Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (10): 2046-2060.doi: 10.3864/j.issn.0578-1752.2024.10.015

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles    

Identification of Molecular Markers Associated with Body Size Traits Through Genome-Wide Association Analysis in Wenchang Chickens

LUO Na1,2,3(), AN BingXing3, WEI LiMin1,2, WEN Jie3, ZHAO GuiPing1,2,3()   

  1. 1 Sanya Research Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, Hainan
    2 Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100
    3 State Key Laboratory of Animal Nutrition/Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2023-11-27 Accepted:2024-03-14 Online:2024-05-16 Published:2024-05-23
  • Contact: ZHAO GuiPing

Abstract:

【Objective】 Body size traits are the primary indicators for evaluating avian growth characteristics. By selecting molecular markers and candidate genes related to body size traits in Wenchang chickens, this study could provide the theoretical support for deciphering the genetic mechanisms and molecular breeding of body size traits. 【Method】 Three generations of Wenchang chicken lines in Hainan Province (n=2 024) were used in this study. Five body size traits were measured on each chicken at market age, including shank length, shank girth, body slope length, keel length, and chest width. Blood samples were collected for DNA extraction, followed by sequencing and genotyping using the "Jingxin No.1" 55 K chip. Genome-wide association analysis was conducted using GEMMA and PLINK software to identify SNP loci and important candidate genes associated with body size traits. LD analysis was performed to identify haplotypes significantly associated with body size traits. 【Result】 Phenotypic data showed that, at 113 days of age, Wenchang cockerels had average shank length of 8.64 cm, shank girth of 0.46 cm, body slope length of 19.73 cm, keel length of 12.32 cm, and chest width of 6.81 cm. Wenchang hens had average shank length of 6.98 cm, shank girth of 0.40 cm, body slope length of 17.79 cm, keel length of 10.45 cm, and chest width of 6.24 cm. After quality control, 42 206 SNPs and 2 024 individuals were retained for further analysis. PCA analysis using PLINK software revealed some dispersion among the three generations, prompting the inclusion of the top three principal components as covariates in the GWAS analysis to correct for population structure effects. The GWAS results identified 19 SNPs significantly or suggestively associated with shank length (P value=2.17789E-06/4.35578E-05), 23 SNPs associated with shank girth, 7 SNPs associated with body slope length, and 2 SNPs associated with keel length. No SNPs significantly associated with chest width were identified. Annotation of significant loci identified 16 candidate genes related to body size traits, including LDB2, NCAPG, FAM184B, and KCNIP4. LD haplotype analysis revealed 3 significant haplotypes in GGA4, with candidate genes LDB2 and NCAPG annotated in significant block loci. Regarding the shank length trait, two loci, including rs316943436 and rs313978573, were situated within the haplotype block. For shank girth, five loci, namely rs313196946AA, rs316242963, rs315796839, rs313978573, and rs734365522, were located within the haplotype block. In the case of body slope length, only one locus (rs313978573) resides within the haplotype block. 【Conclusion】 Through the GWAS method, those potential candidate genes for shank length, including SEPSECS, LGI2, DHX15, KCNIP4, NCAPG, FAM184B, LDB2, and CC2D2A, were identified. For shank girth, potential candidate genes encompassed FH, TBC1D1, DTHD1, SEPSECS, LGI2, SOD3, PPARGC1A, KCNIP4, NCAPG, FAM184B, CLRN2, LDB2, TAPT1, and CC2D2A. KCNIP4, LDB2, TAPT1, and NRXN3 were identified as potential candidate genes for body slope length, while FAM184B emerged as a potential candidate gene for keel length. In summary, this study established LDB2, NCAPG, and FAM184B as potential functional genes associated with various body size traits, providing the theoretical support for molecular marker-assisted selection in enhancing body performance in Wenchang chickens.

Key words: whole genome association analysis, chicken, body size traits, shank length, tibial circumference

Table 1

Descriptive statistics of body size traits in Wenchang chickens"

体尺
Body size (cm)
性别
Sex
观测数
n
最大值
Max
最小值
Min
平均值
Mean
标准差
SD
变异系数
CV (%)
胫长
Shank length
公Male 1054 9.40 7.50 8.46 0.32 3.82
母Female 958 7.90 6.30 6.98 0.23 3.23
胫围
Shank girth
公Male 1034 0.51 0.40 0.46 0.02 4.14
母Female 961 0.49 0.35 0.40 0.03 6.31
体斜长
Body slope length
公Male 1019 22.80 16.10 19.73 1.29 6.56
母Female 903 20.10 16.40 17.79 0.60 3.37
龙骨长
Keel length
公Male 1012 16.60 9.80 12.32 1.18 9.56
母Female 901 13.10 8.70 10.45 0.62 5.95
胸宽
Chest width
公Male 992 8.85 5.00 6.81 0.68 9.91
母Female 929 8.03 4.40 6.24 0.74 11.80

Fig. 1

Frequency distribution histog ram of body size traits in Wenchang chicken"

Fig. 2

Chromosome density map after genotyping quality control"

Fig. 3

PCA plot after genotyping quality control"

Fig. 4

Q-Q plots and Manhattan plots for genome-wide association analysis of body size traits A,B: Q-Q and Manhattan plots of GWAS results for Shank length; C,D: Q-Q and Manhattan plots of GWAS results for Shank girth; E,F: Q-Q and Manhattan plots of GWAS results for Body slope length; G,H: Q-Q and Manhattan plots of GWAS results for Keel length; I,J: Q-Q and Manhattan plots of GWAS results for Chest width"

Table 2

The candidate SNPs that were significantly associated with body size traits."

表型
Traits
位点
SNP
染色体
Chromosome
位置
Position
等位基因
Genotype
MAF P
P value
解释的表型方差比例
PVE
基因
Gene symbol
胫长
Shank length
4:73548926 4 73548926 C/T 0.442 1.8E-06** 1.16 SEPSECS
4:73571298 4 73571298 A/G 0.142 1.6E-07** 1.40 LGI2
4:73716854 4 73716854 C/G 0.354 1.3E-08** 1.66 DHX15
4:74769982 4 74769982 A/G 0.231 3.6E-05* 0.84 KCNIP4
4:74837421 4 74837421 C/T 0.244 2.3E-06* 1.14 KCNIP4
4:74928910 4 74928910 G/A 0.177 2.7E-05* 0.89 KCNIP4
4:74937196 4 74937196 C/A 0.478 1.5E-09** 1.89 KCNIP4
4:75796627 4 75796627 A/G 0.274 9.2E-06* 0.96 NCAPG
4:75895966 4 75895966 G/C 0.323 1.1E-07** 1.45 NCAPG
4:75966447 4 75966447 G/A 0.376 1.5E-11** 2.36 FAM184B
4:76097204 4 76097204 T/C 0.08 8.6E-08** 1.46 LDB2
4:76149397 4 76149397 A/G 0.213 1.7E-05* 0.94 LDB2
4:76192459 4 76192459 T/A 0.274 1.7E-08** 1.64 LDB2
4:76291739 4 76291739 T/C 0.255 3.3E-05* 0.85 LDB2
4:76694053 4 76694053 C/G 0.211 7.7E-06* 1.02 CC2D2A
胫围
Shank girth
2:85647809 2 85647809 T/C 0.318 1.4E-05* 0.92 FH
4:69709375 4 69709375 G/A 0.261 8.2E-07** 1.19 TBC1D1
4:70178152 4 70178152 T/C 0.478 3.8E-05* 0.88 DTHD1
4:73548926 4 73548926 C/T 0.443 4.0E-08** 1.58 SEPSECS
4:73571298 4 73571298 A/G 0.142 4.7E-06* 1.08 LGI2
4:73665546 4 73665546 A/G 0.447 1.7E-07** 1.44 SOD3
4:73994772 4 73994772 A/G 0.319 3.2E-05* 0.90 PPARGC1A
4:74937196 4 74937196 C/A 0.48 2.9E-09** 1.86 KCNIP4
4:75796627 4 75796627 A/G 0.274 2.5E-08** 1.52 NCAPG
4:75804809 4 75804809 C/T 0.21 4.5E-08** 1.47 NCAPG
4:75966447 4 75966447 G/A 0.378 3.2E-08** 1.60 FAM184B
4:75990543 4 75990543 T/C 0.223 8.1E-06* 1.03 CLRN2
4:76084503 4 76084503 C/T 0.496 1.1E-05* 1.01 LDB2
4:76192459 4 76192459 T/A 0.276 9.5E-08** 1.49 LDB2
4:76201985 4 76201985 T/G 0.25 4.1E-07** 1.26 LDB2
4:76291739 4 76291739 T/C 0.255 1.2E-05* 0.94 LDB2
4:76358568 4 76358568 A/G 0.06 4.5E-07** 1.31 LDB2
4:76473315 4 76473315 C/T 0.36 1.2E-05* 1.00 TAPT1
4:76694053 4 76694053 C/G 0.212 4.1E-05* 0.87 CC2D2A
龙骨长Keel length 4:75966447 4 75966447 G/A 0.374 9.9E-07** 1.36 FAM184B
体斜长Body slope length 4:74769982 4 74769982 A/G 0.232 8.5E-06* 0.97 KCNIP4
4:76192459 4 76192459 T/A 0.275 3.9E-05* 0.95 LDB2
4:76473315 4 76473315 C/T 0.363 1.2E-06** 1.35 TAPT1
5:39848026 5 39848026 C/G 0.069 2.8E-05* 0.95 NRXN3

Fig. 5

Haplotype plot The number in the square represents the D’ value between the two SNPs, and the dark red means high linkage degree"

Fig. 6

Boxplots of body size traits A, B: Box plots of Shank length; C: Box plot of Body slope length; D, E, F, G, H: Box plots of Shank girth"

Table 3

Effects of genotypes of some SNPs on three body size traits of Wenchang chicken"

性状
Traits
位点
Locus
个体数
Number
平均值±标准误(基因型)
Mean±SE(Genotype)
P
P value
胫长
Shank length
rs313196946 1965 77.58±0.67a (AA, n=152) 77.39±0.29a (AG, n=769) 77.67±0.25a (GG, n=1044) 0.770
rs316943436 1965 77.69±0.20a (CC, n=1657) 76.83±0.45b (TC, n=302) 75.00±3.62ab (TT, n=6) 0.043
rs313978573 1965 77.79±0.25a (AA, n=1037) 77.04±0.28b (TA, n=780) 78.58±0.58ab (TT, n=148) 0.028
胫围
Shank girth
rs313196946 1949 43.74±0.27a (AA, n=152) 43.26±0.13ab (AG, n=761) 43.02±0.11b (GG, n=1036) 0.044
rs316242963 1949 44.42±0.36a (CC, n=88) 43.20±0.14b (CT, n=634) 43.06±0.10b (TT, n=1227) 0.002
rs315796839 1949 42.97±0.17a (CC, n=472) 43.04±0.12a (CT, n=986) 43.62±0.16b (TT, n=491) 0.007
rs313978573 1949 43.39±0.11a (AA, n=1023) 42.87±0.13b (TA, n=778) 43.24±0.29ab (TT, n=148) 0.0066
rs734365522 1949 43.02±0.11a (GG, n=1093) 43.27±0.13a (TG, n=749) 44.02±0.34b (TT, n=107) 0.019
体斜长
Body slope length
rs313978573 1877 18.91±0.05a (AA, n=987) 18.65±0.05b (TA, n=746) 18.88±0.12ab (TT, n=144) 0.0017

Fig. 7

GO and KEGG pathway enrichment plots A: GO pathway enrichment plot; B: KEGG pathway enrichment plot"

[1]
LYU S J, ARENDS D, NASSAR M K, WEIGEND A, WEIGEND S, WANG E Y, BROCKMANN G A. High-density genotyping reveals candidate genomic regions for chicken body size in breeds of Asian origin. Poultry Science, 2023, 102(1): 102303.
[2]
GAO Y, DU Z Q, WEI W H, YU X J, DENG X M, FENG C G, FEI J, FENG J D, LI N, HU X X. Mapping quantitative trait loci regulating chicken body composition traits. Animal Genetics, 2009, 40(6): 952-954.

doi: 10.1111/j.1365-2052.2009.01911.x pmid: 19466937
[3]
LIU J, ZHOU J, LI J, BAO H. Identification of candidate genes associated with slaughter traits in F2 chicken population using genome-wide association study. Animal Genetics, 2021, 52(4): 532-535.
[4]
WU C Q, DONG L Y, GAN X T, GAN F B, XU W W, LU L Z. Genome-wide association studies and haplotype sharing analysis targeting the growth traits in Yandang partridge chickens. Animal Biotechnology, 2023, 34(6): 1943-1949.
[5]
GENG A L, ZHANG Y, ZHANG J, ZENG L C, CHANG C, WANG H H, YAN Z X, CHU Q, LIU H G. Effects of light regime on the hatching performance, body development and serum biochemical indexes in Beijing You Chicken. Poultry Science, 2021, 100(8): 101270.
[6]
王秀萍, 顾丽红, 李金明, 惠春晖, 林哲敏. 文昌鸡体尺指标和屠宰性能的相关分析. 安徽农业科学, 2019, 47(22): 91-93.
WANG X P, GU L H, LI J M, HUI C H, LIN Z M. Analysis of correlation between body size indices and slaughtering performance of Wenchang chicken. Journal of Anhui Agricultural Sciences, 2019, 47(22): 91-93. (in Chinese)
[7]
RIZZI R, CEROLINI S, MANTOVANI C, PAGNACCO G, MANGIAGALLI M G, CAVALCHINI L G. Heritabilities and genetic correlations of conformation and plumage characteristics in pheasant (Phasianus colchicus). Poultry Science, 1994, 73(8): 1204-1210.

pmid: 7971661
[8]
LIU R R, XING S Y, WANG J, ZHENG M Q, CUI H X, CROOIJMANS R P M A, LI Q H, ZHAO G P, WEN J. A new chicken 55K SNP genotyping array. BMC Genomics, 2019, 20(1): 410.

doi: 10.1186/s12864-019-5736-8 pmid: 31117951
[9]
PURCELL S, NEALE B, TODD-BROWN K, THOMAS L, FERREIRA M A R, BENDER D, MALLER J, SKLAR P, DE BAKKER P I W, DALY M J, SHAM P C. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 2007, 81(3): 559-575.
[10]
张高猛, 丁纪强, 刘昱宏, 郑麦青, 文杰, 赵桂苹, 李庆贺. 全基因组关联分析揭示白羽肉鸡孵化性状的遗传基础. 畜牧兽医学报, 2023, 54(2): 534-544.
ZHANG G M, DING J Q, LIU Y H, ZHENG M Q, WEN J, ZHAO G P, LI Q H. Genome-wide association study reveals the genetic basis of hatching traits in white-feathered broilers. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 534-544. (in Chinese)
[11]
ZHOU X, STEPHENS M. Genome-wide efficient mixed-model analysis for association studies. Nature Genetics, 2012, 44: 821-824.

doi: 10.1038/ng.2310 pmid: 22706312
[12]
杨欣婷, 郑麦青, 谭晓冬, 赵桂苹, 黄超, 李森, 李韦, 文杰, 刘冉冉. 快大型黄羽肉鸡肉品质性状的遗传参数估计和关键基因挖掘. 畜牧兽医学报, 2021, 52(9): 2416-2428.
YANG X T, ZHENG M Q, TAN X D, ZHAO G P, HUANG C, LI S, LI W, WEN J, LIU R R. Genetic parameters estimation and key genes identification for meat quality traits of fast-growing yellow-feather meat-type chickens. Acta Veterinaria et Zootechnica Sinica, 2021, 52(9): 2416-2428. (in Chinese)
[13]
AULCHENKO Y S, RIPKE S, ISAACS A, VAN DUIJN C M. GenABEL: an R library for genome-wide association analysis. Bioinformatics, 2007, 23(10): 1294-1296.

doi: 10.1093/bioinformatics/btm108 pmid: 17384015
[14]
SHIM H, CHASMAN D I, SMITH J D, MORA S, RIDKER P M, NICKERSON D A, KRAUSS R M, STEPHENS M. A multivariate genome-wide association analysis of 10 LDL subfractions, and their response to statin treatment, in 1868 caucasians. PLoS ONE, 2015, 10(4): e0120758.
[15]
YIN L L, ZHANG H H, TANG Z S, XU J Y, YIN D, ZHANG Z W, YUAN X H, ZHU M J, ZHAO S H, LI X Y, LIU X L. rMVP: a memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genomics, Proteomics & Bioinformatics, 2021, 19(4): 619-628.
[16]
PRICE A L, PATTERSON N J, PLENGE R M, WEINBLATT M E, SHADICK N A, REICH D. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 2006, 38: 904-909.

doi: 10.1038/ng1847 pmid: 16862161
[17]
李东海, 张力, 李益彬, 李昂. 丝羽乌骨鸡体尺性状与屠宰性能的相关性分析. 中国家禽, 2015, 37(19): 54-56.
LI D H, ZHANG L, LI Y B, LI A. Correlation analysis between body size and slaughter performance of silky fowl. China Poultry, 2015, 37(19): 54-56. (in Chinese)
[18]
王秀娟, 高翰, 李海鹏, 高雪, 孙宝忠, 程强, 徐磊, 张亚朋, 雷元华, 魏萌, 李三禄, 胡俊伟, 张长庆, 高会江, 李俊雅, 张路培, 陈燕. 平凉红牛生长性能、胴体及肉质性状分析. 中国农业科学, 2023, 56(03): 559-71. doi: 10.3864/j.issn.0578-1752.2023.03.013.
WANG X J, GAO H, LI H P, GAO X, SUN B Z, CHENG Q, XU L, ZHANG Y P, LEI Y H, WEI M, LI S L, HU J W, ZHANG C Q, GAO H J, LI J Y, ZHANG L P, CHEN Y. Analysis of Growth Performance as well as Carcass and Meat Quality Traits in Pingliang Red Cattle. Scientia Agricultura Sinica, 2023, 56(03): 559-71. doi: 10.3864/j.issn.0578-1752.2023.03.013. (in Chinese)
[19]
杨秀荣, 邹乐勤, 孙甜甜, 杨祝良, 徐文文, 曾令湖, 肖聪, 邱庆庆, 贾银海, 袁翔, 姜建萍, 王娟, 蒋和生, 邓继贤. 霞烟鸡体尺性状与屠宰性状的测定及相关性分析. 黑龙江畜牧兽医, 2020(6): 32-36.
YANG X R, ZOU L Q, SUN T T, YANG Z L, XU W W, ZENG L H, XIAO C, QIU Q Q, JIA Y H, YUAN X, JIANG J P, WANG J, JIANG H S, DENG J X. Determination and correlation analysis of body size traits and slaughter traits of Xiayan chicken. Heilongjiang Animal Science and Veterinary Medicine, 2020(6): 32-36. (in Chinese)
[20]
李正田, 刘丽仙, 佟荟全, 荣华, 豆腾飞, 李琦华, 葛长荣, 贾俊静, 谷大海. 茶花鸡体尺性状和屠宰性能的测定及相关性分析. 中国家禽, 2016, 38(2): 47-49.
LI Z T, LIU L X, TONG H Q, RONG H, DOU T F, LI Q H, GE C R, JIA J J, GU D H. Determination and correlation analysis of body size and slaughter performance of Camellia chicken. China Poultry, 2016, 38(2): 47-49. (in Chinese)
[21]
符舍谢, 羊宣科, 刘易均, 李博, 陈将, 吴科榜. 儋州鸡体重和体尺性状的测定与分析. 黑龙江畜牧兽医, 2016(17): 122-124, 127.
FU S X, YANG X K, LIU Y J, LI B, CHEN J, WU K B. Determination and analysis of weight and body size of Danzhou chicken. Heilongjiang Animal Science and Veterinary Medicine, 2016(17): 122-124, 127. (in Chinese)
[22]
王润莲, 张锐, 陈亚轩, 王喜红, 米雁, 江新生, 杜炳旺. 贵妃鸡体尺性状及骨骼特性分析. 中国家禽, 2012, 34(23): 60-61, 64.
WANG R L, ZHANG R, CHEN Y X, WANG X H, MI Y, JIANG X S, DU B W. Analysis of body size and skeleton characteristics of Guifei chicken. China Poultry, 2012, 34(23): 60-61, 64. (in Chinese)
[23]
刘嘉, 樊莹, 苗小猛, 张立, 杜林, 黎恒铭, 代国滔. 百宜黑鸡体尺性状与屠宰性能的相关性及多元回归分析. 贵州畜牧兽医, 2023, 47(1): 20-24.
LIU J, FAN Y, MIAO X M, ZHANG L, DU L, LI H M, DAI G T. Correlation and multiple regression analysis between body size and slaughter performance of Baiyi black chicken. Guizhou Journal of Animal Husbandry & Veterinary Medicine, 2023, 47(1): 20-24. (in Chinese)
[24]
孙艳发, 吴琼, 林如龙, 陈红萍, 甘秋云, 沈玥, 王亚茹, 薛鹏飞, 陈飞帆, 刘健涛, 周陈鑫, 兰诗诗, 潘浩哲, 邓凡, 岳稳, 江宵兵, 李焰. 龙岩山麻鸭蛋品质性状的全基因组关联研究. 中国农业科学, 2023, 56(3): 572-586. doi: 10.3864/j.issn.0578-1752.2023.03.014.
SUN Y F, WU Q, LIN R L, CHEN H P, GAN Q Y, SHEN Y, WANG Y R, XUE P F, CHEN F F, LIU J T, ZHOU C X, LAN S S, PAN H Z, DENG F, YUE W, JIANG X B, LI Y. Genome-wide association study of egg quality traits in Longyan Shan-ma duck. Scientia Agricultura Sinica, 2023, 56(3): 572-586. doi: 10.3864/j.issn.0578-1752.2023.03.014. (in Chinese)
[25]
张涛, 樊庆灿, 张向前, 张跟喜, 王金玉, 顾玉萍. 京海黄鸡体组成性状的全基因组关联分析. 畜牧兽医学报, 2015, 49(9): 1502-1514.
ZHANG T, FAN Q C, ZHANG X Q, ZHANG G X, WANG J Y, GU Y P. Genome-wide association study of body composition traits of Jinghai Yellow Chicken. Acta Veterinaria et Zootechnica Sinica, 2015, 49(9): 1502-1514. (in Chinese)
[26]
XIE L, LUO C L, ZHANG C G, ZHANG R, TANG J, NIE Q H, MA L, HU X X, LI N, DA Y, ZHANG X Q. Genome-wide association study identified a narrow chromosome 1 region associated with chicken growth traits. PLoS One, 2012, 7(2): e30910.
[27]
LIU R R, SUN Y F, ZHAO G P, WANG F J, WU D, ZHENG M Q, CHEN J L, ZHANG L, HU Y D, WEN J. Genome-wide association study identifies loci and candidate genes for body composition and meat quality traits in Beijing-you chickens. PLoS ONE, 2013, 8(4): e61172.
[28]
LI J L, LI H X, GAO X J, ZHANG J L, LI S, XU S W, TANG Z X. Priority in selenium homeostasis involves regulation of SepSecS transcription in the chicken brain. PLoS One, 2012, 7(4): e35761.
[29]
XU K, YANG Y, FENG G H, SUN B F, CHEN J Q, LI Y F, CHEN Y S, ZHANG X X, WANG C X, JIANG L Y, LIU C, ZHANG Z Y, WANG X J, ZHOU Q, YANG Y G, LI W. Mettl3-mediated m6A regulates spermatogonial differentiation and meiosis initiation. Cell Research, 2017, 27(9): 1100-1114.
[30]
SARAVANAN K A, PANIGRAHI M, KUMAR H, PARIDA S, BHUSHAN B, GAUR G K, DUTT T, MISHRA B P, SINGH R K. Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds. Genomics, 2021, 113(3): 955-963.

doi: 10.1016/j.ygeno.2021.02.009 pmid: 33610795
[31]
LINDHOLM-PERRY A K, SEXTEN A K, KUEHN L A, SMITH T P, KING D A, SHACKELFORD S D, WHEELER T L, FERRELL C L, JENKINS T G, SNELLING W M, FREETLY H C. Association, effects and validation of polymorphisms within the NCAPG - LCORL locus located on BTA6 with feed intake, gain, meat and carcass traits in beef cattle. BMC Genetics, 2011, 12(1): 103.
[32]
杨智娟. SH2B1TBC1D1基因多态性与家兔生长性状以及部分屠宰和肉质性状的关联分析[D]. 雅安: 四川农业大学, 2014.
YANG Z J. Polymorphisms of SH2B1 and TBC1D1 genes and association with growth traits, section of carcass and meat quality traits in rabbit[D]. Yaan: Sichuan Agricultural University, 2014. (in Chinese)
[33]
彭星. 鸡TBC1D1基因的SNPs及其与屠宰性状的关联性研究[D]. 四川: 四川农业大学, 2014.
PENG X. SNPs of chicken TBC1D1 gene and its association with slaughtering traits. Sichuan: Sichuan Agricultural University, 2014. (in Chinese)
[45]
JIANG H Z, YANG D Z, MA Z H, XUN W J, SHI L G, HOU G Y. Genome-wide association study of body size traits in Danzhou chickens. China Animal Husbandry & Veterinary Medicine, 2022, 49(2): 598-607. (in Chinese)
姜宏正, 杨德智, 马中华, 荀文娟, 施力光, 侯冠彧. 儋州鸡体尺性状全基因组关联分析. 中国畜牧兽医, 2022, 49(2): 598-607.

doi: 10.16431/j.cnki.1671-7236.2022.02.021
[44]
SETOGUCHI K, WATANABE T, WEIKARD R, ALBRECHT E, KÜHN C, KINOSHITA A, SUGIMOTO Y, TAKASUGA A. The SNP c.1326T>G in the non-SMC condensin I complex, subunit G (NCAPG) gene encoding a p.Ile442Met variant is associated with an increase in body frame size at puberty in cattle. Animal Genetics, 2011, 42(6): 650-655.
[43]
PAUSCH H, FLISIKOWSKI K, JUNG S, EMMERLING R, EDEL C, GÖTZ K U, FRIES R. Genome-wide association study identifies two major loci affecting calving ease and growth-related traits in cattle. Genetics, 2011, 187(1): 289-297.

doi: 10.1534/genetics.110.124057 pmid: 21059885
[42]
WU D. Genome-wide associaiton study of loci affecting body weight and carcass traits in Beijing-you chicken[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. doi: 10.3864/j.issn.0578- 1752.2022.11.013. (in Chinese)
吴丹. 北京油鸡体重和屠体性状的全基因组关联研究[D]. 北京: 中国农业科学院, 2012. doi: 10.3864/j.issn.0578- 1752.2022.11.013.
[41]
LIANG P, ZHANG T W, MENG K, SHAO S C, ZOU S F, RONG X, QIANG H, FENG D Z. Association analysis of the ADIPOQ variation with sheep growth traits. Scientia Agricultura Sinica, 2022, 55(11): 2239-2256. doi: 10.3864/j.issn.0578-1752.2022.11.013. (in Chinese)
梁鹏, 张天闻, 孟科, 邵顺成, 邹诗凡, 荣轩, 强浩, 冯登侦. 绵羊ADIPOQ多态性与生长性状的关联分析. 中国农业科学, 2022, 55(11): 2239-2256. doi: 10.3864/j.issn.0578-1752.2022.11.013.
[40]
PÉRTILLE F, ZANELLA R, FELÍCIO A M, LEDUR M C, PEIXOTO J O, COUTINHO L L. Identification of polymorphisms associated with production traits on chicken (Gallus gallus) chromosome 4. Genetics and Molecular Research, 2015, 14(3): 10717-10728.

doi: 10.4238/2015.September.9.11 pmid: 26400301
[39]
ARMSTRONG E, CIAPPESONI G, IRIARTE W, DA SILVA C, MACEDO F, NAVAJAS E A, BRITO G, SAN JULIÁN R, GIMENO D, POSTIGLIONI A. Novel genetic polymorphisms associated with carcass traits in grazing Texel sheep. Meat Science, 2018, 145: 202-208.

doi: S0309-1740(17)31256-1 pmid: 29982074
[38]
LEE J S, KIM J M, HONG J S, LIM K S, HONG K C, LEE Y S. Effects of polymorphisms in the 3’ untranslated region of the porcine PPARGC1A gene on muscle fiber characteristics and meat quality traits. Molecular Biology Reports, 2012, 39(4): 3943-3950.
[37]
LI Q G, WANG Z X, ZHANG B, LU Y F, YANG Y Z, BAN D M, WU C X, ZHANG H. Single nucleotide polymorphism scanning and expression of the pig PPARGC1A gene in different breeds. Lipids, 2014, 49(10): 1047-1055.
[36]
REVILLA M, RAMAYO-CALDAS Y, CASTELLÓ A, COROMINAS J, PUIG-OLIVERAS A, IBÁÑEZ-ESCRICHE N, MUÑOZ M, BALLESTER M, FOLCH J M. New insight into the SSC8 genetic determination of fatty acid composition in pigs. Genetics Selection Evolution, 2014, 46(1): 28.
[35]
PENA R N, NOGUERA J L, CASELLAS J, DÍAZ I, FERNÁNDEZ A I, FOLCH J M, IBÁÑEZ-ESCRICHE N. Transcriptional analysis of intramuscular fatty acid composition in the longissimus thoracis muscle of Iberian × Landrace back-crossed pigs. Animal Genetics, 2013, 44(6): 648-660.
[34]
HUANG T Y, ZHENG D H, HOUMARD J A, BRAULT J J, HICKNER R C, CORTRIGHT R N. Overexpression of PGC-1α increases peroxisomal activity and mitochondrial fatty acid oxidation in human primary myotubes. American Journal of Physiology- Endocrinology and Metabolism, 2017, 312(4): E253-E263.
[1] MA JingE, XIONG XinWei, ZHOU Min, WU SiQi, HAN Tian, RAO YouSheng, WANG ZhangFeng, XU JiGuo. Full-Length Transcriptomic Analysis of Chicken Pituitary Reveals Candidate Genes for Testicular Trait [J]. Scientia Agricultura Sinica, 2024, 57(20): 4130-4144.
[2] WEI QiHang, FENG Yao, WANG XiaoXing, ZHU HongGang, FANG Zhao, LI ZhaoJun. Screening of Deodorizing Bacteria and Its Application in Composting [J]. Scientia Agricultura Sinica, 2024, 57(13): 2623-2634.
[3] LI Kai, BAI GuoSong, TENG ChunRan, MA Teng, ZHONG RuQing, CHEN Liang, ZHANG HongFu. Prediction Equations of Chicken Metabolizable Energy Values for Grain Ingredients Based on in Vitro Simulated Enzymatic Hydrolysate Gross Energy Values and Chemical Composition [J]. Scientia Agricultura Sinica, 2024, 57(10): 2035-2045.
[4] JI GaiGe, CHEN ZhiWu, SHAN YanJu, LIU YiFan, TU YunJie, ZOU JianMin, ZHANG Ming, JU XiaoJun, SHU JingTing, ZHANG HaiTao, TANG YanFei, JIANG HuaLian. Study of Key Genes and Signaling Pathways Regulating Dry Feather Traits in Yellow-Feathered Broiler Chickens Based on Transcriptome Analysis [J]. Scientia Agricultura Sinica, 2024, 57(1): 204-215.
[5] JU XiaoJun, ZHANG Ming, SHAN YanJu, JI GaiGe, TU YunJie, LIU YiFan, ZOU JianMin, SHU JingTing. Chicken Quality Analysis and Screening of Key Flavor Substances and Genes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1813-1826.
[6] XIAO Tao, LI Hui, LUO Wei, YE Tao, YU Huan, CHEN YouBo, SHI YuShi, ZHAO DePeng, WU Yun. Screening of Candidate Genes for Green Shell Egg Shell Color Traits in Chishui Black Bone Chicken Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2023, 56(8): 1594-1605.
[7] GUO YuChen, DONG Ming, ZENG XianMing, TIAN HuiXin, YIN JiaQi, HOU YuKe, BAI Yun, TANG ChangBo, HAN MinYi, XU XingLian. Effects of Pulsed Electric Field on Gelation Properties of PSE-Like Chicken Myosin: A Molecular Dynamics Simulation Analysis [J]. Scientia Agricultura Sinica, 2023, 56(4): 741-753.
[8] XI MengXue, SHEN Dan, SHI YiFan, LI ChunMei. Effects of TBHQ on Pyroptosis, Necroptosis and Inflammatory Damage of Chicken Embryonic Lung Tissues Induced by PM2.5 from Chicken Houses [J]. Scientia Agricultura Sinica, 2023, 56(4): 779-787.
[9] CHEN Qiu, HUANG JingJing, WANG ZhePeng. Establishment of Quantization Method and Genetic Basis Analysis of Brown Eggshell Color in the Lüeyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2023, 56(17): 3452-3460.
[10] WU YuCan, ZHANG ZiHan, ZHAO GuiPing, WEI LiMin, HUANG Feng, ZHANG ChunHui. Effect of Boiling Coconut Water on Flavor Formation of Wenchang Chicken [J]. Scientia Agricultura Sinica, 2023, 56(16): 3199-3212.
[11] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[12] ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968.
[13] TU YunJie,JI GaiGe,ZHANG Ming,LIU YiFan,JU XiaoJun,SHAN YanJu,ZOU JianMin,LI Hua,CHEN ZhiWu,SHU JingTing. Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken [J]. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780.
[14] HUANG XunHe,WENG ZhuoXian,LI WeiNa,WANG Qing,HE DanLin,LUO Wei,ZHANG XiQuan,DU BingWang. Genetic Diversity of Indigenous Yellow-Feathered Chickens in Southern China Inferred from Mitochondrial DNA D-Loop Region [J]. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538.
[15] WANG ZhePeng,ZHOU WenXin,HE JunXi,HU QiaoYan,ZHAO JiaYue. Association of Levels of Cholecystokinin A Receptor Expression and Sequence Variants with Feed Conversion Efficiency of Lueyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2022, 55(22): 4539-4549.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!