Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (14): 2827-2846.doi: 10.3864/j.issn.0578-1752.2024.14.011

• HORTICULTURE • Previous Articles     Next Articles

Transcriptomics-Based Analysis of Pepper Responses to Phosphorus Nutritional Stress

XU MingRui(), WANG XiaoJuan, YANG YaLi, MA YueFei, LIU WanMao, SUN Ying*()   

  1. College of Agriculture, Ningxia University, Yinchuan 750021
  • Received:2023-12-22 Accepted:2024-05-20 Online:2024-07-16 Published:2024-07-24
  • Contact: SUN Ying

Abstract:

【Objective】 This study aimed to explore the changes in the transcriptional level and physiological responses of pepper (Capsicum annuum L.) seedlings under different phosphorus stress gradients, to analyze the key pathways, and to integrate related experiments to elucidate the physiological mechanisms of the pepper response to nutritional stress of phosphorus. This study also identified the transcription factors and core genes that regulate the nutritional stress of phosphorus, so as to provide a theoretical basis and genetic resources for the breeding of peppers. 【Method】 This study used the roots of the pure CA#8 seedlings of pepper as experimental material, grown by Hoagland hydroponics in a single four-leaf stage and subjected to four different gradient phosphorus stress treatments, namely control group (CK, 200 μmol·L-1 NH4H2PO4) and phosphorus deficiency group (DP, 0 μmol·L-1 NH4H2PO4), low phosphorus stress group (LP, 20 μmol·L-1 NH4H2PO4), and high phosphorus stress group (HP, 1 000 μmol·L-1 NH4H2PO4). Transcriptome sequencing (RNA-Seq) was performed on pepper roots systems 2 days after treatment, and the endogenous hormone levels and antioxidant enzyme activities were measured after 0, 2, 4, and 6 days of treatment, respectively. 【Result】 Compared with the CK group, the DP, LP, and HP groups exhibited 626, 107, and 171 differentially expressed genes (DEG), respectively. 10 DEGs related to the phosphorus signaling pathway, 4 DEGs related to the plant hormone signal transduction pathway, and 7 DEGs related to antioxidant enzyme activities were identified by GO, KEGG enrichment analysis, and WGCNA analysis. Real-time fluorescence quantitative (qRT-PCR) was used to validate the accuracy of transcriptome data. Quantitative measurements of endogenous hormones in the roots of pepper seedlings showed that with increasing duration phosphorus stress, the levels of various growth-promoting endogenous hormones such as gibberellin (GA), brassinolide (BR), cytokinin (CTK), indole acetic acid (IAA), strigolactone (SL), and jasmonic acid (JA) decreased in the DP, LP and HP groups, while the levels of growth-inhibiting hormones such as ethylene (ETH) and abscisic acid (ABA) increased, especially under phosphorus deficiency and low phosphorus stress, where growth inhibition of the seedling roots was the most significant. Various phosphorus stress-induced increased activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in pepper root tissue, while the activities of SOD decreased at the later stage of stress, and POD and CAT tended to be stable too. 【Conclusion】 During various phosphorus nutritional stress, the pepper seedlings mitigated the effects of phosphorus stress on growth by responding to phosphorus signaling pathways, plant hormone signal transduction pathways, and differentially expressed genes related to antioxidant enzyme activity, thus improving the tolerance to phosphorus stress of pepper seedlings.

Key words: Capsicum annuum L., phosphorus stress, phosphorus starvation response, transcriptome, gene mining

Table 1

Real-time fluorescent quantitative PCR primer sequence"

基因分类
Gene classification
基因名称
Gene name
基因ID
Gene ID
正向引物
Forward primer (5´-3´)
反向引物
Reverse primer (5´-3´)
内参基因
Internal reference gene
CaActin LOC107850541 AGTGGTCGTACAACTGGTATTG GCAAGATCCAAACGAAGAATGG
磷信号相关基因
Phosphorus signaling related genes
CaSPX3 LOC107857225 AAGAGTGTGAAAGCACCATAGA CTTCACCTGCAGCTCCTATTT
CaSPX2 LOC107840775 AGAGCACCATATCCGCTTTAC CCAGGTATCTTCGAGTCCACTA
CaSPX1 LOC107863810 ACTCAGTGGCGAGCTTATTC TGGCTCAGTTTGGTACAAGAG
CaPHO1;H1 LOC107848491 ACACGCGGAGAAGATGATTC AGCATGTTCAAGGTCCGATAAG
CaPHO1;H10 LOC107848334 CTCATGGAAGACAGGGTTCTAC GTGAATCAGTCTCTCCGTTCTC
CaPht1;9 LOC107866766 CATCGCAGGTATGGGCTTATT CCGTTGGCGATCTGTAGTAAAT
CaPht1;4 LOC107868451 TCCGGACTCTCCTTTGGTAATA CGTGGCCGATAAAGGGTAAT
CaPAP2 LOC107866942 GGAGATGGAGGAAATCAAGAAGG TCCAATATACCGTGCCCAAAG
CaPAP15 LOC107864505 GGACCTGGCTAATGTTGATAGG CGATAGTGTGCCGTGTAAGTAG
CaPAP16 LOC107872241 GGGAGCTAGGATTCTGGAGATA GCTTGCCGTAGAGCTCAATA
抗氧化酶活性相关基因
Antioxidant enzyme activity related genes
CaPER44 LOC107847017 GTACGAGGATACGAGCTGATTG CCTTCCTGTGGGTATGTTGTAG
CaPER41 LOC107850917 AGGAGATGGTTGTGTTGACTG GGTTCATTGTTGGATCAGCATTAG
CaPER55 LOC107860772 GCTGAAGGGCAACTAGAAGAG AGACGCAAAGTAGCTGGAATAG
CaPER7 LOC107861283 TGTCCGACGTTGGAAAGTATAG CTAACGAAGCAGTCATGGAAATG
CaSODB LOC107873354 TGCTCACGATAGACGTTTGG ATGACACGAGCTTCTCCATAAA
CaGRXC6 LOC107871022 GGTGGTGGTATGGATGAGATG GGAACAAGTCCACCACTTAGAT
CaGRXS3 LOC107874941 TTTCTGCTCTCGGCTGTAATC TGATCTCACTTTCTCCACCAAC
植物激素信号转导相关基因
Phytohormone signaling related genes
CaAUX22D LOC107863844 GCCACCAGTTCGATCTTACA AAGGTGCTCCATCCATACTAAC
CaPIF4 LOC107878077 GTGGATCGGGCAGTAGTTATG TACTCTGGCATTCTGGTTCTTC
CaCYP707A1 LOC107859996 GTACCAGGGAATCTGGGAATAC GCCGGAGTCTAACAAAGTCATA
CaSAUR36 LOC107857408 GTCGGGTCGAAATTGATGGA TGAAGTAAACCACAGGCACTAA

Fig. 1

Principal component analysis and intersample correlation analysis of gene expression levels CK: Control group; DP: Phosphorus deficiency stress group; LP: Low phosphorus stress group; HP: High phosphorus stress group. The same as below"

Table 2

Statistical table of transcriptome sequencing data quality evaluation"

样品名称
Sample
原始序列数
Raw reads (M)
原始序列长度
Raw bases (G)
高质量序列数
Clean reads (M)
高质量序列长度
Clean bases (G)
比对到参考基因组
Mapped reads (%)
Q30
(%)
GC
(%)
CK1 51.10 7.36 48.96 7.05 95.80 96.58 42.98
CK2 50.57 7.31 48.63 7.03 96.17 96.89 43.10
CK3 50.69 7.27 48.35 6.93 95.38 96.54 43.09
DP1 50.25 7.24 48.13 6.93 95.76 96.75 43.15
DP2 50.63 7.28 48.37 6.95 95.54 96.85 43.25
DP3 50.37 7.22 47.98 6.87 95.25 96.90 43.24
HP1 50.65 7.31 48.62 7.01 96.00 96.87 43.14
HP2 50.99 7.28 48.35 6.90 94.82 95.27 43.27
HP3 51.53 7.38 49.02 7.02 95.15 96.82 43.14
LP1 48.92 7.04 46.85 6.75 95.77 96.80 43.20
LP2 51.66 7.37 49.00 6.99 94.85 96.70 43.18
LP3 50.80 7.32 48.66 7.01 95.79 96.59 43.21

Fig. 2

Analysis of differentially expressed genes under different gradient phosphorus stress treatments A: Numbers of up-regulate and down-regulate genes under different gradient phosphorus stress treatments; B: Venn diagram of differentially expressed genes"

Fig. 3

GO enrichment analysis of differentially expressed gene"

Fig. 4

KEGG enrichment analysis of DEG in roots of pepper seedlings under different gradient phosphorus stress treatments"

Fig. 5

Analysis of WGCNA A: Fourteen modules of a clustering tree are shown on the hierarchical cluster tree. Each branch represents a module; B: Correlations of the gene expression modules and NH4H2PO4 concentration, SOD, POD, CAT, GA, IAA, ETH, ABA, SL, JA, CTK, BR under different gradient phosphorus stress treatments. Red and blue indicate the positive and negative correlations, respectively. The correlation coefficient and the P-value are shown within each cell"

Fig. 6

Heat maps of genes related to phosphorus signaling pathway, plant hormone signaling pathway and antioxidant enzyme activity"

Fig. 7

qRT-PCR analysis of differentially expressed genes"

Fig. 8

Endogenous hormone content in roots of pepper seedlings treated with different phosphorus concentrations Different lowercase letters indicate that there is a significant difference in different treatment times under the same gradient phosphorus stress (P<0.05), and different captical letters indicate that there is a significant difference in different gradient phosphorus stress under the same treatment time (P<0.05). The same as below"

Fig. 9

Enzymatic activity of SOD, POD and CAT in root of pepper seedlings under different phosphorus concentrations"

[1]
ISIDRA-ARELLANO M C, DELAUX P M, VALDÉS-LÓPEZ O. The phosphate starvation response system: Its role in the regulation of plant-microbe interactions. Plant and Cell Physiology, 2021, 62(3): 392-400.
[2]
NUSSAUME L, KANNO S, JAVOT H, MARIN E, POCHON N, AYADI A, NAKANISHI T M, THIBAUD M C. Phosphate import in plants: Focus on the PHT1 transporters. Frontiers in Plant Science, 2011, 2: 83.

doi: 10.3389/fpls.2011.00083 pmid: 22645553
[3]
刘芳朋, 张立军, 谷俊涛, 李小娟, 郭程谨, 路文静, 肖凯. 小麦磷转运蛋白基因TaPT4的克隆和表达分析. 河北农业大学学报, 2012, 35(3): 1-7.
LIU F P, ZHANG L J, GU J T, LI X J, GUO C J, LU W J, XIAO K. Cloning and molecular characterization analysis of TaPT4, a phosphate transporter gene in wheat (Triticum aestivum L.). Journal of Agricultural University of Hebei, 2012, 35(3): 1-7. (in Chinese)
[4]
PAZ-ARES J, PUGA M I, ROJAS-TRIANA M, MARTINEZ-HEVIA I, DIAZ S, POZA-CARRIÓN C, MIÑAMBRES M, LEYVA A. Plant adaptation to low phosphorus availability: Core signaling, crosstalks, and applied implications. Molecular Plant, 2022, 15(1): 104-124.
[5]
BALEMI T, NEGISHO K. Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review. Journal of Soil Science and Plant Nutrition, 2012.
[6]
庄得凤, 王成, 包金花, 杜晓燕. 低温胁迫下单瓣黄刺玫抗氧化酶活性及相关基因表达. 东北林业大学学报, 2023, 51(4): 89-92, 107.
ZHUANG D F, WANG C, BAO J H, DU X Y. Antioxidant enzyme activity and related gene expression of Rosa xanthina f. normalis in response to cold stress. Journal of Northeast Forestry University, 2023, 51(4): 89-92, 107. (in Chinese)
[7]
SCHEIBLE W R, PANT P, PANT B D, KROM N, ALLEN R D, MYSORE K S. Elucidating the unknown transcriptional responses and PHR1-mediated biotic and abiotic stress tolerance during phosphorus limitation. Journal of Experimental Botany, 2023, 74(6): 2083-2111.
[8]
CHAN C, LIAO Y Y, CHIOU T J. The impact of phosphorus on plant immunity. Plant and Cell Physiology, 2021, 62(4): 582-589.

doi: 10.1093/pcp/pcaa168 pmid: 33399863
[9]
刘潮, 褚洪龙, 吴丽芳, 唐利洲, 韩利红. 植物磷稳态的调控机制. 生物技术通报, 2022, 38(2): 184-194.

doi: 10.13560/j.cnki.biotech.bull.1985.2021-0472
LIU C, CHU H L, WU L F, TANG L Z, HAN L H. Regulation mechanism of phosphate homeostasis in plants. Biotechnology Bulletin, 2022, 38(2): 184-194. (in Chinese)

doi: 10.13560/j.cnki.biotech.bull.1985.2021-0472
[10]
ZHANG D, SONG H N, CHENG H, HAO D R, WANG H, KAN G Z, JIN H X, YU D Y. The acid phosphatase-encoding gene GmACP1 contributes to soybean tolerance to low-phosphorus stress. PLoS Genetics, 2014, 10(1): e1004061.
[11]
SONG H N, YIN Z T, CHAO M N, NING L H, ZHANG D, YU D Y. Functional properties and expression quantitative trait loci for phosphate transporter GmPT1 in soybean. Plant, Cell & Environment, 2014, 37(2): 462-472.
[12]
FAN C M, WANG X, HU R B, WANG Y H, XIAO C W, JIANG Y, ZHANG X M, ZHENG C Y, FU Y F. The pattern of Phosphate transporter 1 genes evolutionary divergence in Glycine max L. BMC Plant Biology, 2013, 13: 48.
[13]
CHIOU T J, LIN S I. Signaling network in sensing phosphate availability in plants. Annual Review of Plant Biology, 2011, 62: 185-206.
[14]
MENG Q, ZHANG W Q, HU X, SHI X Y, CHEN L L, DAI X L, QU H Y, XIA Y W, LIU W, GU M, XU G H. Two ADP-glucose pyrophosphorylase subunits, OsAGPL1 and OsAGPS1, modulate phosphorus homeostasis in rice. The Plant Journal, 2020, 104(5): 1269-1284.
[15]
VYSOTSKAYA L, AKHIYAROVA G, FEOKTISTOVA A, AKHTYAMOVA Z, KOROBOVA A, IVANOV I, DODD I, KULUEV B, KUDOYAROVA G. Effects of phosphate shortage on root growth and hormone content of barley depend on capacity of the roots to accumulate ABA. Plants, 2020, 9(12): 1722.
[16]
SONG L, YU H P, DONG J S, CHE X M, JIAO Y L, LIU D. The molecular mechanism of ethylene-mediated root hair development induced by phosphate starvation. PLoS Genetics, 2016, 12(7): e1006194.
[17]
SINGH A P, FRIDMAN Y, FRIEDLANDER-SHANI L, TARKOWSKA D, STRNAD M, SAVALDI-GOLDSTEIN S. Activity of the brassinosteroid transcription factors brassinazole resistant1 and brassinosteroid insensitive1-ethyl methanesulfonate-suppressor1/ brassinazole resistant2 blocks developmental reprogramming in response to low phosphate availability. Plant Physiology, 2014, 166(2): 678-688.
[18]
YE R G, WU Y R, GAO Z Y, CHEN H, JIA L X, LI D M, LI X G, QIAN Q, QI Y H. Primary root and root hair development regulation by OsAUX4 and its participation in the phosphate starvation response. Journal of Integrative Plant Biology, 2021, 63(8): 1555-1567.
[19]
WANG S K, ZHANG S N, SUN C D, XU Y X, CHEN Y, YU C L, QIAN Q, JIANG D A, QI Y H. Auxin response factor (OsARF12), a novel regulator for phosphate homeostasis in rice (Oryza sativa). The New Phytologist, 2014, 201(1): 91-103.
[20]
YU H L, LUO N, SUN L C, LIU D. HPS4/SABRE regulates plant responses to phosphate starvation through antagonistic interaction with ethylene signalling. Journal of Experimental Botany, 2012, 63(12): 4527-4538.

doi: 10.1093/jxb/ers131 pmid: 22615140
[21]
AESCHBACHER R A, HAUSER M T, FELDMANN K A, BENFEY P N. The SABRE gene is required for normal cell expansion in Arabidopsis. Genes & Development, 1995, 9(3): 330-340.
[22]
CHEN S S, DING G D, WANG Z H, CAI H M, XU F S. Proteomic and comparative genomic analysis reveals adaptability of Brassica napus to phosphorus-deficient stress. Journal of Proteomics, 2015, 117: 106-119.
[23]
刘娅惠, 徐瑾, 雷蕾, 万一, 曾立雄, 肖文发. 不同磷质量分数下马尾松幼苗根的生理生化特征. 浙江农林大学学报, 2023, 40(1): 126-134.
LIU Y H, XU J, LEI L, WAN Y, ZENG L X, XIAO W F. Physiological and biochemical responses of seedling roots of Pinus massoniana to different phosphorus concentrations. Journal of Zhejiang A & F University, 2023, 40(1): 126-134. (in Chinese)
[24]
姚明华, 尹延旭, 王飞, 李宁, 焦春海, 赵家昱. 中国加工辣椒育种现状与发展对策. 湖北农业科学, 2015, 54(11): 2569-2573.
YAO M H, YIN Y X, WANG F, LI N, JIAO C H, ZHAO J Y. Current situation and countermeasures of breeding for processing pepper in China. Hubei Agricultural Sciences, 2015, 54(11): 2569-2573. (in Chinese)
[25]
周磊, 邓丹丹, 刘丽萍, 刘冬梅. 辣椒素的生物活性作用机制及相关研究进展. 商丘师范学院学报, 2023, 39(12): 40-43.
ZHOU L, DENG D D, LIU L P, LIU D M. The biological activity mechanism and related research progress of capsaicin. Journal of Shangqiu Normal University, 2023, 39(12): 40-43. (in Chinese)
[26]
CHEN S F, ZHOU Y Q, CHEN Y R, GU J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34(17): 884-890.

doi: 10.1093/bioinformatics/bty560 pmid: 30423086
[27]
KIM D, LANGMEAD B, SALZBERG S L. HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 2015, 12: 357-360.

doi: 10.1038/nmeth.3317 pmid: 25751142
[28]
ROBERTS A, TRAPNELL C, DONAGHEY J, RINN J L, PACHTER L. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biology, 2011, 12(3): R22.
[29]
ANDERS S, PYL P T, HUBER W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics, 2015, 31(2): 166-169.
[30]
LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 2014, 15(12): 550.
[31]
CONSORTIUM T G O. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Research, 2019, 47(D1): D330-D338.
[32]
KANEHISA M, ARAKI M, GOTO S, HATTORI M, HIRAKAWA M, ITOH M, KATAYAMA T, KAWASHIMA S, OKUDA S, TOKIMATSU T, YAMANISHI Y. KEGG for linking genomes to life and the environment. Nucleic Acids Research, 2008, 36(Suppl_1): D480-D484.
[33]
ADNAN M, MORTON G, HADI S. Analysis of rpoS and bolA gene expression under various stress-induced environments in planktonic and biofilm phase using 2-ΔΔCT method. Molecular and Cellular Biochemistry, 2011, 357(1): 275-282.
[34]
闫国超, 樊小平, 谭礼, 尹昌, 梁永超. 盐胁迫下添加外源硅提高水稻抗氧化酶活性与钠钾平衡相关基因表达. 植物营养与肥料学报, 2020, 26(11): 1935-1943.
YAN G C, FAN X P, TAN L, YIN C, LIANG Y C. Exogenous silicon effectively enhances salt stress resistance of rice by upregulating antioxidant enzymes activities and expression of genes related to Na/K homeostasis. Journal of Plant Nutrition and Fertilizers, 2020, 26(11): 1935-1943. (in Chinese)
[35]
邓美菊, 王飞, 毛传澡. 植物磷酸盐转运体及其分子调控机制. 植物生理学报, 2017, 53(3): 377-387.
DENG M J, WANG F, MAO C Z. Plant phosphate transporters and its molecular regulation mechanism. Plant Physiology Journal, 2017, 53(3): 377-387. (in Chinese)
[36]
LÓPEZ-ARREDONDO D L, LEYVA-GONZÁLEZ M A, GONZÁLEZ- MORALES S I, LÓPEZ-BUCIO J, HERRERA-ESTRELLA L. Phosphate nutrition: Improving low-phosphate tolerance in crops. Annual Review of Plant Biology, 2014, 65: 95-123.
[37]
JAIN A, NAGARAJAN V K, RAGHOTHAMA K G. Transcriptional regulation of phosphate acquisition by higher plants. Cellular and Molecular Life Sciences, 2012, 69(19): 3207-3224.

doi: 10.1007/s00018-012-1090-6 pmid: 22899310
[38]
邓宏颖, 王园圆, 郭京豪. 植物对磷元素的吸收与利用. 乡村科技, 2022, 13(14): 71-75.
DENG H Y, WANG Y Y, GUO J H. Absorption and utilization of phosphorus by plants. Rural Science and Technology, 2022, 13(14): 71-75. (in Chinese)
[39]
XIAO X L, ZHANG J Q, SATHEESH V, MENG F X, GAO W L, DONG J S, ZHENG Z, AN G Y, NUSSAUME L, LIU D, LEI M G. SHORT-ROOT stabilizes PHOSPHATE1 to regulate phosphate allocation in Arabidopsis. Nature Plants, 2022, 8: 1074-1081.
[40]
宋倩. 基于多维组学数据分析挖掘并验证拟南芥PHO1;H10基因功能[D]. 北京: 中国农业大学, 2018.
SONG Q. Function prediction and validation for Arabidopsis PHO1;H10 gene based on multi-dimensional omics data mining[D]. Beijing: China Agricultural University, 2018. (in Chinese)
[41]
李万, 李成, 程敏, 吴芳. 磷转运蛋白StPHO1.2提高马铃薯耐热性. 作物学报, 2024, 50(2): 394-402.

doi: 10.3724/SP.J.1006.2023.34064
LI W, LI C, CHENG M, WU F. Phosphorus transporter StPHO1.2 improving heat tolerance in potato. Acta Agronomica Sinica, 2024, 50(2): 394-402. (in Chinese)

doi: 10.3724/SP.J.1006.2023.34064
[42]
POIRIER Y, JASKOLOWSKI A, CLÚA J. Phosphate acquisition and metabolism in plants. Current Biology, 2022, 32(12): R623-R629.
[43]
LIU N, SHANG W Y, LI C, JIA L H, WANG X, XING G Z, ZHENG W M. Evolution of the SPX gene family in plants and its role in the response mechanism to phosphorus stress. Open Biology, 2018, 8(1): 170231.
[44]
MÖLLER K. Improving the phosphorus efficiency of organic farming systems. Core Organic Newsletter, 2013.
[45]
MADISON I, GILLAN L, PEACE J, GABRIELI F, VAN DEN BROECK L, JONES J L, SOZZANI R. Phosphate starvation: response mechanisms and solutions. Journal of Experimental Botany, 2023, 74(21): 6417-6430.

doi: 10.1093/jxb/erad326 pmid: 37611151
[46]
WILD R, GERASIMAITE R, JUNG J Y, TRUFFAULT V, PAVLOVIC I, SCHMIDT A, SAIARDI A, JESSEN H J, POIRIER Y, HOTHORN M, MAYER A. Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science, 2016, 352(6288): 986-990.

doi: 10.1126/science.aad9858 pmid: 27080106
[47]
TRAN H T, QIAN W Q, HURLEY B A, SHE Y M, WANG D W, PLAXTON W C. Biochemical and molecular characterization of AtPAP12 and AtPAP26: the predominant purple acid phosphatase isozymes secreted by phosphate-starved Arabidopsis thaliana. Plant, Cell & Environment, 2010, 33(11): 1789-1803.
[48]
WANG L S, LI Z, QIAN W Q, GUO W L, GAO X, HUANG L L, WANG H, ZHU H F, WU J W, WANG D W, LIU D. The Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation. Plant Physiology, 2011, 157(3): 1283-1299.
[49]
LIANG C Y, TIAN J, LAM H M, LIM B L, YAN X L, LIAO H. Biochemical and molecular characterization of PvPAP3, a novel purple acid phosphatase isolated from common bean enhancing extracellular ATP utilization. Plant Physiology, 2010, 152(2): 854-865.

doi: 10.1104/pp.109.147918 pmid: 19955264
[50]
COLEBROOK E H, THOMAS S G, PHILLIPS A L, HEDDEN P. The role of gibberellin signalling in plant responses to abiotic stress. The Journal of Experimental Biology, 2014, 217(Pt 1): 67-75.

doi: 10.1242/jeb.089938 pmid: 24353205
[51]
KAZAN K. Auxin and the integration of environmental signals into plant root development. Annals of Botany, 2013, 112(9): 1655-1665.

doi: 10.1093/aob/mct229 pmid: 24136877
[52]
SANTINO A, TAURINO M, DE DOMENICO S, BONSEGNA S, POLTRONIERI P, PASTOR V, FLORS V. Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses. Plant Cell Reports, 2013, 32(7): 1085-1098.

doi: 10.1007/s00299-013-1441-2 pmid: 23584548
[53]
LI J, YANG P, KANG J G, GAN Y T, YU J H, CALDERÓN-URREA A, LYU J, ZHANG G B, FENG Z, XIE J M. Transcriptome analysis of pepper (Capsicum annuum) revealed a role of 24-epibrassinolide in response to chilling. Frontiers in Plant Science, 2016, 7: 1281.

doi: 10.3389/fpls.2016.01281 pmid: 27621739
[54]
YUAN L Y, SHU S, SUN J, GUO S R, TEZUKA T. Effects of 24-epibrassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. under Ca(NO3)2 stress. Photosynthesis Research, 2012, 112(3): 205-214.
[55]
WEI L J, DENG X G, ZHU T, ZHENG T, LI P X, WU J Q, ZHANG D W, LIN H H. Ethylene is involved in brassinosteroids induced alternative respiratory pathway in cucumber (Cucumis sativus L.) seedlings response to abiotic stress. Frontiers in Plant Science, 2015, 6: 982.
[56]
王东岭. ABA代谢关键基因调控桃休眠的分子机制研究[D]. 泰安: 山东农业大学, 2016.
WANG D L. Study for molecular mechanism of ABA metabolism related genes on regulating dormancy in peach[D]. Taian: Shandong Agricultural University, 2016. (in Chinese)
[57]
TODOROKI Y, UENO K. Development of specific inhibitors of CYP707A, a key enzyme in the catabolism of abscisic acid. Current Medicinal Chemistry, 2010, 17(28): 3230-3244.

pmid: 20666721
[58]
IMRAN M, KHAN M A, SHAHZAD R, BILAL S, KHAN M, YUN B W, KHAN A L, LEE I J. Melatonin ameliorates thermotolerance in soybean seedling through balancing redox homeostasis and modulating antioxidant defense, phytohormones and polyamines biosynthesis. Molecules, 2021, 26(17): 5116.
[59]
FIDLER J, GRABOWSKA A, PRABUCKA B, WIĘSYK A, GÓRA- SOCHACKA A, BIELAWSKI W, POJMAJ M, ZDUNEK-ZASTOCKA E. The varied ability of grains to synthesize and catabolize ABA is one of the factors affecting dormancy and its release by after-ripening in imbibed triticale grains of cultivars with different pre-harvest sprouting susceptibilities. Journal of Plant Physiology, 2018, 226: 48-55.

doi: S0176-1617(18)30098-1 pmid: 29698912
[60]
GOLDENTAL-COHEN S, ISRAELI A, ORI N, YASUOR H. Auxin response dynamics during wild-Type and entire flower development in tomato. Plant and Cell Physiology, 2017, 58(10): 1661-1672.
[61]
李艳艳, 齐艳华. 植物Aux/IAA基因家族生物学功能研究进展. 植物学报, 2022, 57(1): 30-41.

doi: 10.11983/CBB21168
LI Y Y, QI Y H. Advances in biological functions of Aux/IAA gene family in plants. Chinese Bulletin of Botany, 2022, 57(1): 30-41. (in Chinese)
[62]
LUO J, ZHOU J J, ZHANG J Z. Aux/IAA gene family in plants: Molecular structure, regulation, and function. International Journal of Molecular Sciences, 2018, 19(1): 259.
[63]
STORTENBEKER N, BEMER M. The SAUR gene family: The plant’s toolbox for adaptation of growth and development. Journal of Experimental Botany, 2019, 70(1): 17-27.
[64]
REN H, GRAY W M. SAUR proteins as effectors of hormonal and environmental signals in plant growth. Molecular Plant, 2015, 8(8): 1153-1164.

doi: 10.1016/j.molp.2015.05.003 pmid: 25983207
[65]
HOU K, WU W, GAN S S. SAUR36, a small auxin up RNA gene, is involved in the promotion of leaf senescence in Arabidopsis. Plant Physiology, 2013, 161(2): 1002-1009.
[66]
CARVALHO L C, RAMOS M J N, FAÍSCA-SILVA D, MARREIROS P, FERNANDES J C, EGIPTO R, LOPES C M, AMÂNCIO S. Modulation of the berry skin transcriptome of cv. Tempranillo induced by water stress levels. Plants, 2023, 12(9): 1778.
[67]
OH E, ZHU J Y, WANG Z Y. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nature Cell Biology, 2012, 14: 802-809.

doi: 10.1038/ncb2545 pmid: 22820378
[68]
赵小刚, 隋心意, 温祥珍. PIF4转录因子调控植物热形态建成研究进展. 植物生理学报, 2022, 58(3): 492-500.
ZHAO X G, SUI X Y, WEN X Z. Research progress of PIF4 transcription factors participating in plant thermomorphogenesis. Plant Physiology Journal, 2022, 58(3): 492-500. (in Chinese)
[69]
张婉月. PIF4和HY5通过调控DWF4CPD的表达调节油菜素甾醇的合成[D]. 沈阳: 沈阳大学, 2022.
ZHANG W Y. PIF4 and HY5 regulate the biosynthesis of brassinosteroids by regulating the expression of DWF4 and CPD[D]. Shenyang: Shenyang University, 2022. (in Chinese)
[70]
CHOI H, OH E. PIF4 integrates multiple environmental and hormonal signals for plant growth regulation in Arabidopsis. Molecules and Cells, 2016, 39(8): 587-593.
[71]
VACHIRANUVATHIN P, THARASIRIVAT V, HEMNUSORNNANON T, JANTARO S. Native SodB overexpression of Synechocystis sp. PCC 6803 improves cell growth under alcohol stresses whereas its Gpx2 overexpression impacts on growth recovery from alcohol stressors. Applied Biochemistry and Biotechnology, 2022, 194(12): 5748-5766.
[1] QI RenJie, NING Yu, LIU Jing, LIU ZhiYang, XU Hai, LUO ZhiDan, CHEN LongZheng. Identification and Analysis of Genes Related to Bitter Gourd Saponin Synthesis Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2024, 57(9): 1779-1793.
[2] LIN Wei, WU ShuiJin, LI YueSen. Transcriptome and Proteome Association Analysis to Revealthe Molecular Mechanism of Baxi Banana Seedlings in Response to Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(8): 1575-1591.
[3] GAO ChenXi, HAO LuYang, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, SONG YanChun, SHI YunSu, WANG TianYu, LI Yu, LIU XuYang. Analysis of Transposable Element Associated Epigenetic Regulation under Drought in Maize [J]. Scientia Agricultura Sinica, 2024, 57(6): 1034-1048.
[4] HAN XuDong, YANG ChuanQi, ZHANG Qing, LI YaWei, YANG XiaXia, HE JiaTian, XUE JiQuan, ZHANG XingHua, XU ShuTu, LIU JianChao. QTL Mapping and Candidate Gene Screening for Nitrogen Use Efficiency in Maize [J]. Scientia Agricultura Sinica, 2024, 57(21): 4175-4191.
[5] MA JingE, XIONG XinWei, ZHOU Min, WU SiQi, HAN Tian, RAO YouSheng, WANG ZhangFeng, XU JiGuo. Full-Length Transcriptomic Analysis of Chicken Pituitary Reveals Candidate Genes for Testicular Trait [J]. Scientia Agricultura Sinica, 2024, 57(20): 4130-4144.
[6] YIN JunLiang, LI JingYi, HAN Shuo, YANG PeiHua, MA JiaWei, LIU YiQing, HU HaiJun, ZHU YongXing. Identification of Ginger (Zingiber officinale Roscoe) NHX Gene Family Members and Characterization of Their Expression Patterns in Silicon Alleviating Salt Stress [J]. Scientia Agricultura Sinica, 2024, 57(19): 3848-3869.
[7] CHEN FeiEr, ZHANG ZhiPeng, JIANG QingXue, MA Lin, WANG XueMin. Cloning and Biological Function Verification of Alfalfa MsSPL17 [J]. Scientia Agricultura Sinica, 2024, 57(17): 3335-3349.
[8] LIU Tong, WANG ZhiRong, LI Wei, LIU Yang, WANG XiangRu, LAI DiLi, HE YuQi, ZHANG KaiXuan, ZHAO ZhenJun, ZHOU MeiLiang. Function Analysis of bHLH93 Transcription Factor in Tartary Buckwheat in Response to Aluminum Stress [J]. Scientia Agricultura Sinica, 2024, 57(16): 3127-3141.
[9] CHEN WenJie, CHEN Yuan, WEI QingYuan, TANG FuYue, GUO XiaoHong, CHEN ShuFang, QIN XiaYan, WEI RongChang, LIANG Jiang. Identification of Candidate Genes Controlling SSCLD by Utilizing High-Generation Segregating Populations RNA-seq [J]. Scientia Agricultura Sinica, 2024, 57(15): 2914-2930.
[10] XU MengYu, WANG JiaYang, WANG JiangBo, TANG Wen, CHEN YiHeng, SHANGGUAN LingFei, FANG JingGui, LU SuWen. Differential Analysis of Aroma Substance Content and Gene Expression in the Berry Skins of Different Grape Germplasms [J]. Scientia Agricultura Sinica, 2024, 57(13): 2635-2650.
[11] ZHANG HaiQing, ZHANG HengTao, GAO QiMing, YAO JiaLong, WANG YaRong, LIU ZhenZhen, MENG XiangPeng, ZHOU Zhe, YAN ZhenLi. Transcriptome Analysis for Screening Key Genes Related to Regulating Branching Ability in Apple [J]. Scientia Agricultura Sinica, 2024, 57(10): 1995-2009.
[12] XIAO Tao, LI Hui, LUO Wei, YE Tao, YU Huan, CHEN YouBo, SHI YuShi, ZHAO DePeng, WU Yun. Screening of Candidate Genes for Green Shell Egg Shell Color Traits in Chishui Black Bone Chicken Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2023, 56(8): 1594-1605.
[13] LI Hui, ZHANG YuFeng, LI XiaoGang, WANG ZhongHua, LIN Jing, CHANG YouHong. Identification of Salt-Tolerant Transcription Factors in the Roots of Pyrus betulaefolia by the Association Analysis of Genome-Wide DNA Methylation and Transcriptome [J]. Scientia Agricultura Sinica, 2023, 56(7): 1377-1390.
[14] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[15] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!