Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (11): 2102-2113.doi: 10.3864/j.issn.0578-1752.2024.11.005

• SPECIAL FOCUS: SOYBEAN DISEASE RESISTANCE, YIELD AND QUALITY CORRELATION • Previous Articles     Next Articles

Genome-Wide Association Analysis of Soybean Nodulation-Related Traits in the Northern Hebei

SHOU XinYue1,2(), LIU Zhi2(), CHEN YueHan2, LI ChenHui2, SUN BinCheng3, SUN RuJian3, HAN DeZhi4, LU WenCheng4, SHEN YongHui5, WANG XiaoBo1(), YAN Long2()   

  1. 1 College of Agronomy, Anhui Agricultural University, Hefei 230036
    2 Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/National Soybean Improvement Center Shijiazhuang Sub-Center/Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035
    3 Hulunbuir Institute of Agricultural and Animal Husbandry Sciences, Hulunbuir 162650, Inner Mongolia
    4 Heihe Branch, Heilongjiang Academy of Agricultural Sciences, Heihe 164399, Heilongjiang
    5 Zhengding County Agriculture and Rural Bureau, Shijiazhuang 050800
  • Received:2024-01-19 Accepted:2024-03-26 Online:2024-06-01 Published:2024-06-07
  • Contact: WANG XiaoBo, YAN Long

Abstract:

【Objective】Exploring efficient nodulation soybean germplasm adapted to the ecological conditions of the Bashang area, identifying genetic loci and candidate genes regulating soybean-rhizobium symbiotic nodulation, and improving soybean symbiotic nitrogen fixation efficiency.【Method】This study utilized a natural population of 260 soybean germplasms as the research object, rhizobium strain USDA110 was inoculated under outdoor potted conditions in the Bashang of Hebei Province. The single plant nodule number and single plant nodule dry weight data were used as phenotypic values. Combined with genotype data of the 260 germplasms, a genome-wide association analysis was conducted to explore genes related to soybean-rhizobium symbiotic nodulation.【Result】A total of 18 SNPs significantly associated with soybean nodule number were detected, located on chromosomes 2, 7, 8, 13, 18, and 19. Among them, the significant associated locus BARC_2.01_Chr02_43161654_A_G on chromosome 2 was identified as the main locus controlling soybean nodule number (LOD=3.89). Linkage disequilibrium analysis within the 200 kb interval upstream and downstream of this locus containing BARC_2.01_Chr02_43161654_A_G identified 10 candidate genes regulating soybean nodule number. There was a significant difference in the number of nodules among the materials corresponding to different haplotypes of Glyma.02G243200 (P<0.05), the expression pattern of this gene was queried in the SoyBase database, and it was expressed in root hairs, indicating that Glyma.02G243200 may be a key gene influencing soybean nodule number. Additionally, six SNPs significantly associated with soybean nodule dry weight were identified, located on chromosomes 6, 18, and 20. Among them, the significant associated loci BARC_2.01_Chr06_6069381_G_A and BARC_2.01_Chr06_6192925_T_C on chromosome 6 were identified as the main loci controlling soybean nodule dry weight (LOD=3.49 and LOD=3.35, respectively). Linkage disequilibrium analysis within the 100 kb interval upstream of BARC_2.01_ Chr06_6069381_G_A and downstream of BARC_2.01_Chr06_6192925_T_C identified 14 candidate genes regulating soybean nodule dry weight. Haplotype analysis revealed significant differences in nodule dry weight for the genes Glyma.06G079600 and Glyma.06G079900 between different haplotype materials (P<0.01, P<0.001), the expression pattern of this gene was queried in the SoyBase database, and they were expressed in roots, indicating that these two genes may be key genes influencing soybean nodule dry weight.【Conclusion】This study identified a candidate gene significantly associated with nodule number on chromosome 2 and two candidate genes significantly associated with nodule dry weight on chromosome 6, providing new genetic resources and references for genetic improvement of soybean nodulation traits.

Key words: soybean, rhizobium, genome-wide association study (GWAS), soybean nodules number, soybean nodules dry weight

Table 1

Statistical analysis of the phenotypic variation in the number and dry weight of nodules of 260 soybean germplasm inoculated USDA110 in 2023"

性状
Trait
平均值
Mean
最大值
Max
最小值
Min
标准差
SD
变异系数
CV (%)
偏度
Skew
峰度
Kurt
遗传力
h2b
根瘤数量Nodules number 10.62 17.00 6.00 2.24 21.09 0.43 0.15 0.75
根瘤干重Nodules dry weight (g/plant) 0.04 0.08 0.02 0.01 25.00 0.85 1.07 0.70

Fig. 1

Genome-wide association analysis of nodule number and nodule dry weight a: Manhattan plot, Q-Q plot and LDblock plot of the number of nodules; b: The 65 kb Manhattan plot of the number of nodules associated region on chromosome 2; c: Manhattan plot, Q-Q plot and LDblock plot of nodule dry weight; d: The 84 kb Manhattan plot of the nodule dry weight associated region on chromosome 6"

Table 2

The SNPs significantly associated with the number and the dry weight of nodules identified in 2023"

性状
Trait
染色体
Chromosome
标记名称
SNP
位置
Position (bp)
LOD值
-log10(P)
贡献率
R2(%)
均值±标准差
Mean±SD
根瘤数量
Nodule number
2 BARC_2.01_Chr02_2559614_A_G 2559614 3.20 1.22 11.19±2.17 9.53±2.64
BARC_2.01_Chr02_2576535_G_A 2576535 3.08 1.16 11.07±2.14 9.66±2.58
BARC_2.01_Chr02_43119820_T_C 43119820 3.34 1.24 10.50±2.27 11.65±2.20
BARC_2.01_Chr02_43152909_T_C 43152909 3.05 1.12 10.52±2.23 11.30±2.22
BARC_2.01_Chr02_43160129_T_C 43160129 3.62 1.37 10.52±2.15 11.21±1.96
BARC_2.01_Chr02_43161654_A_G 43161654 3.89 1.49 10.50±2.23 11.15±2.39
BARC_2.01_Chr02_43230817_G_T 43230817 3.03 1.11 10.72±2.08 11.56±2.51
7 BARC_2.01_Chr07_37781401_T_C 37781401 3.13 1.15 10.30±2.14 11.86±2.30
BARC_2.01_Chr07_37867888_G_A 37867888 3.09 1.14 10.51±2.16 12.12±2.08
8 BARC_2.01_Chr08_19418262_A_G 19418262 3.04 1.11 10.66±1.91 11.88±2.52
BARC_2.01_Chr08_19440300_C_T 19440300 3.06 1.12 10.35±2.11 11.74±2.66
BARC_2.01_Chr08_19460867_T_C 19460867 3.16 1.16 10.22±2.12 11.46±2.32
BARC_2.01_Chr08_19664993_C_T 19664993 3.13 1.15 10.50±2.01 11.94±2.31
BARC_2.01_Chr08_19781668_T_G 19781668 3.84 1.47 10.29±2.02 11.92±2.47
BARC_2.01_Chr08_19790967_C_T 19790967 3.38 1.26 10.44±2.03 12.18±2.70
13 BARC_2.01_Chr13_33815541_C_A 33815541 3.15 1.16 10.48±2.11 11.67±2.31
18 BARC_2.01_Chr18_11323656_G_A 11323656 3.24 1.21 10.56±2.26 10.89±2.21
19 BARC_2.01_Chr19_38414793_A_G 38414793 3.45 1.34 11.26±2.25 10.23±1.96
根瘤干重
Nodule dry weight
6 BARC_2.01_Chr06_6069381_G_A 6069381 3.49 0.31 0.04±0.01 0.04±0.01
BARC_2.01_Chr06_6192925_T_C 6192925 3.35 0.25 0.04±0.01 0.04±0.01
18 BARC_2.01_Chr18_56401752_T_G 56401752 3.22 0.35 0.04±0.01 0.04±0.01
20 BARC_2.01_Chr20_36618731_G_A 36618731 3.05 0.31 0.04±0.01 0.05±0.01
BARC_2.01_Chr20_38571066_A_G 38571066 3.34 0.38 0.04±0.01 0.05±0.01
BARC_2.01_Chr20_38608664_A_C 38608664 3.42 0.40 0.04±0.01 0.05±0.02

Table 3

The number of nodules and dry weight of nodules are potential related candidate genes"

候选基因
Candidate genes
功能描述
Description
表达模式
Expression pattern
候选基因
Candidate genes
功能描述
Description
表达模式
Expression pattern
Glyma.02G242700 跨膜激酶1
Transmembrane kinase 1
- Glyma.06G079300 -
Root
Glyma.02G242800 跨膜激酶1
Transmembrane kinase 1
- Glyma.06G079400 -
Root
Glyma.02G242900 CYS、MET、PRO和GLY蛋白1
CYS, MET, PRO, and GLY protein 1

Root
Glyma.06G079500 功能未知的蛋白质,DUF599
Protein of unknown function, DUF599

Flower
Glyma.02G243000 PLATZ转录因子家族蛋白
PLATZ transcription factor family protein
- Glyma.06G079600 非ATP酶亚基9
Non-ATPase subunit 9

Root
Glyma.02G243100 PLATZ转录因子家族蛋白
PLATZ transcription factor family protein
- Glyma.06G079700 -
Root
Glyma.02G243200 RING/FYVE/PhD锌指超家族蛋白
RING/FYVE/PHD zinc finger superfamily protein

Flower
Glyma.06G079800 碱性亮氨酸拉链 9
basic leucine zipper 9

Root
Glyma.02G243300 -
Root
Glyma.06G079900 类钙调蛋白42
Calmodulin like 42

Root
Glyma.02G243400 STELAR K+外向整流器
STELAR K+outward rectifier
根和花
Root and flower
Glyma.06G080000 -
Root
Glyma.02G243500 五肽重复(PPR)超家族蛋白
Pentatricopeptide repeat (PPR) superfamily protein
根和叶
Root and leaf
Glyma.06G080100 肌球蛋白重链相关
Myosin heavy chain-related

Root
Glyma.02G243600 真核天冬氨酰蛋白酶家族蛋白
Eukaryotic aspartyl protease family protein
花和叶
Flower and leaf
Glyma.06G080200 含NAC结构域的蛋白质 38
NAC domain containing protein 38

Root
Glyma.06G079100 -
Root
Glyma.06G080300 tRNA(鸟嘌呤-N-7)甲基转移酶
tRNA (guanine-N-7) methyltransferase

Root
Glyma.06G079200 SAUR样生长素反应蛋白家族
SAUR-like auxin-responsive protein family

Root
Glyma.06G080400 线粒体编辑因子21
Mitochondrial editing factor 21

Root

Fig. 2

Haplotype analysis of the candidate genes related to nodule number a: Gene structure and haplotype analysis of Glyma.02G242700; b: Gene structure and haplotype analysis of Glyma.02G242900; c: Gene structure and haplotype analysis of Glyma.02G243000; d: Gene structure and haplotype analysis of Glyma.02G243200; e: Gene structure and haplotype analysis of Glyma.02G243500. * P<0.05. The same as below"

Fig. 3

Haplotype analysis of candidate genes related to nodule dry weight a: Gene structure and haplotype analysis of Glyma.06G079300; b: Gene structure and haplotype analysis of Glyma.06G079600; c: Gene structure and haplotype analysis of Glyma.06G079900; d: Gene structure and haplotype analysis of Glyma.06G080400. **P<0.01, ***P<0.001"

[1]
SONG H, TAYLOR D C, ZHANG M. Bioengineering of soybean oil and its impact on agronomic traits. International Journal of Molecular Sciences, 2023, 24(3): 2256.
[2]
曹丽霞, 赵世锋, 周海涛, 张新军, 石碧红, 刘君馨, 李云霞, 李天亮. 冀北坝上地区荞麦品种的适宜播期分析. 作物杂志, 2019(6): 145-149.
CAO L X, ZHAO S F, ZHOU H T, ZHANG X J, SHI B H, LIU J X, LI Y X, LI T L. Analysis of suitable sowing date for buckwheat varieties in Bashang Area of northern Hebei. Crops, 2019(6): 145-149. (in Chinese)
[3]
孙勃. 冀北坝上大豆品种引进筛选鉴定及全基因组选择技术体系建立[D]. 保定: 河北农业大学, 2022.
SUN B. Establishment of the technology system of introducing, screening, identification and genome-wide selection of soybean varieties in Bashang, North Hebei Province[D]. Baoding: Hebei Agricultural University, 2022. (in Chinese)
[4]
陆宇燕, 李丕鹏. 氮肥污染的危害. 沈阳师范大学学报(自然科学版), 2014, 32(1): 1-5.
LU Y Y, LI P P. Effects of application of nitrogen fertilizer on pollutions. Journal of Shenyang Normal University (Natural Science Edition), 2014, 32(1): 1-5. (in Chinese)
[5]
SANTOS M A, GERALDI I O, GARCIA A A F, BORTOLATTO N, SCHIAVON A, HUNGRIA M. Mapping of QTLs associated with biological nitrogen fixation traits in soybean. Hereditas, 2013, 150(2/3): 17-25.
[6]
HWANG S, RAY J D, CREGAN P B, KING C A, DAVIES M K, PURCELL L C. Genetics and mapping of quantitative traits for nodule number, weight, and size in soybean (Glycine max L.[Merr.]). Euphytica, 2014, 195(3): 419-434.
[7]
NICOLÁS M F, HUNGRIA M, ARIAS C A A. Identification of quantitative trait loci controlling nodulation and shoot mass in progenies from two Brazilian soybean cultivars. Field Crops Research, 2006, 95(2/3): 355-366.
[8]
QI X P, LI M W, XIE M, LIU X, NI M, SHAO G H, SONG C, YIM A K Y, TAO Y, WONG F L, ISOBE S, WONG C F, WONG K S, XU C Y, LI C Q, WANG Y, GUAN R, SUN F M, FAN G Y, XIAO Z X, ZHOU F, PHANG T H, LIU X, TONG S W, CHAN T F, YIU S M, TABATA S, WANG J, XU X, LAM H M. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nature Communications, 2014, 5(1): 4340.
[9]
KILEN T C, PALMER R G. Qualitative genetics and cytogenetics. Agronomy, 1987, 16: 135-209.
[10]
张永芳, 黄昆, 马中雨, 范海, 李俊, 常汝镇, 邱丽娟. 大豆苗期固氮相关性状的QTL分析. 大豆科学, 2009, 28(4): 583-587, 604.
ZHANG Y F, HUANG K, MA Z Y, FAN H, LI J, CHANG R Z, QIU L J. Mapping of QTL for controlling nitrogen fixation in soybean cultivars at seedling stage. Soybean Science, 2009, 28(4): 583-587, 604. (in Chinese)
[11]
张艳娇, 李长育, 王锦辉, 常慧琳, 魏玮, 马超, 姜志浩, 蒋洪蔚, 刘春燕, 尹振功, 高山, 金喜军, 辛大伟, 陈庆山. 大豆共生结瘤相关性状QTL定位信息整合及候选基因分析. 中国油料作物学报, 2017, 39(5): 580-588.
ZHANG Y J, LI C Y, WANG J H, CHANG H L, WEI W, MA C, JIANG Z H, JIANG H W, LIU C Y, YIN Z G, GAO S, JIN X J, XIN D W, CHEN Q S. Integration of QTL mapping information in soybean symbiotic nodule-related traits and analysis of candidate genes. Chinese Journal of Oil Crop Sciences, 2017, 39(5): 580-588. (in Chinese)

doi: 10.7505/j.issn.1007-9084.2017.05.001
[12]
李健依, 王悦, 辛大伟, 李瑞超, 于晶瑶, 黄仕钰, 王新宇, 武小霞, 陈庆山. 大豆结瘤相关QTL优化和候选基因挖掘. 中国油料作物学报, 2020, 42(1): 37-43.
LI J Y, WANG Y, XIN D W, LI R C, YU J Y, HUANG S Y, WANG X Y, WU X X, CHEN Q S. Optimization analysis of soybean nodule-related QTLs and candidate gene mining. Chinese Journal of Oil Crop Sciences, 2020, 42(1): 37-43. (in Chinese)
[13]
孙志君, 蔡英博, 吕浩, 王洁琦, 刘函西, 文莹楠, 刘春燕, 王锦辉, 辛大伟, 陈庆山. 基于大豆导入系群体结瘤相关性状QTL定位及基因挖掘. 中国油料作物学报, 2020, 42(1): 25-36.
SUN Z J, CAI Y B, H, WANG J Q, LIU H X, WEN Y N, LIU C Y, WANG J H, XIN D W, CHEN Q S. QTLs analysis and gene mining of soybean symbiotic nodulation based on introgression lines. Chinese Journal of Oil Crop Sciences, 2020, 42(1): 25-36. (in Chinese)
[14]
TORKAMANEH D, CHALIFOUR F P, BEAUCHAMP C J, AGRAMA H, BOAHEN S, MAAROUFI H, RAJCAN I, BELZILE F. Genome-wide association analyses reveal the genetic basis of biomass accumulation under symbiotic nitrogen fixation in African soybean. Theoretical and Applied Genetics, 2020, 133(2): 665-676.

doi: 10.1007/s00122-019-03499-7 pmid: 31822937
[15]
ZHANG B, WANG M D, SUN Y F, ZHAO P, LIU C, QING K, HU X T, ZHONG Z D, CHENG J L, WANG H J, PENG Y Q, SHI J J, ZHUANG L L, DU S, HE M, WU H, LIU M, CHEN S C, WANG H, CHEN X, FAN W, TIAN K W, WANG Y, CHEN Q, WANG S X, DONG F M, YANG C Y, ZHANG M C, SONG Q J, LI Y G, WANG X L. Glycine max NNL1 restricts symbiotic compatibility with widely distributed bradyrhizobia via root hair infection. Nature Plants, 2021, 7(1): 73-86.
[16]
周相娟. 根瘤菌、 铵态氮、光照强度对大豆固氮和光合作用影响的研究[D]. 北京: 中国科学院研究生院(植物研究所), 2006.
ZHOU X J. Effects of rhizobia, NH4+-fertilizer and light strength on nitrogen fixation and photosynthesis of soybean[D]. Beijing: Chinese Academy of Sciences (Institute of Botany), 2006. (in Chinese)
[17]
ZHOU Z, LAKHSSASSI N, CULLEN M A, EL BAZ A, VUONG T D, NGUYEN H T, MEKSEM K. Assessment of phenotypic variations and correlation among seed composition traits in mutagenized soybean populations. Genes, 2019, 10(12): 975.
[18]
吕晓晨. 氮素营养调控大豆结瘤固氮的生理机制研究[D]. 哈尔滨: 东北农业大学, 2021.
X C. Study on the physiological mechanism of nitrogen nutrition regulating soybean nodulation and nitrogen fixation[D]. Harbin: Northeast Agricultural University, 2021. (in Chinese)
[19]
TEAM R C. R: A language and environment for statistical computing. MSOR Connections, 2014.
[20]
SONG Q J, HYTEN D L, JIA G F, QUIGLEY C V, FICKUS E W, NELSON R L, CREGAN P B. Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS ONE, 2013, 8(1): e54985.
[21]
YIN L L, ZHANG H H, TANG Z S, XU J Y, YIN D, ZHANG Z W, YUAN X H, ZHU M J, ZHAO S H, LIU X L. rMVP: A memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genomics, Proteomics & Bioinformatics, 2021, 19(4): 619-628.
[22]
CAO Y C, JIA S H, CHEN L X, ZENG S N, ZHAO T J, KARIKARI B. Identification of major genomic regions for soybean seed weight by genome-wide association study. Molecular Breeding, 2022, 42(7): 38.
[23]
王象然, 张大勇, 郑伟, 张振宇, 徐杰飞, 赵星棋, 孙长恒, 吴雨恒. 代表性春大豆种质资源叶片蔗糖含量全基因组关联分析. 大豆科学, 2024, 43(1): 13-20.
WANG X R, ZHANG D Y, ZHENG W, ZHANG Z Y, XU J F, ZHAO X Q, SUN C H, WU Y H. Genome-wide association study of sucrose content in leaves of representative spring soybean germplasm resources. Soybean Science, 2024, 43(1): 13-20. (in Chinese)
[24]
JIANG S Y, JARDINAUD M F, GAO J P, PECRIX Y, WEN J Q, MYSORE K, XU P, SANCHEZ-CANIZARES C, RUAN Y T, LI Q, ZHU M J, LI F Y, WANG E T, POOLE P S, GAMAS P, MURRAY J D. NIN-like protein transcription factors regulate leghemoglobin genes in legume nodules. Science, 2021, 374(6567): 625-628.

doi: 10.1126/science.abg5945 pmid: 34709882
[25]
KE X L, XIAO H, PENG Y Q, WANG J, LV Q, WANG X L. Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state. Science, 2022, 378(6623): 971-977.

doi: 10.1126/science.abq8591 pmid: 36454840
[26]
杨珺凯, 沈阳, 才晓溪, 邬升杨, 李建伟, 孙明哲, 贾博为, 孙晓丽. 大豆PHD家族蛋白的全基因组鉴定及表达特征分析. 作物杂志, 2019(3): 55-65.
YANG J K, SHEN Y, CAI X X, WU S Y, LI J W, SUN M Z, JIA B W, SUN X L. Genome-wide identification and expression patterns analysis of the PHD family protein in Glycine max. Crops, 2019(3): 55-65. (in Chinese)
[27]
HAN G L, QIAO Z Q, LI Y X, YANG Z R, WANG C F, ZHANG Y Y, LIU L L, WANG B S. RING zinc finger proteins in plant abiotic stress tolerance. Frontiers in Plant Science, 2022, 13: 877011.
[28]
YAO C P, WU Y Y, NIE H Z, TANG D Z. RPN1a, a 26S proteasome subunit, is required for innate immunity in Arabidopsis. The Plant Journal, 2012, 71(6): 1015-1028.
[29]
ÜSTÜN S, SHEIKH A, GIMENEZ-IBANEZ S, JONES A, NTOUKAKIS V, BÖRNKE F. The proteasome acts as a hub for plant immunity and is targeted by Pseudomonas type III effectors. Plant Physiology, 2016, 172(3): 1941-1958.
[30]
曹绍玉, 王艳芳, 苏婉玉, 张琳, 张应华, 许俊强. 类钙调蛋白在植物生长发育及逆境胁迫中的功能研究进展. 植物生理学报, 2018, 54(10): 1517-1526.
CAO S Y, WANG Y F, SU W Y, ZHANG L, ZHANG Y H, XU J Q. Research progress on functions of calmodulin-like proteins in processes of plant growth and developments and stresses. Plant Physiology Journal, 2018, 54(10): 1517-1526. (in Chinese)
[31]
ZENG H, ZHU Q, YUAN P, YAN Y, YI K, DU L. Calmodulin and calmodulin-like protein-mediated plant responses to biotic stresses. Plant, Cell & Environment, 2023, 46(12): 3680-3703.
[32]
LIU H, LIN J S, LUO Z P, SUN J, HUANG X W, YANG Y, XU J, WANG Y F, ZHANG P, OLDROYD G E D, XIE F. Constitutive activation of a nuclear-localized calcium channel complex in Medicago truncatula. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(34): e2205920119.
[1] ZHAO ZhenJian, WANG Kai, CHEN Dong, SHEN Qi, YU Yang, CUI ShengDi, WANG JunGe, CHEN ZiYang, YU ShiXin, CHEN JiaMiao, WANG XiangFeng, TANG GuoQing. Integrated Aanalysis of Genome and DNA Methylation for Screening Key Genes Related to Pork Quality Traits [J]. Scientia Agricultura Sinica, 2024, 57(7): 1394-1406.
[2] LI YunJing, REN XueZhen, XIAO Fang, JIN Fang, GAO HongFei, JING Qi, WU YuHua, SUN Quan, LI Jun, WANG Pei, ZHAI ShanShan, JIN ShiQiao, WU Gang. Accurate and Rapid Identification of Event Purity for Transgenic Soybean Seeds Based on Duplex Real-Time Fluorescence PCR Method [J]. Scientia Agricultura Sinica, 2024, 57(23): 4698-4711.
[3] WANG Jing, WANG TianShu, WANG Li, ZHOU XinYu, LI TingYu, MENG YiLi, HUANG XinYang, YAO ShuiHong. The Effects of Soil Residual Nitrogen from Wheat Season on Summer Soybean Root Nodules, Root System and Yield [J]. Scientia Agricultura Sinica, 2024, 57(23): 4712-4724.
[4] FENG WenMi, ZHOU FangXue, YU Zhe, MOU KeXin, JING Yan, LI HaiYan. Cloning and Functional Analysis of GmRHF1 Gene Against Soybean Mosaic Virus [J]. Scientia Agricultura Sinica, 2024, 57(23): 4632-4643.
[5] WU ChuanLei, HU XiaoYu, WANG Wei, MIAO Long, BAI PengYu, WANG GuoJi, LI Na, SHU Kuo, QIU LiJuan, WANG XiaoBo. Development and Identification of Molecular Markers for Oil-Related Functional Genes and Polymerization Analysis of Excellent Alleles in Soybean [J]. Scientia Agricultura Sinica, 2024, 57(22): 4402-4415.
[6] DONG KuiJun, ZHANG YiTao, LIU HanWen, ZHANG JiZong, WANG WeiJun, WEN YanChen, LEI QiuLiang, WEN HongDa. Effects of Nitrogen Reduction Application of Summer Maize- Soybean Intercropping on Agronomic Traits and Economic Benefits as well as Its Yield of Subsequent Wheat [J]. Scientia Agricultura Sinica, 2024, 57(22): 4495-4506.
[7] SHAO JiaZhu, LÜ Wen, LIAO XinLin, YUAN XinYu, SONG Zhen, JIANG DongHua. Isolation and Identification of Soybean Rhizosphere Growth-Promoting Bacteria and Their Salt Tolerance and Growth-Promoting Effects [J]. Scientia Agricultura Sinica, 2024, 57(21): 4248-4263.
[8] XIA Yang, HAN GuangJie, LI ChuanMing, LIU Qin, ZHANG Nan, HUANG LiXin, LU YuRong, XU Bin, XU Jian. Survival Adaptability and Damage Potential of Spodoptera frugiperda in the Soybean-Maize Strip Intercropping [J]. Scientia Agricultura Sinica, 2024, 57(20): 4035-4044.
[9] HU XueJie, LIU LuPing, WANG FengMin, HAN YuHua, SUN BinCheng, MA QiBin, HUANG ZhiPing, FENG Yan, CHEN Qiang, YANG ChunYan, ZHANG MengChen, ZHANG Kai, QIN Jun. Construction of ms1 Basic Recurrent Populations Adapted to Different Ecological Regions Using Maturity Genes E1 and E2 in Soybean [J]. Scientia Agricultura Sinica, 2024, 57(17): 3305-3317.
[10] YANG LiDa, PENG XinYue, ZHU WenXue, ZHAO Jing, YUAN XiaoTing, LIN Ping, LUO Kai, LI YiLing, LUO ChunMing, LI YuZe, YANG WenYu, YONG TaiWen. Effects of Straw Returning and Irrigation Methods on Seedling Emergence and Growth in Soybean and Maize Strip Intercropping [J]. Scientia Agricultura Sinica, 2024, 57(17): 3366-3383.
[11] CHEN WenJie, CHEN Yuan, WEI QingYuan, TANG FuYue, GUO XiaoHong, CHEN ShuFang, QIN XiaYan, WEI RongChang, LIANG Jiang. Identification of Candidate Genes Controlling SSCLD by Utilizing High-Generation Segregating Populations RNA-seq [J]. Scientia Agricultura Sinica, 2024, 57(15): 2914-2930.
[12] ZHU ZuoYin, ZHAO HanKe, CHENG HaiSheng, HAN MengYi, QIU Zhi, WANG Jie, ZHOU XinLi, YANG JunHua. Study on Characterization and Interaction Analysis of Co-Contamination of Multi-Mycotoxins in the Flours of Rice, Maize, Soybean and Wheat Flour in Shanghai from 2021 to 2022 [J]. Scientia Agricultura Sinica, 2024, 57(12): 2454-2466.
[13] MIAO Long, SHU Kuo, HU YanJiao, HUANG Ru, HE GenHua, ZHANG WenMing, WANG XiaoBo, QIU LiJuan. Identification and Gene Mapping of Hard Seededness Mutant Mzp661 in Soybean [J]. Scientia Agricultura Sinica, 2024, 57(11): 2065-2078.
[14] ZHANG YuMei, DING WenTao, LAN XinLong, LI QingHua, HU RunFang, GUO Na, LIN GuoQiang, ZHAO JinMing. Genome Wide Association Analysis of Soluble Sugar Content in Fresh Seeds of Soybean Landraces [J]. Scientia Agricultura Sinica, 2024, 57(11): 2079-2091.
[15] MIAO Long, YANG Lei, XU JingHao, LI Na, WANG FeiYu, QIU LiJuan, WANG XiaoBo. Establishment of Evaluation System and Screening of Disease- Resistant Accessions for Phomopsis Seed Decay in Soybean Germination Stage [J]. Scientia Agricultura Sinica, 2024, 57(11): 2092-2101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!