Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (11): 2092-2101.doi: 10.3864/j.issn.0578-1752.2024.11.004

• SPECIAL FOCUS: SOYBEAN DISEASE RESISTANCE, YIELD AND QUALITY CORRELATION • Previous Articles     Next Articles

Establishment of Evaluation System and Screening of Disease- Resistant Accessions for Phomopsis Seed Decay in Soybean Germination Stage

MIAO Long1(), YANG Lei1, XU JingHao1, LI Na1, WANG FeiYu1, QIU LiJuan2(), WANG XiaoBo1()   

  1. 1 College of Agriculture, Anhui Agricultural University, Hefei 230036
    2 Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Beijing 100081
  • Received:2023-09-10 Accepted:2023-10-23 Online:2024-06-01 Published:2024-06-07
  • Contact: QIU LiJuan, WANG XiaoBo

Abstract:

【Objective】An accurate and rapid indoor evaluation system was established by using soybeans with different resistance levels to Phomopsis seed decay as test materials. And then 170 soybean germplasm accessions were employed to screened out disease-resistant varieties, so as to provide methods and material basis for high-throughput assessment of Phomopsis seed decay in soybean and cultivation of resistant varieties.【Method】In terms of establishing a reliable evaluation method for Phomopsis seed decay, Qihuang 34, Williams, Zhongzuo 09-560, z13-631-2, ZDD26268, Chenxiqingpidou 1 and Tongxianhuangdou were selected as experimental materials. For each soybean accession, the seeds with uniform size and undamaged seed coat were germinated in the dark after disinfection. At different germination stages, the pathogen of Phomopsis seed decay was inoculated for 24 h, 48 h, 72 h and 96 h. The mycelium coverage rate and seed decay rate of seed surface under different infection time were counted to determine the optimal identification period for evaluating Phomopsis seed decay in soybean. Then, the resistance of 170 different soybean germplasms in natural population was identified by using the coverage rate of mycelium on the surface of seeds and the decay rate of seeds as evaluation indexes. The high disease resistance varieties were screened based on 5 disease resistance levels.【Result】The soybean accessions showed the most significant differences in disease resistance levels after 96 h of germination when mycelium coverage rate and seed decay rate of soybean surface were used as evaluation indexes. Further comparison of the incidence of 24 h, 48 h, 72 h and 96 h after infection showed that the difference in disease resistance between different varieties after infection for 72 h was the most obvious. Therefore, it was the most suitable period, 72 h of infection at the bud stage after 96 h of germination, for evaluating the resistance level of different soybean varieties to Phomopsis seed decay. The resistance of 170 soybean varieties to Phomopsis seed decay was identified and classified into five disease resistance grades, namely, high resistance, medium resistance, medium susceptibility, susceptibility and high susceptibility. Among them, there were 30 varieties of grade I (high resistance to disease), 51 varieties of grade Ⅱ (medium resistance to disease), 71 varieties of grade Ⅲ (medium disease susceptibility), 4 varieties of grade Ⅳ (disease susceptibility) and 14 varieties of grade V (high disease susceptibility), idicating that there are extensive variations in the resistance to Phomopsis seed decay of soybean germplasm resources in China.【Conclusion】In this study, the most optimum stage of disease identification was considered as soybean seeds after 96 h germination to infect the Phomopsis longicolla for 72 h. After that, the mycelium coverage rate and seed decay rate of soybean surface were counted as evaluation parameters. The evaluation system has high accuracy and reliability, which can provide an effective method for high-throughput identification of different varieties in the laboratory. And 30 highly resistant varieties were further screened to provide a material basis for the breeding of resistant varieties.

Key words: soybean, Phomopsis seed decay, evaluation system, disease-resistant variety

Fig. 1

Comparison of infection status between non-germinated and germinated soybean seeds inoculated with Phomopsis longicolla A-B: Phenotype of non-germinated (A) and germinated (B) Williams seeds infected with Phomopsis longicolla for 72 h; C-D: Phenotype of non-germinated (C) and germinated (D) Qihuang34 seeds infected with Phomopsis longicolla for 72 h. E: Mycelium coverage rate and seed decay rate of non-germinated and germinated Williams and Qihuang34 seeds infected with Phomopsis longicolla for 72 h. Scale bars=1 cm"

Table 1

Comparison of infection status of soybean seeds with different germination time inoculated with Phomopsis longicolla"

品种名称
Name of varieties
萌发时长 Germination time (h)
0 48 72 96
菌丝覆盖率Coverage rate (%) 种子腐烂率Decay rate
(%)
菌丝覆盖率Coverage rate (%) 种子腐烂率 Decay rate
(%)
菌丝覆盖率Coverage rate (%) 种子腐烂率Decay rate
(%)
菌丝覆盖率Coverage rate (%) 种子腐烂率Decay rate
(%)
Williams 64.0±13.4b 14.0±5.5b 50.0±15.8b 12.0±8.4b 68.0±14.8ab 70.0±7.1a 90.0±11.5a 72.5±9.6a
中作09-560 Zhongzuo 09-560 55.0±1.3ab 12.5±5.0b 46.0±8.90b 28.0±4.5ab 66.7±5.8a 25.0±5.7a 58.0±8.4ab 26.0±5.5ab
z13-631-2 82.50±9.6a 67.5±15.0a 46.7±15.3b 60.0±5.0ab 13.3±5.7c 53.3±5.8ab 60.0±8.9b 50.0±6.3b
ZDD26268 72.0±11.7a 21.7±14.7b 55.0±7.1ab 55.0±7.1a 43.3±20.8b 60.0±10.0a 12.0±4.5c 20.0±7.1b
辰溪青皮豆1 Chenxiqingpidou 1 72.5±9.6ab 57.5±9.6b 80.0±10.0a 74.0±8.9a 60.0±10.0b 63.3±5.8ab 60.0±8.2b 55.0±5.8b
通县黄豆
Tongxian huangdou
55.0±5.8a 15.0±5.8c 66.7±25.2a 73.3±11.5ab 56.0±15.20a 56.0±11.4a 45.0±10.0a 25.0±5.8bc
齐黄34 Qihuang 34 12.5±10.0a 10.0±5.8b 11.7±4.1a 15.0±5.5b 8.3±4.1a 15.0±5.5b 13.3±5.8a 41.7±9.6a

Table 2

Comparison of infection status of soybean seeds with different infection time inoculated with Phomopsis longicolla"

品种名称
Name of varieties
侵染时长 Infection time (h)
24 48 72 96
菌丝覆盖率Coverage rate (%) 种子腐烂率Decay rate
(%)
菌丝覆盖率Coverage rate (%) 种子腐烂率Decay rate
(%)
菌丝覆盖率Coverage rate (%) 种子腐烂率Decay rate
(%)
菌丝覆盖率Coverage rate (%) 种子腐烂率Decay rate
(%)
Williams 0.00c 0.00c 40.00±8.40b 40.00±5.50b 90.00±11.50a 72.50±9.60a 91.67±9.83a 83.30±7.53a
中作09-560 Zhongzuo 09-560 0.00c 0.00c 0.00c 0.00c 58.00±8.40b 26.00±5.50b 84.00±8.90a 50.00±12.20a
z13-631-2 0.00d 0.00d 18.00±4.70c 16.00±5.50c 60.00±8.94b 50.00±6.32b 95.00±5.48a 93.30±8.37a
ZDD26268 0.00c 16.00±5.50b 0.00c 16.70±5.20b 12.00±4.50b 20.00±7.10b 30.00±8.20a 35.00±5.80a
辰溪青皮豆1 Chenxiqingpidou 1 17.50±9.60b 0.00d 27.50±9.60b 17.50±9.60c 60.00±8.20a 55.00±5.80b 67.50±9.60a 70.00±14.10a
通县黄豆
Tongxian huangdou
0.00b 0.00c 0.00b 0.00c 45.00±10.00a 25.00±5.80b 47.50±9.60a 35.00±17.30a
齐黄34 Qihuang 34 0.00b 0.00c 0.00b 22.00±4.50b 13.30±5.80a 41.70±9.60a 0.00b 52.50±15.00a

Table 3

Resistance levels of 170 soybean varieties to Phomopsis seed decay"

抗性等级
Grade
品种数量Number 菌丝覆盖率Coverage rate (%) 种子腐烂率 Decay rate (%) 占比
Fraction (%)
菌丝覆盖率平均值±标准差
Mean±SD (%)
菌丝覆盖率变异系数
CV of coverage
rate (%)
腐烂率平均值±
标准差
Mean±SD (%)
腐烂率变异系数
CV of decay rate (%)
Ⅰ级(高抗)HR 30 <80 0-30 17.65 24.00±28.40 118.30 17.00 ±12.00 70.59
Ⅱ级(中抗)MR 51 <80 31-60 30.00 24.51±20.98 85.60 49.80±9.22 18.51
Ⅲ级(中感)MS 71 <80 61-100 41.76 34.07±29.61 86.91 79.55±17.00 21.37
≥80 0-30
Ⅳ级(感病)S 4 ≥80 31-60 2.35 96.25±4.78 4.97 54.00±4.78 8.85
Ⅴ级(高感)HS 14 ≥80 61-100 8.23 93.00±7.00 7.53 89.64±13.65 15.23

Table 4

30 soybean varieties with high resistance to Phomopsis seed decay"

品种名称
Name of varieties
菌丝覆盖率平均值±标准差
Mean±SD (%)
种子腐烂率平均值±标准差
Mean±SD (%)
抗性等级
Grade
铁荚子Tiejiazi 0.00±0.00 0.00±0.00 Ⅰ级(高抗)HR
金元1 Jinyuan No.1 0.00±0.00 0.00±0.00 Ⅰ级(高抗)HR
陈茬大豆Chenchadadou 0.00±0.00 0.00±0.00 Ⅰ级(高抗)HR
八月炸Bayuezha 0.00±0.00 0.00±0.00 Ⅰ级(高抗)HR
泉变11 Quanbian 11 10.33±2.52 0.00±0.00 Ⅰ级(高抗)HR
中黄30 Zhonghuang 30 7.00±2.00 0.00±0.00 Ⅰ级(高抗)HR
黑豆Heidou 31.33±3.21 0.00±0.00 Ⅰ级(高抗)HR
大屯小黑豆Datunxiaoheidou 40.67±4.04 7.33±2.52 Ⅰ级(高抗)HR
WDD02069 0.00±0.00 11.67±2.08 Ⅰ级(高抗)HR
青皮豆Qingpidou 0.00±0.00 8.33±1.53 Ⅰ级(高抗)HR
平顶黄豆Pingdinghuangdou 0.00±0.00 10.00±2.00 Ⅰ级(高抗)HR
茶豆Chadou 0.00±0.00 13.00±3.00 Ⅰ级(高抗)HR
涟源虎皮豆Lianyuanhupidou 0.00±0.00 12.67±2.08 Ⅰ级(高抗)HR
冬大豆Dongdadou 31.33±3.51 14.67±2.52 Ⅰ级(高抗)HR
吉青3号Jiqing No.3 39.67±2.52 21.00±3.61 Ⅰ级(高抗)HR
红豆Hongdou 80.33±2.52 22.00±2.65 Ⅰ级(高抗)HR
房山黑豆-1 Fangshanheidou -1 81.67±2.08 22.33±2.52 Ⅰ级(高抗) HR
青皮1 Qingpi1 0.00±0.00 25.67±3.06 Ⅰ级(高抗)HR
黑壳豆Heikedou 3.33±2.08 26.67±2.08 Ⅰ级(高抗)HR
陇中黄602 Longzhonghuang 602 30.67±4.04 22.67±3.21 Ⅰ级(高抗)HR
AGS162 51.00±2.65 22.33±3.06 Ⅰ级(高抗)HR
迟黄豆1 Chihuangdou 1 53.67±3.21 24.67±3.51 Ⅰ级(高抗)HR
中作09-560 Zhongzuo 09-560 75.33±4.73 27.00±2.00 Ⅰ级(高抗)HR
WDD01831 0.00±0.00 30.00±4.00 Ⅰ级(高抗)HR
ZDD26268 0.00±0.00 32.67±3.06 Ⅰ级(高抗)HR
浙鲜豆2号Zhexiandou No.2 7.67±2.08 30.67±4.04 Ⅰ级(高抗)HR
新垒头茶豆Xinleitouchadou 20.00±3.00 33.33±3.06 Ⅰ级(高抗)HR
PI438342 29.67±1.53 32.33±2.08 Ⅰ级(高抗)HR
中江红黄豆Zhongjianghonghuangdou 73.67±4.04 32.00±1.73 Ⅰ级(高抗)HR
山宁7号Shanning 7 81.33±4.16 29.33±3.06 Ⅰ级(高抗)HR
[1]
HOBBS T W, SCHMITTHENNER A F, KUTER G A. A new Phomopsis species from soybean. Mycologia, 1985, 77(4): 535-544.
[2]
崔友林. 大豆茎枯病病原菌鉴定及3种检疫性大豆病原菌适生性分析[D]. 北京: 中国农业科学院, 2009.
CUI Y L. Identification of pathogen causing soybean stem blight and potential geographic distribution of three quarantine pathogens of soybean[D]. Beijing: Chinese Academy of Agricultural Sciences, 2009. (in Chinese)
[3]
HEPPERLY P R. Quality losses in Phomopsis-infected soybean seeds. Phytopathology, 1978, 68(12): 1684-1687.
[4]
WRATHER J A, SHANNON J G, STEVENS W E, SLEPER D A, ARELLI A P. Soybean cultivar and foliar fungicide effects on Phomopsis sp. seed infection. Plant Disease, 2004, 88(7): 721-723.
[5]
WRATHER J A, SLEPER D A, STEVENS W E, SHANNON J G, WILSON R F. Planting date and cultivar effects on soybean yield, seed quality, and Phomopsis sp. seed infection. Plant Disease, 2003, 87(5): 529-532.
[6]
MULIK M M. SINCLAIR J B. Phomopsis seed decay. Compendium of Soybean Diseases, 1999, 4: 31-32.
[7]
SINCLAIR J B. Phomopsis seed decay of soybeans-A prototype for studying seed disease. Plant Disease, 1993, 77(4): 329-334.
[8]
叶文武, 刘万才, 王源超. 中国大豆病虫害发生现状及全程绿色防控技术研究进展. 植物保护学报, 2023, 50(2): 265-273.
YE W W, LIU W C, WANG Y C. Occurrence status and whole- process green control technologies for soybean diseases and pests in China. Journal of Plant Protection, 2023, 50(2): 265-273. (in Chinese)
[9]
JACKSON E W, FENG C D, FENN P, CHEN P Y. Genetic mapping of resistance to Phomopsis seed decay in the soybean breeding line MO/PSD-0259 (PI562694) and Plant Introduction 80837. The Journal of Heredity, 2009, 100(6): 777-783.
[10]
ZHANG Y P, CHEN G Y, LUO S C, QU H X, TANG Y P, XIE Q X, ZHOU J S. Stress physiology and virulence characterization of Phomopsis asparagi (sacc.) bubak isolated from Asparagus in Jiangxi Province of China. Agricultural Science & Technology, 2012, 13(7): 1502-1508.
[11]
张岳平, 陈光宇, 罗绍春, 瞿华香. 芦笋重要真菌病害研究进展. 中国农学通报, 2012, 28(31): 114-119.
ZHANG Y P, CHEN G Y, LUO S C, QU H X. The advance of major fungal diseases studies on Asparagus officinalis L.. Chinese Agricultural Science Bulletin, 2012, 28(31): 114-119. (in Chinese)
[12]
马珂. 茄褐纹病菌生物学特性、致病性及寄主抗性机制的研究[D]. 合肥: 安徽农业大学, 2005.
MA K. Studies on physiological characteristics, pathogenicity of Phomopsis vexans and resistance of eggplant-to-eggplant Phomopsis rot[D]. Heifei: Anhui Agricultural University, 2005. (in Chinese)
[13]
崔友林, 段灿星, 丁俊杰, 王晓鸣, 武小菲, 朱振东. 一种新发生的大豆茎枯病病原菌鉴定. 中国油料作物学报, 2010, 32(1): 99-103.
CUI Y L, DUAN C X, DING J J, WANG X M, WU X F, ZHU Z D. Pathogen identification of a newly occurred soybean stem blight in China. Chinese Journal of Oil Crop Sciences, 2010, 32(1): 99-103. (in Chinese)
[14]
HARTMAN G L, SINCLAIR J B, RUPE J C. Compendium of Soybean Diseases. 4th ed. St. Paul, Minn.: APS Press, 1999.
[15]
张建成, 顾建锋, 徐瑛, 杨兰英. 大豆拟茎点种腐病的研究进展及其检疫意义. 植物检疫, 2005, 19(3): 163-167.
ZHANG J C, GU J F, XU Y, YANG L Y. Research progress and quarantine significance of soybean pseudostem rot. Plant Quarantine, 2005, 19(3): 163-167. (in Chinese)
[16]
ZIMMERMAN M S, MINOR H C. Inheritance of Phomopsis seed decay resistance in soybean PI 417479. Crop Science, 1993, 33(1): 96-100.
[17]
JACKSON E W, FENN P, CHEN P Y. Inheritance of resistance to Phomopsis seed decay in soybean PI 80837 and MO/PSD-0259 (PI 562694). Crop Science, 2005, 45(6): 2400-2404.
[18]
SHAN Z, LI S, LIU Y, YANG Z, YANG C, SHA A, CHEN H, CHEN S, ZHOU X A. First report of Phomopsis seed decay of soybean caused by Phomopsis longicolla in South China. Plant Disease, 2012, 96(11): 1693-1693.
[19]
DORRANCE A, BERRY S, ANDERSON T, MEHARG C. Isolation, storage, pathotype characterization, and evaluation of resistance for Phytophthora sojae in soybean. Plant Health Progress, 2007, 9: 35.
[20]
张晨, 陈汉, 王志昂, 董莎萌, 王源超, 叶文武. 大豆拟茎点种腐病菌Phomopsis longicolla荧光素酶标记菌株的制备及应用. 大豆科学, 2023, 42(3): 344-351.
ZHANG C, CHEN H, WANG Z A, DONG S M, WANG Y C, YE W W. Generation and preliminary application of a luciferase labeled strain for soybean Phomopsis seed decay pathogen Phomopsis longicolla. Soybean Science, 2023, 42(3): 344-351. (in Chinese)
[21]
李雪光, 李淑娴, 宋洁, 许艳丽. 大豆拟茎点种腐病菌(Phomopsis longicolla)对大豆种子致病性及侵入部位研究. 大豆科学, 2014, 33(3): 455-457, 462.
LI X G, LI S X, SONG J, XU Y L. The pathogenicity and infection site of Phomopsis longicolla on soybean seed. Soybean Science, 2014, 33(3): 455-457, 462. (in Chinese)
[22]
黑龙江省市场监督管理局. 大豆对大豆拟茎点种腐病抗病性鉴定技术规程: DB23/T 2979-2021. 北京: 中国标准出版社, 2021.
Heilongjiang Market Supervision and Administration. Technical specification for identification of soybean resistance to Phomopsis Seed Decay: DB23/T 2979-2021. Beijing: Standards Press of China, 2021. (in Chinese)
[23]
赵巍巍, 高必达, 陈枝楠, 王颖, 程颖慧. 8种杀菌剂对大豆南北方茎溃疡病菌和拟茎点种腐病菌的室内毒力测定. 农药, 2008, 47(1): 66-67.
ZHAO W W, GAO B D, CHEN Z N, WANG Y, CHENG Y H. Toxicity of eight fungicides to Diaporthe phaseolorum var. caulivora, D. phaseolorum var. meridionalis and Phomopsis longicolla. Agrochemicals, 2008, 47(1): 66-67. (in Chinese)
[24]
BOSS P K, ROBINSON S P. Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation. Plant Physiology, 1996, 111(4): 1059-1066.
[25]
YANG J, YE W W, WANG X M, REN L R, YAO Y, WANG X L, WANG Y, DONG S M, ZHENG X B, WANG Y C. An improved method for the identification of soybean resistance to Phytophthora sojae applied to germplasm resources from the Huanghuaihai and Dongbei regions of China. Plant Disease, 2020, 104(2): 408-413.
[26]
LI S X. Development of a seedling inoculation technique for rapid evaluation of soybean for resistance to Phomopsis longicolla under controlled conditions. Plant Methods, 2018, 14: 81.
[27]
LI S X, MUSUNGU B, LIGHTFOOT D, JI P S. The interactomic analysis reveals pathogenic protein networks in Phomopsis longicolla underlying seed decay of soybean. Frontiers in Genetics, 2018, 9: 104.
[28]
DUVNJAK T, VRATARIC M, SUDARIC A, VRANDECIC K, MILICEVIC T. Pathogen-plant interaction: Phomopsis longicolla strain pathogenicity. Cereal Research Communications, 2007, 35(2): 361-364.
[29]
KURIBAYASHI T, LANKINEN P, MIKKONEN K S. A layered solid-state culture system for investigating the fungal growth and decay behaviour on the cellulosic substrate. Journal of Microbiological Methods, 2023, 212: 106794.
[30]
XUE A G, MORRISON M J, COBER E, ANDERSON T R, RIOUX S, ABLETT G R, RAJCAN I, HALL R, ZHANG J X. Frequency of isolation of species of Diaporthe and Phomopsis from soybean plants in Ontario and benefits of seed treatments. Canadian Journal of Plant Pathology, 2007, 29(4): 354-364.
[31]
DIXON R A, ACHNINE L, KOTA P, LIU C J, SRINIVASA REDDY M S, WANG L J. The phenylpropanoid pathway and plant defence - A genomics perspective. Molecular Plant Pathology, 2002, 3(5): 371-390.
[32]
SHERRIE S, PATRICK F, PENG Y C, ERIC J. Inheritance of resistance to Phomopsis seed decay in PI 360841 soybean. Journal of Heredity, 2008, 99(6): 588-592.
[1] MIAO Long, SHU Kuo, HU YanJiao, HUANG Ru, HE GenHua, ZHANG WenMing, WANG XiaoBo, QIU LiJuan. Identification and Gene Mapping of Hard Seededness Mutant Mzp661 in Soybean [J]. Scientia Agricultura Sinica, 2024, 57(11): 2065-2078.
[2] ZHANG YuMei, DING WenTao, LAN XinLong, LI QingHua, HU RunFang, GUO Na, LIN GuoQiang, ZHAO JinMing. Genome Wide Association Analysis of Soluble Sugar Content in Fresh Seeds of Soybean Landraces [J]. Scientia Agricultura Sinica, 2024, 57(11): 2079-2091.
[3] SHOU XinYue, LIU Zhi, CHEN YueHan, LI ChenHui, SUN BinCheng, SUN RuJian, HAN DeZhi, LU WenCheng, SHEN YongHui, WANG XiaoBo, YAN Long. Genome-Wide Association Analysis of Soybean Nodulation-Related Traits in the Northern Hebei [J]. Scientia Agricultura Sinica, 2024, 57(11): 2102-2113.
[4] LI ShengYou, WANG ChangLing, YAN ChunJuan, ZHANG LiJun, SUN XuGang, CAO YongQiang, WANG WenBin, SONG ShuHong. Evaluation of Drought Resistance in Soybean Germplasm and Identification of Candidate Drought-Resistant Genes [J]. Scientia Agricultura Sinica, 2024, 57(10): 1857-1869.
[5] ZHOU YeYing, XIE ZiWen, ZHONG PeiGe, LI ShuangWei, MA YunTao. Quantification of Row Orientation Effects on Radiation Distribution in Maize-Soybean Intercropping Based on Functional-Structural Plant Model [J]. Scientia Agricultura Sinica, 2024, 57(10): 1882-1899.
[6] HOU ZhaoYu, GONG YiZhao, QIAN Yi, CHENG ZhuoYa, TAO Jun, ZHAO DaQiu. Evaluation of Heat Tolerance of Herbaceous Peony and Screening of Its Identification Indices [J]. Scientia Agricultura Sinica, 2023, 56(23): 4742-4756.
[7] GAO Jing, CHEN JiYu, TAN XianMing, WU YuShan, YANG WenYu, YANG Feng. Effect of Light Intensity on Leaf Hydraulic Conductivity and Vein Traits of Soybean at Seedling Stage [J]. Scientia Agricultura Sinica, 2023, 56(22): 4417-4427.
[8] SUN Tao, FENG XiaoMin, GAO XinHao, DENG AiXing, ZHENG ChengYan, SONG ZhenWei, ZHANG WeiJian. Effects of Diversified Cropping on the Soil Aggregate Composition and Organic Carbon and Total Nitrogen Content [J]. Scientia Agricultura Sinica, 2023, 56(15): 2929-2940.
[9] CAO Jie, GU YongZhe, HONG HuiLong, WU HaiTao, ZHANG Xia, SUN JianQiang, BAO LiGao, QIU LiJuan. Pigment Identification and Gene Mapping in Red Seed Coat of Soybean [J]. Scientia Agricultura Sinica, 2023, 56(14): 2643-2659.
[10] LI YunJing, XIAO Fang, WU YuHua, LI Jun, GAO HongFei, ZHAI ShanShan, LIANG JinGang, WU Gang. Establishment and Standardization of Event-Specific Real-Time Quantitative PCR Detection Method of Stress-Resistant Soybean IND-ØØ41Ø-5 [J]. Scientia Agricultura Sinica, 2023, 56(13): 2443-2460.
[11] LIU YuYing, SHEN Feng, YANG JinFeng, CAI FangFang, FU ShiFeng, LUO PeiYu, LI Na, DAI Jian, HAN XiaoRi. Variation Characteristics of Soybean Yield and Soil Nitrogen Distribution in Brown Soil Under Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2023, 56(10): 1920-1934.
[12] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[13] LI YiLing, PENG XiHong, CHEN Ping, DU Qing, REN JunBo, YANG XueLi, LEI Lu, YONG TaiWen, YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[14] GUO ShiBo, ZHANG FangLiang, ZHANG ZhenTao, ZHOU LiTao, ZHAO Jin, YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[15] MA XiaoYan, YANG Yu, HUANG DongLin, WANG ZhaoHui, GAO YaJun, LI YongGang, LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!