Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (23): 4712-4724.doi: 10.3864/j.issn.0578-1752.2024.23.011

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

The Effects of Soil Residual Nitrogen from Wheat Season on Summer Soybean Root Nodules, Root System and Yield

WANG Jing1(), WANG TianShu1(), WANG Li1, ZHOU XinYu1, LI TingYu1, MENG YiLi1, HUANG XinYang2, YAO ShuiHong1()   

  1. 1 Institute of Agricultural Resources and Regional Planning, China Academy of Agricultural Sciences/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing 100081
    2 Jining Academy of Agricultural Sciences, Jining 272031, Shandong
  • Received:2023-12-21 Accepted:2024-03-25 Online:2024-12-01 Published:2024-12-07

Abstract:

【Objective】 This study aims to investigate the impact of residual nitrogen from the wheat season on the soil nitrate content and distribution during the soybean growth season in a winter wheat-summer soybean rotation system. It aims to clarify the dynamic relationship between soil nitrate content and the development of root nodules and root system architecture in soybean and reveal the pathways through which residual nitrogen from wheat season and soil nitrogen dynamics during the soybean season affect soybean yield.【Method】 According to the residual nitrogen levels of wheat stubble soil in double cropping region of the Huang-Huai-Hai Plain, five residual nitrogen levels were set: 5.25 mg·kg-1 (N5), 10.00 mg·kg-1 (N10), 20.00 mg·kg-1 (N20), 40.00 mg·kg-1 (N40), and 60.00 mg·kg-1 (N60) in 2021 and 2022. The soil nitrate content in the root layer (0-40 cm) was measured before soybean sowing, at the six-leaf stage, the flowering stage, and the early pod-filling stage. The above-ground and below-ground biomass, root nodule dry weight, and root traits at the six-leaf stage and the early pod-filling stage, as well as the yield at the harvest stage were analyzed.【Result】 The residual nitrogen increased the soil nitrate content during the soybean growth season, and it rapidly leached with rainfall. Differences in soil nitrate content among treatments persisted until the early pod-filling stage and the six-leaf stage in 2021 and 2022, respectively. The soil nitrate content at the six-leaf stage was 23.44-24.42, 24.98-28.07, 16.99-28.21, 23.81-45.34, 33.37-53.78 mg·kg-1 in 2021, and 7.63-7.84, 8.02-8.86, 8.32-8.71, 9.43-10.01, 15.40-17.92 mg·kg-1 in 2022. The soil nitrate content in the root layer at the six-leaf stage was significantly correlated with soybean yield, when it fell within the range of 17.83-40.33 mg·kg-1, the yield increased with its increase; when it was 7.63-17.83 or 40.33-53.78 mg·kg-1, the yield decreased with its increase; the yield reached its maximum at 7.63 or 40.33 mg·kg-1. At the six-leaf stage, an increase in soil nitrate content resulted in higher above-ground biomass, root area, and root width, while it reduced below-ground biomass, root nodule dry weight, lateral root number, and root tip number. At the early pod-filling stage, above-ground biomass, root area, taproot root length, and root tip number showed a decreasing trend after an initial increase and subsequent decrease with the soil nitrate content at the six-leaf stage. Among the root nodules and root traits significantly affected by soil nitrate content at the six-leaf stage, root nodule dry weight, root area, root width, and root tip number were the main factors influencing soybean yield.【Conclusion】 Residual nitrogen from the wheat season affects the soil nitrate content in the root layer during the soybean growth season both temporally and spatially. It regulates the nitrate content in soybean root layer at six-leaf stage, and thus impact above-ground biomass and yield by influencing the development of soybean root nodules and root systems. We recommend to apply nitrogen with appropriate amount and period based on residual nitrogen levels in order to control the nitrate content in the root layer of soybean during the seedling stage at around 7.63 or 40.33 mg·kg-1. This will enhance nitrogen fertilizer utilization efficiency and achieve higher yields.

Key words: wheat-soybean rotation system, soil nitrate, soil residual nitrogen, root nodule, root system architecture, soybean yield

Fig. 1

Daily precipitation and average temperature during the soybean growth period in 2021 and 2022"

Fig. 2

Nitrate content in the root layer soil during soybean growth period under different residual nitrate levels"

Table 1

Response of soybean yield, biomass, root nodule, and root traits to soil residual nitrogen level"

指标
Traits
试验年份Experi-
mental
year
时期
Stage
残留氮水平 Residual nitrogen level 显著性 Significance
N5 N10 N20 N40 N60 残留氮水平
Residual nitrogen level
试验年份
Year
残留氮水平×
试验年份
R×Y
产量
Yield (kg·hm-2)
2021 5025.0a 3750.2b 4141.1ab 5071.6a 4566.9ab ns ns **
2022 4684.3ab 5170.6a 5699.1a 4015.0b 4340.7ab
地上部
生物量
AB (g/plant)
2021 V6 3.3a 2.4a 3.2a 3.4a 2.8a ns
*
ns
2022 2.5a 2.4a 2.5a 1.9a 2.4a
2021 R5 53.4ab 41.1ab 35.1b 55.0ab 57.4a ns
ns
**
2022 44.2b 62.5a 60.5a 39.2bc 29.9c
地下部生物量
BB (g/plant)
2021 V6 0.5a 0.5a 0.5a 0.5a 0.4a ns
*
ns
2022 0.6a 0.5a 0.7a 0.5a 0.6a
2021 R5 6.0ab 4.9ab 4.4b 6.5a 6.3ab ns
*
*
2022 3.9ab 6.0a 4.9a 4.6a 2.4b
根瘤干重
RNW
(g/plant)
2021 V6 0.8a 0.4b 0.4b 0.3bc 0.2c ns
***
ns
2022 2.4a 3.3a 2.5a 2.0a 2.7a
2021 R5 21.6a 9.5b 7.3b 7.8b 12.5ab ns
*
ns
2022 7.5a 7.8a 8.5a 7.3a 3.5a
主根长
TRL (mm)
2021 V6 181.9a 217.1a 211.7a 193.2a 183.8a ns ns ns
2022 189.2a 181.9a 212.6a 203.0a 177.0a
2021 R5 352.5ab 299.2b 313.7b 396.2a 322.7b ns
ns
ns
2022 270.7b 375.6a 353.4a 269.5b 287.5b
根系宽度
RW (mm)
2021 V6 87.1ab 79.3b 91.9ab 124.8a 86.5ab ns ** ns
2022 73.2a 65.8a 69.9a 59.4a 79.8a
2021 R5 223.6abc 182.9bc 156.2c 257.0a 252.6ab ns
**
ns
2022 129.0b 209.1a 186.5ab 161.4ab 144.9ab
根表面积
RA (mm2)
2021 V6 2660.3a 2566.5a 2895.8a 3203.5a 2810.4a ns ** ns
2022 2438.2a 1952.8a 2152.3a 2297.1a 2514.2a
2021 R5 5454.3a 4414.0a 5399.3a 6870.6a 6338.6a ns
**
**
2022 3939.2ab 5740.9a 4257.0ab 3934.0ab 2544.3b
侧根数
LRN
2021 V6 13.7ab 6.5b 25.2a 24.2a 16.5ab ns *** ns
2022 44.8a 25.0b 30.6ab 38.2ab 34.0ab
2021 R5 49.2a 51.7a 44.2a 49.5a 48.3a ns
ns
ns
2022 43.2b 54.8a 62.8a 36.6b 38.4b
根尖数
RTN
2021 V6 87.0ab 41.8b 111.0ab 151.0a 97.3ab ns *** ns
2022 272.2ab 205.7c 219.3bc 197.3c 290.5a
2021 R5 612.7a 651.8a 662.0a 727.2a 679.3a ns
ns
*
2022 582.3ab 742.7a 663.6a 560.8ab 396.8b

Fig. 3

Relationship between soybean yield and nitrate content in root layer soil at the six-leaf stage"

Fig. 4

Relationship between soybean biomass, nodule, and root traits and nitrate content in root layer soil at the six-leaf stage"

Fig. 5

Correlation analysis of soybean yield, biomass, and root nodule and root traits *P<0.05,**P<0.01,***P<0.001"

[1]
赵荣芳, 陈新平, 张福锁. 华北地区冬小麦-夏玉米轮作体系的氮素循环与平衡. 土壤学报, 2009, 46(4): 684-697.
ZHAO R F, CHEN X P, ZHANG F S. Nitrogen cycling and balance in winter-wheat-summer-maize rotation system in Northern China Plain. Acta Pedologica Sinica, 2009, 46(4): 684-697. (in Chinese)
[2]
中共中央国务院. 中共中央国务院关于做好2022年全面推进乡村振兴重点工作的意见. 新华社, 2022.
The State Council of the People’s Republic of China. Opinions of the CPC Central Committee and the State Council on Completing the Key Work of Comprehensively Promoting Rural Revitalization in 2022. Xinhua News Agency, 2022. (in Chinese)
[3]
GAI Z J, ZHANG J T, LI C F. Effects of starter nitrogen fertilizer on soybean root activity, leaf photosynthesis and grain yield. PLoS ONE, 2017, 12(4): e0174841.
[4]
TABASSUM M A. Root foraging in soybean (Glycine max) under nitrogen deprivation. International Journal of Agriculture and Biology, 2021, 25(5): 1140-1146.
[5]
刘晓静, 叶芳, 张晓玲. 外源氮素形态对紫花苜蓿不同生育期根系特性的影响. 草业学报, 2015, 24(6): 53-63.

doi: 10.11686/cyxb2014269
LIU X J, YE F, ZHANG X L. Effects of exogenous nitrogen forms on root characteristics of alfalfa at different growth stages. Acta Prataculturae Sinica, 2015, 24(6): 53-63. (in Chinese)
[6]
ZHANG Y L, LI C H, WANG Y W, HU Y M, CHRISTIE P, ZHANG J L, LI X L. Maize yield and soil fertility with combined use of compost and inorganic fertilizers on a calcareous soil on the North China Plain. Soil and Tillage Research, 2016, 155: 85-94.
[7]
姜妍, 王清泉, 李远明, 王绍东, 刘伟. 施氮水平对7S亚基缺失大豆根系形态和结瘤固氮的影响. 大豆科学, 2017, 36(2): 267-273.
JIANG Y, WANG Q Q, LI Y M, WANG S D, LIU W. Effect of different nitrogen application levels on the root morphology, nodulation and nitrogen fixation in 7S subunit lacked soybean. Soybean Science, 2017, 36(2): 267-273. (in Chinese)
[8]
王树起, 韩晓增, 乔云发, 严君, 李晓慧. 施氮对大豆根系形态和氮素吸收积累的影响. 中国生态农业学报, 2009, 17(6): 1069-1073.
WANG S Q, HAN X Z, QIAO Y F, YAN J, LI X H. Root morphology and nitrogen accumulation in soybean (Glycine max L.) under different nitrogen application levels. Chinese Journal of Eco- Agriculture, 2009, 17(6): 1069-1073. (in Chinese)
[9]
远月丽, 易媛媛, 战勇, 陈李淼, 袁松丽, 黄毅, 肖之源, 张婵娟, 周新安. 大豆氮高效种质苗期筛选与鉴定. 中国油料作物学报, 2022, 44(3): 539-547.

doi: 10.19802/j.issn.1007-9084.2021117
YUAN Y L, YI Y Y, ZHAN Y, CHEN L M, YUAN S L, HUANG Y, XIAO Z Y, ZHANG C J, ZHOU X A. Distinguishing and evaluating high nitrogen-use-efficient soybean germplasm at seedling stage. Chinese Journal of Oil Crop Sciences, 2022, 44(3): 539-547. (in Chinese)
[10]
同延安, Ove Emteryd, 张树兰, 梁东丽. 陕西省氮肥过量施用现状评价. 中国农业科学, 2004, 37(8): 1239-1244.
TONG Y A, EMTERYD O, ZHANG S L, LIANG D L. Evalution of over-application of nitrogen fertilizer in China’s Shaanxi Province. Scientia Agricultura Sinica, 2004, 37(8): 1239-1244. (in Chinese)
[11]
YAN X Y, TI C P, VITOUSEK P, CHEN D L, LEIP A, CAI Z C, ZHU Z L. Fertilizer nitrogen recovery efficiencies in crop production systems of China with and without consideration of the residual effect of nitrogen. Environmental Research Letters, 2014, 9(9): 095002.
[12]
高阳, 楚光红, 傅积海, 张艳伟, 章建新. 施氮量对滴灌高产春大豆根系生长及产量的影响. 干旱地区农业研究, 2018, 36(4): 46-52.
GAO Y, CHU G H, FU J H, ZHANG Y W, ZHANG J X. Effect of nitrogen fertilizer amount on root growth and yield of spring soybean in drip irrigation. Agricultural Research in the Arid Areas, 2018, 36(4): 46-52. (in Chinese)
[13]
LÓPEZ-BELLIDO R J, LÓPEZ-BELLIDO L, CASTILLO J E, LÓPEZ-BELLIDO F J. Chickpea response to tillage and soil residual nitrogen in a continuous rotation with wheat. Field Crops Research, 2004, 88(2/3): 201-210.
[14]
CIAMPITTI I A, SALVAGIOTTI F. New insights into soybean biological nitrogen fixation. Agronomy Journal, 2018, 110(4): 1185-1196.
[15]
周新雨, 王天舒, 任利东, 王丽, 于淑婷, 王晶, 宋爱英, 尧水红. 种植密度和氮施用时期对不同大豆品种农艺性状和产量的影响. 中国土壤与肥料, 2023(4): 105-113.
ZHOU X Y, WANG T S, REN L D, WANG L, YU S T, WANG J, SONG A Y, YAO S H. Effects of planting density and nitrogen application period on agronomic traits and yield of different soybean cultivars. Soil and Fertilizer Sciences in China, 2023(4): 105-113. (in Chinese)
[16]
HIRSH S M, WEIL R R. Deep soil cores reveal large end-of-season residual mineral nitrogen pool. Agricultural & Environmental Letters, 2019, 4(1): 180055.
[17]
张云贵, 刘宏斌, 李志宏, 林葆, 张夫道. 长期施肥条件下华北平原农田硝态氮淋失风险的研究. 植物营养与肥料学报, 2005, 11(6): 711-716, 736.
ZHANG Y G, LIU H B, LI Z H, LIN B, ZHANG F D. Study of nitrate leaching potential from agricultural land in Northern China under long-term fertilization conditions. Plant Nutrition and Fertilizer Sciences, 2005, 11(6): 711-716, 736. (in Chinese)
[18]
邹狮, 严君, 高瑞敏, 邹文秀, 陆欣春, 陈旭. 高油大豆结瘤固氮和籽粒产质量对氮肥的响应. 中国油料作物学报, 2023, 45(4): 836-844.

doi: 10.19802/j.issn.1007-9084.2022185
ZOU S, YAN J, GAO R M, ZOU W X, LU X C, CHEN X. Response of nodulation and nitrogen fixation and grain yield and quality of high oil soybean to nitrogen fertilizer. Chinese Journal of Oil Crop Sciences, 2023, 45(4): 836-844. (in Chinese)

doi: 10.19802/j.issn.1007-9084.2022185
[19]
LIN J S, ROSWANJAYA Y P, KOHLEN W, STOUGAARD J, REID D. Nitrate restricts nodule organogenesis through inhibition of cytokinin biosynthesis in Lotus japonicus. Nature Communications, 2021, 12: 6544.
[20]
XIE Z J, ZHOU C H, SHAH F, IQBAL A, NI G R. The role of Chinese milk vetch as cover crop in complex soil nitrogen dynamics in rice rotation system of South China. Scientific Reports, 2018, 8: 12061.

doi: 10.1038/s41598-018-30239-6 pmid: 30104683
[21]
陈静. 华北小麦-玉米滴灌施肥下水氮运移和N2O排放研究[D]. 北京: 中国农业科学院, 2014.
CHEN J. Water-nitrogen dynamics and N2O emissions from wheat- maize rotation fields under drip fertigation in North China Plain[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese)
[22]
王西娜, 王朝辉, 李华, 王荣辉, 谭军利, 李生秀. 旱地土壤中残留肥料氮的动向及作物有效性. 土壤学报, 2016, 53(5): 1202-1212.
WANG X N, WANG Z H, LI H, WANG R H, TAN J L, LI S X. Dynamics and availability to crops of residual fertilizer nitrogen in upland soil. Acta Pedologica Sinica, 2016, 53(5): 1202-1212. (in Chinese)
[23]
张桂兰, 宝德俊, 王英, 李贵宝, 乔文学, 孟繁清. 长期施用化肥对作物产量和土壤性质的影响. 土壤通报, 1999, 30(2): 64-67.
ZHANG G L, BAO D J, WANG Y, LI G B, QIAO W X, MENG F Q. Effects of long-term application of chemical fertilizer on crop yield and soil properties. Chinese Journal of Soil Science, 1999, 30(2): 64-67. (in Chinese)
[24]
温延臣, 李海燕, 袁亮, 徐久凯, 马荣辉, 林治安, 赵秉强. 长期定位施肥对潮土剖面养分分布的影响. 中国农业科学, 2020, 53(21): 4460-4469. doi: 10.3864/j.issn.0578-1752.2020.21.014.
WEN Y C, LI H Y, YUAN L, XU J K, MA R H, LIN Z A, ZHAO B Q. Effect of long-term fertilization on nutrient distribution of fluvo-aquic soil profile. Scientia Agricultura Sinica, 2020, 53(21): 4460-4469. doi: 10.3864/j.issn.0578-1752.2020.21.014. (in Chinese)
[25]
LUO X S, KOU C L, WANG Q. Optimal fertilizer application reduced nitrogen leaching and maintained high yield in wheat-maize cropping system in North China. Plants, 2022, 11(15): 1963.
[26]
严君, 韩晓增, 王守宇, 王树起, 李晓慧, 朱巍巍. 不同施氮量及供氮方式对大豆根瘤生长及固氮的影响. 江苏农业学报, 2010, 26(1): 75-79.
YAN J, HAN X Z, WANG S Y, WANG S Q, LI X H, ZHU W W. Effects of different n supply levels and methods on nodule growth and nitrogen fixation in soybean (Glycine max L.). Jiangsu Journal of Agricultural Sciences, 2010, 26(1): 75-79. (in Chinese)
[27]
VAN KESSEL C, HARTLEY C. Agricultural management of grain legumes: has it led to an increase in nitrogen fixation? Field Crops Research, 2000, 65(2/3): 165-181.
[28]
FUJIKAKE H, YAMAZAKI A, OHTAKE N, SUEYOSHI K, MATSUHASHI S, ITO T, MIZUNIWA C, KUME T, HASHIMOTO S, ISHIOKA N, WATANABE S, OSA A, SEKINE T, UCHIDA H, TSUJI A, OHYAMA T. Quick and reversible inhibition of soybean root nodule growth by nitrate involves a decrease in sucrose supply to nodules. Journal of Experimental Botany, 2003, 54(386): 1379-1388.

doi: 10.1093/jxb/erg147 pmid: 12709484
[29]
丁洪, 郭庆元, 张学江. 氮肥对大豆不同类型品种结瘤固氮影响的差异性研究. 大豆科学, 1994, 13(3): 274-278.
DING H, GUO Q Y, ZHANG X J. Study on the difference of nitrogen fertilizer effect on nodulation and nitrogen fixation of different soybean varieties. Soybean Science, 1994, 13(3): 274-278. (in Chinese)
[30]
COSTA C, DWYER L M, HAMILTON R I, HAMEL C, NANTAIS L, SMITH D L. A sampling method for measurement of large root systems with scanner-based image analysis. Agronomy Journal, 2000, 92(4): 621-627.
[31]
ZHANG H, JENNINGS A, BARLOW P W, FORDE B G. Dual pathways for regulation of root branching by nitrate. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(11): 6529-6534.
[32]
BAI F F, QI X B, LI P, DU Z J, GUO W. Groundwater depth and nitrogen application amount jointly regulate the water and residual soil nitrate accumulation in agricultural soil profile. Agronomy, 2023, 13(4): 1163.
[33]
张馨月, 王寅, 陈健, 陈安吉, 王莉颖, 郭晓颖, 牛雅郦, 张星宇, 陈利东, 高强. 水分和氮素对玉米苗期生长、根系形态及分布的影响. 中国农业科学, 2019, 52(1): 34-44. doi: 10.3864/j.issn.0578-1752.2019.01.004.
ZHANG X Y, WANG Y, CHEN J, CHEN A J, WANG L Y, GUO X Y, NIU Y L, ZHANG X Y, CHEN L D, GAO Q. Effects of soil water and nitrogen on plant growth, root morphology and spatial distribution of maize at the seedling stage. Scientia Agricultura Sinica, 2019, 52(1): 34-44. doi: 10.3864/j.issn.0578-1752.2019.01.004. (in Chinese)
[34]
金剑, 刘晓冰, 王光华, 李艳华, 潘相文, S.J. Herbert. 大豆生殖生长期根系形态性状与产量关系研究. 大豆科学, 2004, 23(4): 253-257.
JIN J, LIU X B, WANG G H, LI Y H, PAN X W, HERBERT S J. Study on relationship between root morphology during reproductive stage and yield in soybean. Soybean Science, 2004, 23(4): 253-257. (in Chinese)
[35]
ZHENG B C, ZHANG X N, CHEN P, DU Q, ZHOU Y, YANG H, WANG X C, YANG F, YONG T W, YANG W Y. Improving maize’s N uptake and N use efficiency by strengthening roots’ absorption capacity when intercropped with legumes. PeerJ, 2021, 9: e11658.
[36]
陈成军. 氮肥不同用量对大豆产量的影响分析. 中国农技推广, 2020, 36(12): 66-68.
CHEN C J. Analysis on the effect of different amount of nitrogen fertilizer on soybean yield. China Agricultural Technology Extension, 2020, 36(12): 66-68. (in Chinese)
[37]
龚振平, 金喜军, 马春梅, 张磊. 春大豆对不同来源氮素吸收利用的研究. 土壤通报, 2010, 41(5): 1138-1141.
GONG Z P, JIN X J, MA C M, ZHANG L. Study on the absorption and utilization of various source nitrogen by spring soybean. Chinese Journal of Soil Science, 2010, 41(5): 1138-1141. (in Chinese)
[38]
郭海龙, 马春梅, 董守坤, 金喜军, 龚振平. 春大豆生长中对不同氮源的吸收利用. 核农学报, 2008, 22(3): 338-342.
GUO H L, MA C M, DONG S K, JIN X J, GONG Z P. Absorption and utilization of different nitrogen sources during the growth of soybean plant. Journal of Nuclear Agricultural Sciences, 2008, 22(3): 338-342. (in Chinese)
[39]
符小文, 张永杰, 杜孝敬, 厍润祥, 安崇霄, 房彦飞, 徐文修, 张娜. 麦-豆轮作体系周年施氮量对夏大豆氮素利用效率和产量的影响. 植物营养与肥料学报, 2020, 26(3): 453-460.
FU X W, ZHANG Y J, DU X J, SHE R X, AN C X, FANG Y F, XU W X, ZHANG N. Effect of annual nitrogen application rate on nitrogen use efficiency and yield of summer soybean in winter wheat-summer soybean rotation system. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 453-460. (in Chinese)
[40]
郭小红, 王兴才, 孟田, 张惠君, 敖雪, 王海英, 谢甫绨. 中美大豆Ⅲ熟期组代表品种根系形态和活力的比较研究. 中国农业科学, 2015, 48(19): 3821-3833. doi: 10.3864/j.issn.0578-1752.2015.19.005.
GUO X H, WANG X C, MENG T, ZHANG H J, AO X, WANG H Y, XIE F T. Comparison of root morphological and activity of representative soybean cultivars (MG Ⅲ) developed in the USA and China. Scientia Agricultura Sinica, 2015, 48(19): 3821-3833. doi: 10.3864/j.issn.0578-1752.2015.19.005. (in Chinese)
[41]
黄中文, 赵团结, 盖钧镒. 大豆不同产量水平生物量积累与分配的动态分析. 作物学报, 2009, 35(8): 1483-1490.
HUANG Z W, ZHAO T J, GAI J Y. Dynamic analysis of biomass accumulation and partition in soybean with different yield levels. Acta Agronomica Sinica, 2009, 35(8): 1483-1490. (in Chinese)

doi: 10.3724/SP.J.1006.2009.01483
[42]
姬月梅, 罗瑞萍, 赵志刚, 连金番. 不同施氮量及施氮方式对大豆根瘤生长及产量的影响. 大豆科学, 2017, 36(6): 887-893.
JI Y M, LUO R P, ZHAO Z G, LIAN J P. Effects of different nitrogen application and methods on nodule growth and yield of soybean (Glycine max L.). Soybean Science, 2017, 36(6): 887-893. (in Chinese)
[43]
SALVAGIOTTI F, CASSMAN K G, SPECHT J E, WALTERS D T, WEISS A, DOBERMANN A. Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Research, 2008, 108(1): 1-13.
[44]
LYNCH J P. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 2013, 112(2): 347-357.

doi: 10.1093/aob/mcs293 pmid: 23328767
[45]
HAERIZADEH F, SINGH M B, BHALLA P L. Transcriptome profiling of soybean root tips. Functional Plant Biology, 2011, 38(6): 451-461.

doi: 10.1071/FP10230 pmid: 32480900
[46]
MEIER M, LIU Y, LAY-PRUITT K S, TAKAHASHI H, VON WIRÉN N. Auxin-mediated root branching is determined by the form of available nitrogen. Nature Plants, 2020, 6: 1136-1145.

doi: 10.1038/s41477-020-00756-2 pmid: 32917974
[1] ZHANG YuZhou, WANG YiZhao, GAO RuXi, LIU YiFan. Research Progress on Root System Architecture and Drought Resistance in Wheat [J]. Scientia Agricultura Sinica, 2024, 57(9): 1633-1645.
[2] WANG XinYuan,ZHAO SiDa,ZHENG XianFeng,WANG ZhaoHui,HE Gang. Effects of Straw Returning and Nitrogen Application Rate on Grain Yield and Nitrogen Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2021, 54(23): 5043-5053.
[3] GU XiaoBo, LI YuanNong, HUANG Peng, DU YaDan, CHEN PengPeng, FANG Heng. Effects of Irrigation and Nitrogen Coupling on Nitrogen Absorption and Soil Nitrate Content of Winter Oilseed Rape [J]. Scientia Agricultura Sinica, 2018, 51(7): 1283-1293.
[4] CHEN XinXin2, DING QiShuo, LI YiNian, XUE JinLin, HE RuiYin. Three Dimensional Fractal Characteristics of Wheat Root System for Rice-Wheat Rotation in Southern China [J]. Scientia Agricultura Sinica, 2017, 50(3): 451-460.
[5] GUO JinJin, ZHANG FuCang, WANG HaiDong, YAN ShiCheng, ZHENG Jing, CHEN DongFeng, LI ZhiJun. Effects of Slow-Release Nitrogen Fertilizer and Urea Blending on Maize Growth and Nitrogen Uptake Under Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2017, 50(20): 3930-3943.
[6] YIN Fei, WANG JunZhong, SUN XiaoMei, LI HongQi, FU GuoZhan, PEI RuiJie, JIAO NianYuan. Response of Spatial Concordance Index Between Maize Root and Soil Nitrate Distribution to Water and Nitrogen Treatments [J]. Scientia Agricultura Sinica, 2017, 50(11): 2166-2178.
[7] WEN Wei-liang, GUO Xin-yu, ZHAO Chun-jiang, WANG Chuan-yu, XIAO Bo-xiang. Crop Roots Configuration and Visualization: A Review [J]. Scientia Agricultura Sinica, 2015, 48(3): 436-448.
[8] CHEN Xin-Xin-1, DING Qi-Shuo-1, 2 , DING Wei-Min-1, TIAN Yong-Chao-2, ZHU Yan-2, CAO Wei-Xing-2. Measurement and Analysis of 3D Wheat Root System Architecture with a Virtual Plant Tool Kit [J]. Scientia Agricultura Sinica, 2014, 47(8): 1481-1488.
[9] ZHANG Jing-Ting, WANG Zhi-Min, ZHOU Shun-Li. Soil Nitrate N Accumulation Under Different N-Fertilizer Rates in Summer Maize and Its Residual Effects on Subsequent Winter Wheat [J]. Scientia Agricultura Sinica, 2013, 46(6): 1182-1190.
[10] YANG Jun-Gang, ZHANG Dong-Lei, XU Kai, NI Xiao-Hui, XIAO Qiang, CAO Bing, LIU Bao-Cun, ZOU Guo-Yuan. Effects of Mixed Application of Controlled-release Fertilizer and Common Fertilizers on Greenhouse Tomato Growth, Yield, Root Distribution, and Soil Nitrate Residual [J]. Scientia Agricultura Sinica, 2012, 45(18): 3782-3791.
[11] XIAO Tong-jian,YANG Qing-song,RAN wei,XU Guo-hua,SHEN Qi-rong
. Effect of Inoculation with Arbuscular Mycorrhizal Fungus on Nitrogen and Phosphorus Utilization in Upland Rice-Mungbean Intercropping System
[J]. Scientia Agricultura Sinica, 2010, 43(4): 753-760 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!