Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (4): 765-778.doi: 10.3864/j.issn.0578-1752.2024.04.011

• HORTICULTURE • Previous Articles     Next Articles

Observation of Flower Bud Differentiation Process and Fitting of Flower Growth Model of Passion Fruit

TIAN QingLan(), ZHOU JunNiu, WU YanYan, LIU JieYun, HUANG WeiHua, ZHANG YingJun, XIE WenLian, WEI GuangTan, MOU HaiFei()   

  1. Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007
  • Received:2023-07-07 Accepted:2023-11-30 Online:2024-02-20 Published:2024-02-20
  • Contact: MOU HaiFei

Abstract:

【Objective】 This study aimed to elucidate the flower bud differentiation process in the primary passion fruit (Passiflora edulis) varieties within Southern China’s ecological region. Additionally, it sought to establish a flower growth model depicting the morphological differentiation of passion fruit flower buds, so as to serve as a reference for promoting and retenting passion fruit flowers.【Method】Tainong No. 1 (TN) as the predominant cultivar of the purple fruit variety, and Zhuangmi 05 (also known as Zhuangxiangmibao, MB) as the main cultivar of the yellow fruit variety in Guangxi, China, were utilized as experimental materials. The scanning electron microscopy and paraffin section dissection were employed to observe flower bud differentiation process in these varieties. The differentiation process of nodes below the shoot apical meristem, and measured the first bract length of flower buds, leaf length, and tendril length at each node were observed too. The 7th node below the shoot apical meristem was marked as the initial marker node, and this marked the onset of the first bract differentiation phase of the flower bud. The flower bud differentiation from 0 to 16 days after marking were investigated, as well as the dynamic changes in five flower morphological indicators, such as the length of the first bract and bud from marking to flowering were tracked, for facilitating the construction of a flower growth model.【Result】The primary process of flower bud differentiation in the tested passion fruit varieties encompassed first bract formation stage, additional bract formation stage, sepal formation stage, petal formation stage, stamen formation stage, pistil formation stage, corona formation stage, etc. The duration from first bract formation to pistil formation spanned 10-12 days, with TN exhibiting 1-2 day advancement over MB. Pistil formation emerged as a vital marker for successful passion fruit flower bud development, characterized by a 3-4 mm first bract length. The duration from first bract formation to flowering ranged between 36-44 days, with TN progressing 3-4 days earlier than MB. Tendril differentiation was visible at the 4th-5th nodes below the shoot apical meristem, flower primordium differentiation at the 6th node, appearing alongside the tendril, first bract differentiation at the 7th node, vegetative meristem appearing at the 9th node, which were positioned separately on the inner side of the tendril and flower bud, axillary vegetative shoot formation at the 10th-11th nodes, and pistil primordium differentiation at the 14th-15th nodes. The non-linear regression fitting of a Logistic model in Origin software was performed for the first bract length, width, pedicle length, flower bud length, length of flower bud and pedicle along with days after making for both MB and TN, and the results showed the determination coefficient R2 ranged from 0.9524 to 0.9988, and the normalized root mean square error (nRMSE) was between 8.54% to 19.62%, indicating a good fit of the model equation. Based on the model parameters and actual observations, the length of bract entered a rapid growth period 11-12 days after marking (i.e. after the first bract formation stage) and stabilized 24-26 days after marking. Subsequently, the pedicels and sepals grew rapidly, with the sepals surpassing the bracts length, and the total length of the flower bud and pedicel entered a rapid growth phase 24-25 days after marking, blooming after reaching maximum growth at 41-42 days after marking.【Conclusion】The flower buds of passion fruit were closely associated with tendrils, and independent of nutritional buds. The flower bud differentiation and morphological differentiation of passion fruit could be divided into three stages: the first bract formation period to the pistil formation period, lasting 10-12 days; the bract growth period, lasting 12-14 days; and the flower buds and pedicels growth period, lasting 15-17 days. In actual production of passion fruit, the flowering time could be predicted using the flower growth model, and the flower bud differentiation process could be assessed using morphological indicators, such as bract length, which provided a reference basis for promoting flowering and promoting flowers.

Key words: passion fruit, flower bud differentiation, flower growth model, morphological differentiation

Fig. 1

Initial mark nodes for Tainong No. 1 (left) and Zhuangmi 05 (right) The magnification of the large image is 6.7×, the scale is 2 mm; the magnification of the small image is 45×, the scale is 0.5 mm"

Fig. 2

Electron microscopic scanning observation of the flower bud differentiation process of Zhuangmi 05 (A1-O1) and Tainong No. 1 (A2-N2) Zhuangmi 05 (MB): A1, B1: Shoot apical meristem; C1: Tendril meristem; D1: Tendrils and flower bud formation; E1: First bract formation stage; F1, G1: 2nd and 3rd bract formation stages, respectively; H1: Sepal primordium differentiation stage; I1: Sepal formation stage; J1: Petal primordial differentiation stage; K1: Stamen formation stage and gynoecium primordium differentiation stage; L1: Gynoecium formation stage; M1, N1: Development of stamens and gynoecia, respectively; O1: Corona differentiation stage. Tainong No. 1(TN): A2, B2: Shoot apical meristem; C2: Tendril meristem and flower bud primordium differentiation stage; D2, E2, F2: The first and additional bracts formation stages; G2: Sepal formation stage; H2: Petal primordial differentiation stage; I2: Stamen primordial differentiation stage; J2, K2: Stamen formation stage and pistil primordial differentiation stage; L2: Development of stamens and gynoecia; M2: Stigma and style differentiation stages; N2: Corona differentiation stage. l: Leaf; ls: Stipule; SAM: Shoot apical meristem; tm: Tendril meristem; f: Flower; t: Tendril; b1: The frist bract; b2, b3: The two additional bract; s: Sepal; p: Petal; st: Stamen; g: Gynoecium; c: Corona; stg: Stigma; sty: Style; c: Corona"

Fig. 3

Anatomical observation on flower bud differentiation of passion fruit (take Zhuangmi 05 for example) A: shoot apical meristem (SAM), tendrils differentiation stage; B: Bract primordium differentiation stage; C: First bract differentiation stage; D: Extra bract differentiation stage; E: Sepal primordium differentiation stage; F: Sepal differentiation stage; G: Petal primordial differentiation stage; H: Petal differentiation stage, stamen primordium differentiation stage; I: Stamen differentiation stage; J: gynoecium differentiation stage. l: leaf, f: Flower, t: Tendri, b: Bract, b1: The frist bract, b2: The additional bract, s: Sepal, p: Petal, st: Stigma, g: Gynoecium. The A-j magnification is 200× and the scale is 100 µm"

Fig. 4

Scanning electron microscopy observation of stem tips of Zhuangmi 05 (A) and Tainong No. 1 (B) Vm: Vegetative meristem; Avs: Axillary vegetative shoot. The numerical values in parentheses indicate the order of nodes below the stem tip"

Table 1

Description of differentiation process of different nodes under the stem tip of passion fruit"

节位顺序
Order of nodes
分化进程
Differentiation process
品种
Variety
参考指标描述 Reference indicator description
叶长
Leaf length (mm)
卷须长
Tendrils length (mm)
第一苞片长
First bract length (mm)
第1节位 The first node 茎尖顶端分生组织 Shoot apical meristem MB、TN
第2节位 The second node 叶原基分化 Leaf primordial differentiation MB、TN
第3节位 The third node 托叶分化 Stipule differentiation MB、TN
第4-5节位
The 4th-5th node
卷须分化及发育
Tendrils differentiation and development
MB、TN
第6节位
The 6th node
花原基形成
Flower primordium formation
MB 0.71±0.14
TN 1.02±0.01
第7节位 The 7th node (初始标记节位) (Initial mark node) 第一苞片分化
The first bract differentiation
MB 1.22±0.20 0.20±0.04 0.20±0.05
TN 1.24±0.25 0.20±0.03 0.14±0.03
第8节位
The 8th node
额外苞片分化及发育
Additional bract differentiation and development
MB 1.58±0.17 0.39±0.08 0.37±0.03
TN 1.67±0.08 0.36±0.05 0.28±0.03
第9节位
The 9th node
出现腋生营养分生组织
Vegetative meristem appeared
MB 2.09±0.61 0.80±0.07 0.55±0.07
TN 2.36±0.03 0.53±0.01 0.44±0.01
第10节位
The 10th node
萼片原基分化、腋芽发育Sepal primordium differentiation, axillary vegetative shoot development MB 4.08±0.56 1.43±0.58 0.82±0.14
TN 2.72±0.31 0.80±0.08 0.76±0.12
第11节位
The 11th node
萼片分化 Sepal differentiation MB 6.82±1.35 2.97±0.95 1.41±0.49
萼片分化、萼片形成
Sepal differentiation, sepal formation
TN 6.83±1.09 3.15±0.91 1.35±0.27
第12节位
The 12th node
萼片形成 Sepal formation MB 10.91±2.09 6.13±2.18 1.84±0.30
萼片形成、花瓣原基分化
Sepal formation, petal primordium differentiation
TN 9.85±1.05 5.19±1.02 1.82±0.10
第13节位
The 13th node
花瓣原基分化 petal primordium differentiation MB 18.29±3.89 15.66±7.04 2.22±0.50
雄蕊原基分化 Stamen primordium differentiation TN 14.98±3.21 9.94±2.44 2.53±0.57
第14节位
The 14th node
雄蕊原基分化 Stamen primordium differentiation MB 29.69±3.62 35.94±12.83 2.63±0.55
雌蕊原基分化 Pistil primordium differentiation TN 20.73±3.55 18.31±2.81 3.23±0.37
第15节位 The 15th node 雌蕊原基分化 Pistil primordium differentiation MB 43.91±3.23 78.78±19.37 3.64±0.33

Fig. 5

Longitudinal observation of flower buds of Zhuangmi 05 and Tainong No. 1 at 0-16 days after marking 0 d magnification 200×, scale 100 µm; 2-6 d magnification 100×, scale 200 µm; 8-16 d magnification of 40×, scale 500 µm"

Fig. 6

Flower morphology of Zhuangmi 05 and Tainong No. 1 4 to 40 days after marking"

Fig. 7

Flower growth curves of Zhuangmi 05 and Tainong No. 1"

Table 2

Fitting of logistic growth model of flower organs of passion fruit"

指标
Index
品种
Variety
生长上限a
Upper limit of growth
基础状态参数b
Basic state parameter
增长速率系数k
Growth rate coefficient
R2 F
F value
P
P value
nRMSE (%)
第一苞片长度
Length of first bract
MB 16.18±0. 92 37.49±4.80 0.209±0.014 0.9876 468.69 <0.0001 12.94
TN 16.93±0.83 33.63±3.05 0.183±0.009 0.9875 444.53 <0.0001 8.54
第一苞片宽度
Width of first bract
MB 10.31±0.15 105.19±9.34 0.300±0.019 0.9972 2012.42 <0.0001 12.48
TN 12.94±0.36 60.16±4.25 0.214±0.006 0.9988 29124.47 <0.0001 10.05
花梗长
Length of pedicel
MB 41.51±14.11 111.90±27.96 0.120±0.016 0.9486 108.61 <0.0001 19.36
TN 57.85±13.70 281.26±63.89 0.161±0.011 0.9745 172.17 <0.0001 17.27
花蕾长
Length of flower bud
MB 89.84±28.70 170.10±52.54 0.130±0.007 0.9524 122.83 <0.0001 16.38
TN 79.93±19.92 138.28±32.98 0.133±0.007 0.9722 191.94 <0.0001 13.32
花蕾和花梗总长
Length of flower bud and pedicel
MB 87.51±17.30 168.82±35.79 0.157±0.010 0.9557 130.16 <0.0001 19.62
TN 114.36±22.23 205.95±40.43 0.160±0.006 0.9689 169.11 <0.0001 8.24

Table 3

Logistic model characteristic parameters of flower organ growth changing with time after marking"

指标
Index
品种
Variety
V1
(mm∙d-1)
t1
(d)
t2
(d)
t3
(d)
V2
(mm∙d-1)
第一苞片长度
Length of first bract
MB 0.845 17.34 11.04 23.64 0.0096
TN 0.776 19.18 11.99 26.36 0.0074
第一苞片宽度
Width of first bract
MB 0.772 15.53 11.14 19.93 0.0197
TN 0.693 19.12 12.97 25.26 0.0101
花梗长
Length of pedicel
MB 1.241 39.45 28.44 50.46 0.0031
TN 2.324 35.09 26.90 43.28 0.0057
花蕾长
Length of flower bud
MB 2.926 39.43 29.32 49.55 0.0037
TN 2.656 37.09 27.18 47.00 0.0039
花蕾和花梗总长
Length of flower bud and pedicel
MB 3.431 32.70 24.30 41.10 0.0054
TN 4.566 33.36 25.11 41.60 0.0056
[1]
中国科学院中国植物志编辑委员会.中国植物志第52(1)卷. 北京: 科学出版社, 1999: 113.
Sinicae Agendae Academiae Sinicae Edita. Flora reipublicae Popularis Sinicae. Volume 52(1). Beijing: Science Press, 1999: 113. (in Chinese)
[2]
田青兰, 吴艳艳, 黄伟华, 刘洁云, 韦绍龙, 牟海飞, 韦弟, 黄永才, 熊晓兰, 张英俊. ‘台农1号’西番莲的成花坐果特性及与气象因子的关系. 果树学报, 2020, 37(9): 1358-1370.
TIAN Q L, WU Y Y, HUANG W H, LIU J Y, WEI S L, MOU H F, WEI D, HUANG Y C, XIONG X L, ZHANG Y J. Flower formation and fruit setting in ‘Tainong No.1’ passion fruit and its relationship with meteorological factors. Journal of Fruit Science, 2020, 37(9): 1358-1370. (in Chinese)
[3]
秦志聪, 朱继生, 冯钊, 陈永孝. 桂林不良气候对百香果坐果的影响及其应对措施. 南方园艺, 2017, 28(2): 28-30.
QIN Z C, ZHU J S, FENG Z, CHEN Y X. Influence of bad climate in Guilin on fruit setting of passion fruit and its countermeasures. Southern Horticulture, 2017, 28(2): 28-30. (in Chinese)
[4]
林秋金, 苏金强, 王美盛, 史国强, 武英, 李丽蓉, 牛先前. 气象因子对百香果坐果率的影响研究初报. 福建热作科技, 2019, 44(3): 18-21.
LIN Q J, SU J Q, WANG M S, SHI G Q, WU Y, LI L R, NIU X Q. A preliminery report on passion fruit fertile percentage influenced by meteorology factor. Fujian Science & Technology of Tropical Crops, 2019, 44(3): 18-21. (in Chinese)
[5]
马月萍, 戴思兰. 植物花芽分化机理研究进展. 分子植物育种, 2003, 1(4): 539-545.
MA Y P, DAI S L. Flower bud differentiation mechanism of anthophyta. Molecular Plant Breeding, 2003, 1(4): 539-545. (in Chinese)
[6]
张育森, 郑正勇. 百香果开花习性之研究. 中国园艺, 1988, 34(4): 271-282.
ZHANG Y S, ZHENG Z Y. On the flowering habits of passionfruits. Journal of Chinese Society for Horticutural Science, 1988, 34(4): 271-282. (in Chinese)
[7]
武春昊, 王强, 卢明艳, 闫兴凯, 刘明鹤, 张茂君. ‘单花’梨花芽特性及其形态分化过程研究. 园艺学报, 2019, 46(7): 1373-1378.

doi: 10.16420/j.issn.0513-353x.2018-0828
WU C H, WANG Q, LU M Y, YAN X K, LIU M H, ZHANG M J. Study on characteristics and floral bud development of flower bud in ‘Danhua’ pear. Acta Horticulturae Sinica, 2019, 46(7): 1373-1378. (in Chinese)
[8]
ISHIHATA K, SHINDO T, IWAHORI S. Flower-bud differentiation and development in purple passion fruit, Passiflora edulis Sims. Bulletin of the Faculty of Agriculture, Kagoshima University, 1989(39): 103-119.
[9]
徐苏. 作物生长模型的研究进展. 安徽农学通报, 2023, 29(4): 26-32.
XU S. Research progress of crop growth model. Anhui Agricultural Science Bulletin, 2023, 29(4): 26-32. (in Chinese)
[10]
陈杨, 王磊, 白由路, 卢艳丽, 倪露, 王玉红, 徐孟泽. 有效积温与不同氮磷钾处理夏玉米株高和叶面积指数定量化关系. 中国农业科学, 2021, 54(22): 4761-4777. doi: 10.3864/j.issn.0578-1752.2021. 22.005.
CHEN Y, WANG L, BAI Y L, LU Y L, NI L, WANG Y H, XU M Z. Quantitative relationship between effective accumulated temperature and plant height & leaf area index of summer maize under different nitrogen, phosphorus and potassium levels. Scientia Agricultura Sinica, 2021, 54(22): 4761-4777. doi: 10.3864/j.issn.0578-1752.2021.22.005. (in Chinese)
[11]
马二磊, 黄芸萍, 臧全宇, 丁伟红, 王毓洪. 甜瓜植株和果实生长模型的拟合与分析. 南方农业学报, 2018, 49(7): 1358-1363.
MA E L, HUANG Y P, ZANG Q Y, DING W H, WANG Y H. Growth model fitting and analysis of melon plant and fruit. Journal of Southern Agriculture, 2018, 49(7): 1358-1363. (in Chinese)
[12]
石国朝. 冬枣花生长发育模型研究[D]. 杨凌: 西北农林科技大学, 2022.
SHI G Z. Development and growth model of flowers in Ziziphus Jujuba ‘Dongzao’[D]. Yangling: Northwest A & F University, 2022. (in Chinese)
[13]
BANNAYAN M, HOOGENBOOM G. Using pattern recognition for estimating cultivar coefficients of a crop simulation model. Field Crops Research, 2009, 111(3): 290-302.

doi: 10.1016/j.fcr.2009.01.007
[14]
NAVE N, KATZ E, CHAYUT N, GAZIT S, SAMACH A. Flower development in the passion fruit Passiflora edulis requires a photoperiod-induced systemic graft-transmissible signal. Plant, Cell & Environment, 2010, 33(12): 2065-2083.
[15]
罗惠格, 朱维, 黄泳碧, 陈潇, 林玲, 白扬, 曹雄军, 白先进, 张唯, 王博. 阳光玫瑰葡萄生长期花芽分化形态进程及相关生理分子水平变化研究. 果树学报, 2023, 40(1): 74-87.
LUO H G, ZHU W, HUANG Y B, CHEN X, LIN L, BAI Y, CAO X J, BAI X J, ZHANG W, WANG B. A study on the morphological process and physiological and molecular changes of flower bud differentiation in Shine Muscat grape during fruit growing season. Journal of Fruit Science, 2023, 40(1): 74-87. (in Chinese)
[16]
王博, 罗惠格, 覃富强, 陈祥飞, 朱维, 谢太理, 曹雄军, 白先进. 葡萄花芽分化研究进展. 南方农业学报, 2023, 54(3): 957-968.
WANG B, LUO H G, QIN F Q, CHEN X F, ZHU W, XIE T L, CAO X J, BAI X J. Research progress of grape flower bud differentiation. Journal of Southern Agriculture, 2023, 54(3): 957-968. (in Chinese)
[17]
贾楠. 葡萄花芽分化及其主要影响因素的研究进展. 河北果树, 2020(1): 1-3.
JIA N. Review on grape floral bud differentiation and its major influencing factors. Hebei Fruits, 2020(1): 1-3. (in Chinese)
[18]
陈厚彬, 苏钻贤, 张荣, 张红娜, 丁峰, 周碧燕. 荔枝花芽分化研究进展. 中国农业科学, 2014, 47(9): 1774-1783. doi: 10.3864/j.issn. 0578-1752.2014.09.012.
CHEN H B, SU Z X, ZHANG R, ZHANG H N, DING F, ZHOU B Y. Progresses in research of Litchi floral differentiation. Scientia Agricultura Sinica, 2014, 47(9): 1774-1783. doi: 10.3864/j.issn.0578- 1752.2014.09.012. (in Chinese)
[19]
陈厚彬, 欧良喜, 李建国, 苏钻贤, 杨胜男, 吴振先, 胡卓炎. 新中国果树科学研究70年: 荔枝. 果树学报, 2019, 36(10): 1399-1413.
CHEN H B, OU L X, LI J G, SU Z X, YANG S N, WU Z X, HU Z Y. Fruit scientific research in New China in the past 70 years: Litchi. Journal of Fruit Science, 2019, 36(10): 1399-1413. (in Chinese)
[20]
黄辉白, 陈厚彬. 以阶段观剖视荔枝的花芽分化. 果树学报, 2003, 20(6): 487-492.
HUANG H B, CHEN H B. A phasic approach towards the floral formation in Litchi chinensis sonn. Journal of Fruit Science, 2003, 20(6): 487-492. (in Chinese)
[21]
肖哲元, 雷宏军, 张振华, 张倩, 金翠翠, 孙克平. 基于Logistic模型的加气灌溉辣椒生长特性和产量研究. 灌溉排水学报, 2022, 41(7): 16-23.
XIAO Z Y, LEI H J, ZHANG Z H, ZHANG Q, JIN C C, SUN K P. Modelling growth and yield of aerated pepper by the Logistic model. Journal of Irrigation and Drainage, 2022, 41(7): 16-23. (in Chinese)
[22]
雷涛, 郭向红, 毕远杰, 吕棚棚, 马娟娟, 孙西欢, 张勇, 雷震. 基于Logistic模型的番茄生长特性研究. 节水灌溉, 2020(10): 10-14.
LEI T, GUO X H, BI Y J, P P, MA J J, SUN X H, ZHANG Y, LEI Z. Study on tomato growth characteristics based on logistic model. Water Saving Irrigation, 2020(10): 10-14. (in Chinese)
[23]
朱海军, 生静雅, 刘广勤, 陈亚辉, 曹福亮. 基于Logistic模型的薄壳山核桃果实生长发育研究. 西南农业学报, 2015, 28(3): 1231-1235.
ZHU H J, SHENG J Y, LIU G Q, CHEN Y H, CAO F L. Study on growth and development of pecan fruit based on logistic model. Southwest China Journal of Agricultural Sciences, 2015, 28(3): 1231-1235. (in Chinese)
[24]
徐臣善, 徐爱红, 高东升, 程述汉. 苹果果实生长的数学模型及各生长指标间的相关性分析. 植物科学学报, 2015, 33(1): 72-80.
XU C S, XU A H, GAO D S, CHENG S H. Mathematical model of apple fruit growth and correlation analysis among growth indices. Plant Science Journal, 2015, 33(1): 72-80. (in Chinese)
[25]
王全九, 刘云鹤, 苏李君. 基于单参数Logistic的典型作物相对叶面积指数模型研究. 农业机械学报, 2020, 51(7): 210-219.
WANG Q J, LIU Y H, SU L J. Relative leaf area index of typical crops based on single parameter logistic model. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(7): 210-219. (in Chinese)
[26]
赵坤, 柳平增, 张泽, 张艳, 马峰. 基于Logistic模型的设施番茄生长过程数字化研究. 中国农机化学报, 2023, 44(9): 72-78.
ZHAO K, LIU P Z, ZHANG Z, ZHANG Y, MA F. Digital research on growth process of facility tomato based on Logistic model. Journal of Chinese Agricultural Mechanization, 2023, 44(9): 72-78. (in Chinese)

doi: 10.13733/j.jcam.issn.2095-5553.2023.09.011
[27]
张继红, 刘云鹤, 王全九, 苏李君, 郭毅, 王康. 典型作物Logistic模型生长参数空间分布及其地区水热相关性. 干旱地区农业研究, 2021, 39(5): 199-209.
ZHANG J H, LIU Y H, WANG Q J, SU L J, GUO Y, WANG K. Typical crops’ spatial variability of Logistic model parameters and its correlation with regional water and heat. Agricultural Research in the Arid Areas, 2021, 39(5): 199-209. (in Chinese)
[28]
刘振洋, 吴鑫雨, 汤利, 郑毅, 李海叶, 潘浩男, 朱东宇, 王静静, 黄少欣, 覃潇敏, 肖靖秀. 小麦蚕豆间作体系氮素吸收累积动态及其种间氮素竞争关系. 植物营养与肥料学报, 2020, 26(7): 1284-1294.
LIU Z Y, WU X Y, TANG L, ZHENG Y, LI H Y, PAN H N, ZHU D Y, WANG J J, HUANG S X, QIN X M, XIAO J X. Dynamics of N acquisition and accumulation and its interspecific N competition in a wheat-faba bean intercropping system. Journal of Plant Nutrition and Fertilizers, 2020, 26(7): 1284-1294. (in Chinese)
[29]
凌瑞, 董钠, 刘惠斌, 郑泽新, 翟俊文, 吴沙沙. 应用Logistic方程测定八个绣球品种的耐热性. 北方园艺, 2021(11): 63-69.
LING R, DONG N, LIU H B, ZHENG Z X, ZHAI J W, WU S S. Heat resistance of eight cultivars of Hydrangea macrophyllaby logistic equation. Northern Horticulture, 2021(11): 63-69. (in Chinese)
[30]
李进, 顾绘, 殷琳毅. 6个草莓品种高温半致死温度与耐热性评价. 中国果树, 2021(1): 56-58.
LI J, GU H, YIN L Y. Evaluation of heat tolerance and high semi-lethal temperature of six strawberry cultivars. China Fruits, 2021(1): 56-58. (in Chinese)
[31]
程陈, 冯利平, 薛庆禹, 李春, 宫志宏, 董朝阳, 伍露, 王春雷, 刘淑梅, 李奕卓, 黎贞发. 日光温室黄瓜生长发育模拟模型. 应用生态学报, 2019, 30(10): 3491-3500.

doi: 10.13287/j.1001-9332.201910.020
CHENG C, FENG L P, XUE Q Y, LI C, GONG Z H, DONG C Y, WU L, WANG C L, LIU S M, LI Y Z, LI Z F. Simulation model for cucumber growth and development in sunlight greenhouse. Chinese Journal of Applied Ecology, 2019, 30(10): 3491-3500. (in Chinese)
[1] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[2] DU Qing,CHEN Ping,LIU ShanShan,LUO Kai,ZHENG BenChuan,YANG Huan,HE Shun,YANG WenYu,YONG TaiWen. Effect of Field Microclimate on the Difference of Soybean Flower Morphology Under Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2021, 54(13): 2746-2758.
[3] XIE LiXue, ZHANG XiaoYan, ZHENG Shan, ZHANG LiJie, LI Tao. Molecular identification and specific detection of Telosma mosaic virus infecting passion fruit [J]. Scientia Agricultura Sinica, 2017, 50(24): 4725-4734.
[4] WANG Hai-bo, ZHAO Jun-quan, WANG Xiao-di, SHI Xiang-bin, WANG Bao-liang, ZHENG Xiao-cui, LIU Feng-zhi. The Influence of Changes of Endogenous Hormones in Shoot on the Grapes Flower Bud Differentiation in Greenhouse [J]. Scientia Agricultura Sinica, 2014, 47(23): 4695-4705.
[5] SUN Xia, WANG Xiu-Feng, ZHENG Cheng-Shu, XING Shi-Yan, SHU Huai-Rui. The cDNA Cloning and Analysis of Sequence Information and Quantitative Express of Chrysanthemum Rhythms Clock Output Gene CmGI (GIGANTEA) [J]. Scientia Agricultura Sinica, 2012, 45(13): 2690-2703.
[6] . Effects of Growth Age on Flower Bud Differentiation and Quality of Cut Chrysanthemum ‘Jinba’ [J]. Scientia Agricultura Sinica, 2008, 41(6): 1755-1760 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!