1.53 0 0
合计Total 485 393 516

Fig. 1

Colony morphology of dominant Fusarium species on PDA medium"

Fig. 2

Sample number and proportion of aphids, bracts and kernels isolated the same Fusarium species"

Table 4

Detection of mycotoxins in maize ears collected from different regions of Jilin Province"

真菌毒素Mycotoxin HM (n=94) DAM (n=103)
检出率
Detection
rate (%)
阳性均值
Positive mean (μg·kg-1)
总体均值
Overall mean (μg·kg-1)
阳性范围
Positive range (μg·kg-1)
检出率 Detection
rate (%)
阳性均值 Positive mean (μg·kg-1) 总体均值
Overall mean (μg·kg-1)
阳性范围
Positive range (μg·kg-1)
FB1 11.70 369.15 43.20 132.10-1481.00 11.65 795.74 91.82 64.58-3626.00
FB2 4.26 84.34 3.59 47.33-123.80 5.83 407.31 23.73 14.09-1094.00
FB3 2.13 91.26 1.94 62.02-120.50 3.88 203.88 7.92 103.30-393.80
DON 7.45 255.94 19.06 135.80-590.80 14.56 1207.76 175.89 93.62-5115.00
ZEA 4.26 26.81 0.29 25.10-29.41 8.74 289.90 25.33 29.18-1661.00

Table 5

Correlation between pathogenic Fusarium spp. and mycotoxin types in maize ears damaged by aphids"

检测点
Monitoring point
FB
(μg·kg-1)
DON
(μg·kg-1)
ZEA
(μg·kg-1)
镰孢菌(蚜虫)
Fusarium (aphid)
镰孢菌(苞叶)
Fusarium (bract)
镰孢菌(籽粒)Fusarium (kernel)
大安市安广镇Anguang Town, Daan City ND 94 ND ND F. g, F. v F. v
大安市两家子镇Liangjiazi Town, Daan City ND 108 34 F. s, F. v F. s, F. p F. p
洮南市郊Suburb of Taonan City 165 ND ND F. v F. p F. p
镇赉县镇赉镇Zhenlai Town, Zhenlai County ND 290 31 F. g, F. p, F. an F. s, F. c F. s
镇赉县建平乡Jianping Township, Zhenlai County ND 1486 155 F. s, F. p, F. g F. s, F. c, F. as F. s
永吉县北大湖镇Beidahu Town, Yongji County 383 ND ND ND ND F. v
东辽县白泉镇Baiquan Town, Dongliao County 4141 225 ND F. p F. s, F. p, F. v, F. c F. v, F. p
东丰县小四平镇Xiaosiping Town, Dongfeng County 117 ND ND ND ND F. v
梨树县万发镇Wanfa Town, Lishu County 1784 ND 29 F. v F. v, F. s F. v
双辽市王奔镇Wangben Town, Shuangliao City ND 2496 ND F. v F. c, F. p F. v
伊通县伊丹镇Yidan Town, Yitong County ND 2542 ND F. v F. v, F. ip F. v
前郭县吉拉吐乡Jilatu Township, Qianguo County ND 1600 518 F. v F. v F. v, F. p
乾安县余字乡Yuzi Township, Qian’an County ND 5115 99 F. p F. g, F. p F. b
乾安县乾安镇Qian’an Town, Qian’an County ND 2378 1661 ND F. v F. b, F. an
辉南县朝阳镇Chaoyang Town, Huinan County ND 162 ND F. p F. c, F. v, F. o F. v
集安市青石镇Qingshi Town, Ji’an City 220 1095 29 F. t F. f F. p
梅河口市Meihekou City ND 218 ND F. p F. g, F. ac F. v
安图县明月镇Mingyue Town, Antu County ND ND 53 ND F. t F. p
和龙市东城镇Dongcheng Town, Helong City 134 ND ND ND F. p F. p, F. in, F. c
龙井市老头沟镇Laotougou Town, Longjing City 773 ND ND ND F. in, F. v ND
图们市凉水镇Liangshui Town, Tumen City 4800 ND ND ND F. p F. p
公主岭市范家屯镇Fanjiatun Town, Gongzhuling City ND 179 ND F. v F. p, F. c, F. e, F. v F. v
九台区卡伦镇Kalun Town, Jiutai District ND 128 ND F. v F. p, F. c, F. v F. v
双阳区鹿乡镇Luxiang Town, Shuangyang District 110 ND ND F. p, F. av F. p, F. c, F. e, F. f F. s

Table 6

Analysis of excessive mycotoxin content in maize ears damaged by aphids collected from different regions of Jilin Province"

市(县)City (county) 检测点Monitoring point FB (μg·kg-1) DON (μg·kg-1) ZEA (μg·kg-1)
东辽Dongliao 白泉镇Baiquan Town 4141 - -
图们Tumen 凉水镇Liangshui Town 4800 - -
集安Ji’an 青石镇Qingshi Town - 1095 -
双辽Shuangliao 王奔镇Wangben Town - 2496 -
伊通Yitong 伊丹镇Yidan Town - 2542 -
镇赉Zhenlai 建平乡Jinaping Township - 1486 155
乾安Qian’an 乾安镇Qian’an Town - 2378 1661
前郭Qianguo 吉拉吐乡Jilatu Township - 1600 518
乾安Qian’an 余字乡Yuzi Township - 5115 99
[1]
GORUR G, LOMONACO C, MACKENZIE A. Phenotypic plasticity in host choice behavior in black bean aphid, Aphis fabae (Homoptera: Aphididae). Arthropod-Plant Interactions, 2007, 1: 187-194.
[2]
赵培伟. 玉米主要害虫的性诱剂监测和玉米品种的抗虫性研究[D]. 泰安: 山东农业大学, 2015.
ZHAO P W. Sex pheromone monitoring of main maize pests and the resistance of maize varieties to insect pests[D]. Taian: Shandong Agricultural University, 2015. (in Chinese)
[3]
王振营, 王晓鸣. 我国玉米病虫害发生现状、趋势与防控对策. 植物保护, 2019, 45(1): 1-11.
WANG Z Y, WANG X M. Current status and management strategies for corn pests and diseases in China. Plant Protection, 2019, 45(1): 1-11. (in Chinese)
[4]
JU M, ZHOU Z J, MU C, ZHANG X C, GAO J Y, LIANG Y K, CHEN J F, WU Y B, LI X P, WANG S W, WEN J J, YANG L M, WU J Y. Dissecting the genetic architecture of Fusarium verticillioides seed rot resistance in maize by combining QTL mapping and genome-wide association analysis. Scientific Reports, 2017, 7: 46446.
[5]
ZHOU D N, WANG X M, CHEN G K, SUN S L, YANG Y, ZHU Z D, DUAN C X. The major Fusarium species causing maize ear and kernel rot and their toxigenicity in Chongqing, China. Toxins, 2018, 10(2): 90.
[6]
迟浩文, 丁一鸣, 杜凯月, 李伟东, 殷复伟, 陈蕾, 邹珅珅, 梁元存. 禾谷镰刀菌缺氧诱导脱氢酶参与发育和致病性. 植物病理学报, 2021, 51(6): 850-860.
CHI H W, DING Y M, DU K Y, LI W D, YIN F W, CHEN L, ZOU S S, LIANG Y C. Hypoxia-induced dehydrogenase regulates development and pathogenicity in Fusarium graminearum. Acta Phytopathologica Sinica, 2021, 51(6): 850-860. (in Chinese)
[7]
吴梦春, 唐喆. RNA-Seq解析cAMP促进禾谷镰孢菌DON毒素产生的分子基础. 植物病理学报, 2021, 51(5): 699-709.
WU M C, TANG Z. RNA-Seq analysis reveals the molecular mechanism of enhanced DON production by cAMP-treatment in Fusarium graminearum. Acta Phytopathologica Sinica, 2021, 51(5): 699-709. (in Chinese)
[8]
JIANG C, ZHANG C K, WU C L, SUN P P, HOU R, LIU H Q, WANG C F, XU J R. TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum. Environmental Microbiology, 2016, 18(11): 3689-3701.
[9]
薛晓雯, 翟焕趁, 屈建航, 张帅兵, 吕扬勇, 李娜, 魏闪, 马平安, 蔡静平, 胡元森. 禾谷镰刀菌FgNST1对FgMGV1及DON毒素合成的影响. 河南农业大学学报, 2020, 54(6): 985-994.
XUE X W, ZHAI H C, QU J H, ZHANG S B, Y Y, LI N, WEI S, MA P A, CAI J P, HU Y S. Effects of Fusarium graminearum FgNST1 on FgMGV1 and the synthesis of DON toxin. Journal of Henan Agricultural University, 2020, 54(6): 985-994. (in Chinese)
[10]
RAUSCHER S, PACHER S, HEDTKE M, KNIEMEYER O, FISCHER R. A phosphorylation code of the Aspergillus nidulans global regulator VelvetA (VeA) determines specific functions. Molecular Microbiology, 2016, 99(5): 909-924.
[11]
PARK H S, LEE M K, KIM S C, YU J H. The role of VosA/VelB- activated developmental gene vadA in Aspergillus nidulans. PLoS ONE, 2017, 12(5): e0177099.
[12]
FLETT B C, VAN RENSBURG J B J. Effect of Busseola fusca on the incidence of maize ear rot caused by Fusarium moniliforme and Stenocarpella maydis. South African Journal of Plant and Soil, 1992, 9(4): 177-179.
[13]
魏铁松, 朱维芳, 庞民好, 刘颖超, 王振营, 董金皋. 棉铃虫和玉米螟危害对玉米穗腐病的影响. 玉米科学, 2013, 21(4): 116-118, 123.
WEI T S, ZHU W F, PANG M H, LIU Y C, WANG Z Y, DONG J G. Influence of the damage of cotton bollworm and corn borer to ear rot in corn. Journal of Maize Science, 2013, 21(4): 116-118, 123. (in Chinese)
[14]
CAO A, SANTIAGO R, RAMOS A, MARIN S, REID L, BUTRON A. Environmental factors related to fungal infection and fumonisin accumulation during the development and drying of white maize kernels. International Journal of Food Microbiology, 2013, 164(1): 15-22.

doi: 10.1016/j.ijfoodmicro.2013.03.012 pmid: 23587708
[15]
李人杰, 魏铁松, 郭聪聪, 庞民好, 刘颖超, 董金皋. 棉铃虫危害与拟轮生镰孢侵染对玉米穗腐病发生及玉米籽粒中伏马毒素污染水平的影响. 植物保护, 2015, 41(4): 68-72.
LI R J, WEI T S, GUO C C, PANG M H, LIU Y C, DONG J G. Effects of infestation by Helicoverpa armigera together with Fusarium verticillioides on the severity of maize ear rot and the contamination level of fumonisin in kernels. Plant Protection, 2015, 41(4): 68-72. (in Chinese)
[16]
尹海峰, 曹志艳, 王宽, 李朋朋, 贾慧, 董金皋. 蚜虫危害对玉米鞘腐病发生的影响. 河北农业大学学报, 2015, 38(4): 86-91.

doi: 10.13320/j.cnki.jauh.2015.0090
YIN H F, CAO Z Y, WANG K, LI P P, JIA H, DONG J G. The influence of aphids occurrence on corn sheath rot. Journal of Agricultural University of Hebei, 2015, 38(4): 86-91. (in Chinese)
[17]
DRAKULIC J, CAULFIELD J, WOODCOCK C, JONES S P, LINFORTH R, BRUCE T J, RAY R V. Sharing a host plant (wheat [Triticum aestivum]) increases the fitness of Fusarium graminearum and the severity of Fusarium head blight but reduces the fitness of grain aphids (Sitobion avenae). Applied and Environmental Microbiology, 2015, 81(10): 3492-3501.
[18]
DE ZUTTER N, AUDENAERT K, AMEYE M, DE BOEVERE M, DE SAEGER S, HAESAERT G, SMAGGHE G. The plant response induced in wheat ears by a combined attack of Sitobion avenae aphids and Fusarium graminearum boosts fungal infection and deoxynivalenol production. Molecular Plant Pathology, 2017, 18(1): 98-109.
[19]
DRAKULIC J, AJIGBOYE O, SWARUP R, BRUCE T, RAY R V. Aphid infestation increases Fusarium langsethiae and T-2 and HT-2 mycotoxins in wheat. Applied and Environmental Microbiology, 2016, 82(22): 6548-6556.
[20]
秦子惠, 任旭, 江凯, 武小菲, 杨知还, 王晓鸣. 我国玉米穗腐病致病镰孢种群及禾谷镰孢复合种的鉴定. 植物保护学报, 2014, 41(5): 589-596.
QIN Z H, REN X, JIANG K, WU X F, YANG Z H, WANG X M. Identification of Fusarium species and F. graminearum species complex causing maize ear rot in China. Journal of Plant Protection, 2014, 41(5): 589-596. (in Chinese)
[21]
张昊, 张争, 许景升, 徐进, 张丽勍, 潘哲超, 田茜, 冯洁. 一种简单快速的赤霉病菌单孢分离方法——平板稀释画线分离法. 植物保护, 2008, 34(6): 134-136.
ZHANG H, ZHANG Z, XU J S, XU J, ZHANG L Q, PAN Z C, TIAN Q, FENG J. A rapid and simple method for obtaining single-spore isolates of Fusarium species—agar dilution lineation separation. Plant Protection, 2008, 34(6): 134-136. (in Chinese)
[22]
王宝宝, 毕四刚, 肖明纲, 张冬英, 闫强, 张彦彦, 杨树龙, 朱振东, 段灿星. 黑龙江省玉米穗腐病致病镰孢菌分离鉴定及产毒基因型分析. 草业学报, 2020, 29(1): 163-174.

doi: 10.11686/cyxb2019198
WANG B B, BI S G, XIAO M G, ZHANG D Y, YAN Q, ZHANG Y Y, YANG S L, ZHU Z D, DUAN C X. Isolation and identification of pathogenic Fusarium spp. causing maize ear rot and analysis of their toxin-producing genotype in Heilongjiang Province. Acta Prataculturae Sinica, 2020, 29(1): 163-174. (in Chinese)
[23]
孙华, 张海剑, 马红霞, 石洁, 郭宁, 陈丹, 李坡. 春玉米区穗腐病病原菌组成、分布及禾谷镰孢复合种的鉴定. 植物病理学报, 2018, 48(1): 8-15.
SUN H, ZHANG H J, MA H X, SHI J, GUO N, CHEN D, LI P. Composition and distribution of pathogens causing ear rot in spring maize region and identification of Fusarium graminearum species complex. Acta Phytopathologica Sinica, 2018, 48(1): 8-15. (in Chinese)
[24]
柴海燕, 贾娇, 白雪, 孟玲敏, 张伟, 金嵘, 吴宏斌, 苏前富. 吉林省玉米穗腐病致病镰孢菌的鉴定与部分菌株对杀菌剂的敏感性. 中国农业科学, 2023, 56(1): 64-78. doi: 10.3864/j.issn.0578-1752.2023.01.005.
CHAI H Y, JIA J, BAI X, MENG L M, ZHANG W, JIN R, WU H B, SU Q F. Identification of pathogenic Fusarium spp. causing maize ear rot and susceptibility of some strains to fungicides in Jilin Province. Scientia Agricultura Sinica, 2023, 56(1): 64-78. doi: 10.3864/j.issn.0578-1752.2023.01.005. (in Chinese)
[25]
陈悦. 温度对玉米拟轮枝镰孢菌和禾谷镰孢菌致病性的影响及其机制研究[D]. 保定: 河北农业大学, 2022.
CHEN Y. The effect and mechanism of temperature on the pathogenicity of Fusarium verticillioides and Fusarium graminearum[D]. Baoding: Hebei Agricultural University, 2022. (in Chinese)
[26]
高文彬, 田颖超, 董乾, 马一博, 霍瑞云, 刘莎莎, 罗都强. 异色瓢虫共生真菌木贼镰刀菌次生代谢产物研究. 河南师范大学学报(自然科学版), 2019, 47(6): 110-112.
GAO W B, TIAN Y C, DONG Q, MA Y B, HUO R Y, LIU S S, LUO D Q. Secondary metabolites of symbiotic fungus from Harmonia axyridis. Journal of Henan Normal University (Natural Science Edition), 2019, 47(6): 110-112. (in Chinese)
[27]
赵雪怡, 柴军发, 张暄翊, 洪波, 贾彦霞. 木贼镰刀菌的鉴定及其对桃蚜的致病性测定. 中国生物防治学报, 2023, 39(1): 69-76.

doi: 10.16409/j.cnki.2095-039x.2022.07.002
ZHAO X Y, CHAI J F, ZHANG X Y, HONG B, JIA Y X. Identification of Fusarium equiseti and its pathogenicity to Myzus persicae. Chinese Journal of Biological Control, 2023, 39(1): 69-76. (in Chinese)
[28]
宋漳. 从桔蚜上分离的一种致病镰刀菌. 林业科学, 2001, 37(6): 66-70.
SONG Z. A species of entomogenous fungus Fusaium lateritium isolated from citrus aphid. Scientia Silvae Sinicae, 2001, 37(6): 66-70. (in Chinese)
[29]
IMATHIU S M, RAY R V, BACK M, HARE M C, EDWARDS S G. Fusarium langsethiae pathogenicity and aggressiveness towards oats and wheat in wounded and unwounded in vitro detached leaf assays. European Journal of Plant Pathology, 2009, 124: 117-126.
[30]
孟繁磊, 范宏, 谭莉, NOWACKA A, 宋志峰, 魏春雁. 吉林省玉米真菌毒素污染状况及其膳食风险评估研究. 玉米科学, 2021, 29(5): 88-94.
MENG F L, FAN H, TAN L, NOWACKA A, SONG Z F, WEI C Y. Contamination status and dietary risk assessment of corn mycotoxins in Jilin Province. Journal of Maize Science, 2021, 29(5): 88-94. (in Chinese)
[31]
MESTERHÁZY Á, SZIEBERTH D, SZABÓ B, BERÉNYI A, TÓTH B. Mycotoxin contamination of maize (Zea mays L.) samples in Hungary, 2012-2017. Cereal Research Communications, 2022, 50: 1065-1073.
[32]
OPOKU N, BACK M, EDWARDS S G. Development of Fusarium langsethiae in commercial cereal production. European Journal of Plant Pathology, 2013, 136: 159-170.
[1] MAI ChunYan, LIU YiKe, LIU HongWei, LI HongJie, YANG Li, WU PeiPei, ZHOU Yang, ZHANG HongJun. Breeding of the Fusarium Head Blight (FHB)-Resistant Wheat Cultivar Lunxuan 20 Using the Dwarf-Male Sterile Wheat Molecular Strategy in the Yellow and Huai River Valley Winter Wheat Region [J]. Scientia Agricultura Sinica, 2024, 57(19): 3719-3729.
[2] ZHU ZuoYin, ZHAO HanKe, CHENG HaiSheng, HAN MengYi, QIU Zhi, WANG Jie, ZHOU XinLi, YANG JunHua. Study on Characterization and Interaction Analysis of Co-Contamination of Multi-Mycotoxins in the Flours of Rice, Maize, Soybean and Wheat Flour in Shanghai from 2021 to 2022 [J]. Scientia Agricultura Sinica, 2024, 57(12): 2454-2466.
[3] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[4] YANG Hong,CAO WenMing,CHEN HeYan,WEI XueQing,SHU LiDan,LI Tong. Risks and Their Prevention and Control of Modified Mycotoxins in Grain and Its Products [J]. Scientia Agricultura Sinica, 2022, 55(6): 1213-1226.
[5] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
[6] LI QinCheng,SHI Jie,HE KangLai,WANG ZhenYing. Effects of Chemical Control of Ear Borers on Reducing Fusarium verticillioides Ear Rot and Fumonisin Level [J]. Scientia Agricultura Sinica, 2021, 54(17): 3702-3711.
[7] FAN Kai,JI Fang,XU JianHong,QIAN MingRong,DUAN JinSheng,NIE DongXia,TANG ZhanMin,ZHAO ZhiHui,SHI JianRong,HAN Zheng. Natural Occurrence and Characteristic Analysis of 40 Mycotoxins in Agro-Products from Yangtze Delta Region [J]. Scientia Agricultura Sinica, 2021, 54(13): 2870-2884.
[8] TIAN Qing,GAO DanMei,LI Hui,LIU ShouWei,ZHOU XinGang,WU FengZhi. Effects of Wheat Root Exudates on the Structure of Fungi Community in Continuous Cropping Watermelon Soil [J]. Scientia Agricultura Sinica, 2020, 53(5): 1018-1028.
[9] WANG BaoBao,GUO Cheng,SUN SuLi,XIA YuSheng,ZHU ZhenDong,DUAN CanXing. The Genetic Diversity, Pathogenicity, and Toxigenic Chemotypes of Fusarium graminearum Species Complex Causing Maize Ear Rot [J]. Scientia Agricultura Sinica, 2020, 53(23): 4777-4790.
[10] WenJing HU,ChunMei ZHANG,Di WU,ChengBin LU,YaChao DONG,XiaoMing CHENG,Yong ZHANG,DeRong GAO. Screening for Resistance to Fusarium Head Blight and Agronomic Traits of Wheat Germplasms from Yangtze River Region [J]. Scientia Agricultura Sinica, 2020, 53(21): 4313-4321.
[11] LIU ShuSen,MA HongXia,GUO Ning,SHI Jie,ZHANG HaiJian,SUN Hua,JIN Ge. Analysis of Main Pathogens and Dominant Species of Maize Stalk Rot in the Main Summer Maize Producing reas of Huang-Huai-Hai [J]. Scientia Agricultura Sinica, 2019, 52(2): 262-272.
[12] DU Qing, TANG ZhaoLei, LI ShiChu, SHANGGUAN LingLing, LI HuaJiao, DUAN CanXing. Composition of Fusarium Species Causing Maize Ear Rot and Analysis of Toxigenic Chemotype in Guangxi [J]. Scientia Agricultura Sinica, 2019, 52(11): 1895-1907.
[13] MA HongXia, SUN Hua, GUO Ning, ZHANG HaiJian, SHI Jie, CHANG JiaYing. Analysis of Toxigenic Chemotype and Genetic Diversity of the Fusarium graminearum Species Complex [J]. Scientia Agricultura Sinica, 2018, 51(1): 82-95.
[14] LI ZhiXia, NIE JiYun, YAN Zhen, ZHANG XiaoNan, GUAN DiKai, SHEN YouMing, CHENG Yang. Progress in Research of Detection, Risk Assessment and Control of the Mycotoxins in Fruits and Fruit Products [J]. Scientia Agricultura Sinica, 2017, 50(2): 332-347.
[15] FAN Yu, LI Xiao-Ying, ZHAO Li-Hong, JIA Ya-Xiong, JI Cheng, MA Qiu-Gang, CHEN Yu, WANG Liang. Investigation on Contamination Situation of Aflatoxin in Detected Feeds and Feedstuffs in Beijing Area [J]. Scientia Agricultura Sinica, 2012, 45(24): 5102-5109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!