Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (3): 500-513.doi: 10.3864/j.issn.0578-1752.2024.03.006

• PLANT PROTECTION • Previous Articles     Next Articles

Stability and Mechanism of Wheat Straw Fermentation Products of Chaetomium globosum Against Phytophthora capsici

LIAO HongJuan1(), TAN JiaSi1, ZHANG ZhiBin1, YU JingRong1, ZHANG XinYue1, JIANG YuMei1(), ZHU Du1,2()   

  1. 1 College of Life Sciences, Jiangxi Normal University/Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Nanchang 330022
    2 College of Life Sciences, Jiangxi Science and Technology Normal University/Key Laboratory of Bioprocess Engineering of Jiangxi Province, Nanchang 330013
  • Received:2023-09-24 Accepted:2023-10-25 Online:2024-02-01 Published:2024-02-05

Abstract:

【Objective】Crop blight caused by Phytophthora capsici has caused huge economic losses to crop industries such as pepper. The aim of this paper is to explore the inhibition stability and mechanism against P. capsici by metabolites of Chaetomium globosum, and to provide references for the research and development of microbial fungistatic agents for the inhibition of P. capsici.【Method】To investigate the thermal, acid-base, light and time stability of the crude extract against P. capsic, the crude extracts were treated at different temperatures (40-121 ℃), pH (1-13), light times (0-12 d) and storage times (0-60 d), and the inhibition rate of crude extracts against P. capsici after different treatments was determined by mycelial growth inhibition method. The effect of the crude extract on the mycelia morphology of P. capsici was observed by optical microscopy. The effects of the crude extract on cell wall, cell membrane, active oxygen metabolism, protein content, reducing sugar content and pathogenicity of P. capsici after being treated with P. capsici for 12-72 h were investigated by various physiological and biochemical experiments.【Result】Within the treatment range set in this experiment, the inhibition rate of the crude extract (1 mg·mL-1) against P. capsici did not decrease significantly after treatment with different light times and storage times, and the inhibition rate remained at about 93%. The inhibition rate of crude extract against P. capsici did not decrease significantly in the heat treatment range of 40-70 ℃, while the heat treatment above 70 ℃ significantly reduced the inhibition rate, but the inhibition rate was not less than 70%. The inhibition rate of crude extract against P. capsici was significantly reduced in the acid-base treatment range of pH 1-5 and pH 9-13, but the inhibition rate was also not less than 70%. The treatment of crude extract affected the morphology of P. capsici mycelia, caused severe distortion and shrinkage of mycelia, and also affected the metabolism of active oxygen species, resulting in large accumulation of active oxygen species in mycelia. The alkaline phosphatase activity, β-glucosidase activity, nucleic acid and protein contents in culture medium of P. capsici were significantly increased after being treated with crude extract for 12-72 h, and the contents of malondialdehyde and hydrogen peroxide in P. capsici mycelia were significantly increased. Catalase activity and the contents of soluble protein and reducing sugar in the mycelia of P. capsici were significantly decreased within 12 to 72 h after the crude extract treatment, but the activities of superoxide dismutase, peroxidase, polygalacturonase and β-glucosidase were significantly decreased only for a certain time.【Conclusion】In the treatment range set in this experiment, the inhibition effect of the crude extract of C. globosum wheat straw fermentation is not affected by the light and storage time, but the heat treatment of more than 70 ℃ and the pH treatment of 1-5 and 9-13 significantly reduce the inhibition effect of the crude extract against P. capsici. In addition, the crude extract inhibits P. capsici by changing the morphology of mycelia, damaging cell walls and membranes, causing intracellular material leakage, reducing the contents of protein and reducing sugar in mycelia, inhibiting the activity of antioxidant enzymes, interfering the metabolism of reactive oxygen species and causing a large accumulation of reactive oxygen species.

Key words: Chaetomium globosum, Phytophthora capsici, inhibition rate, inhibition mechanism, inhibitory stability

Fig. 1

The stability of crude extract against P. capsici Different lowercase letters on the bars indicated significantly different among treatments at P<0.05 level"

Fig. 2

Optical microscope observations of the mycelia morphology of P. capsici under crude extract treatment"

Fig. 3

Effect of crude extract on extracellular alkaline phosphatase activity of P. capsici"

Fig. 4

Effects of crude extract on extracellular β-galactosidase activity and malondialdehyde content in mycelia of P. capsici"

Fig. 5

Effects of crude extract on nucleic acid and protein released from P. capsici"

Fig. 6

Effects of crude extract on contents of soluble protein and reducing sugar in the mycelia of P. capsici"

Fig. 7

Effects of crude extract on antioxidant enzymes activity and hydrogen peroxide content in the mycelia of P. capsici"

Fig. 8

Fluorescence microscopy observation of reactive oxygen species accumulation in the mycelia of P. capsici treated with crude extract"

Fig. 9

Effects of crude extract on polygalacturonase activity and β-glucosidase activity of P. capsici"

[1]
廖宏娟, 张志斌, 江玉梅, 朱笃. 微生物次级代谢产物抗辣椒疫霉的研究进展. 天然产物研究与开发, 2023, 35(4): 705-721.
LIAO H J, ZHANG Z B, JIANG Y M, ZHU D. Research progress of microbial secondary metabolites against Phytophthora capsici. Natural Product Research and Development, 2023, 35(4): 705-721. (in Chinese)
[2]
LAMOUR K H, STAM R, JUPE J, HUITEMA E. The oomycete broad-host-range pathogen Phytophthora capsici. Molecular Plant Pathology, 2012, 13(4): 329-337.

doi: 10.1111/mpp.2012.13.issue-4
[3]
MATHERON M, PORCHAS M. Effectiveness of nine different fungicides for management of crown and root rot of chile pepper plants caused by Phytophthora capsici. Plant Health Progress, 2015, 16: 218-222.

doi: 10.1094/PHP-RS-15-0028
[4]
LI Q, AI G, SHEN D, ZOU F, WANG J, BAI T, CHEN Y, LI S, ZHANG M, JING M, DOU D. A Phytophthora capsici effector targets ACD11 binding partners that regulate ROS-mediated defense response in Arabidopsis. Molecular Plant, 2019, 12(4): 565-581.

doi: 10.1016/j.molp.2019.01.018
[5]
WANG Y, SUN Y, ZHANG Y, ZHANG X, FENG J. Antifungal activity and biochemical response of cuminic acid against Phytophthora capsici Leonian. Molecules, 2016, 21(6): 756.

doi: 10.3390/molecules21060756
[6]
FERNANDEZ-ORTUNO D, TORES J A, CHAMORRO M, PEREZ-GARCIA A, VICENTE A. Characterization of resistance to six chemical classes of site-specific fungicides registered for gray mold control on strawberry in Spain. Plant Disease, 2016, 100(11): 2234-2239.

doi: 10.1094/PDIS-03-16-0280-RE
[7]
MATSON M E, SMALL I M, FRY W E, JUDELSON H S. Metalaxyl resistance in Phytophthora infestans: Assessing role of RPA190 gene and diversity within clonal lineages. Phytopathology, 2015, 105(12): 1594-1600.

doi: 10.1094/PHYTO-05-15-0129-R
[8]
BOCQUET L, RIVIERE C, DERMONT C, SAMAILLIE J, HILBERT J L, HALAMA P, SIAH A, SAHPAZ S. Antifungal activity of hop extracts and compounds against the wheat pathogen Zymoseptoria tritici. Industrial Crops and Products, 2018, 122: 290-297.

doi: 10.1016/j.indcrop.2018.05.061
[9]
PAWASKAR M, KERKAR S. Microbial biocontrol agents against chilli plant pathogens over synthetic pesticides: A review. Proceedings of the Indian National Science Academy, 2021, 87(4): 578-594.
[10]
廖宏娟, 张志斌, 江玉梅, 朱笃. 球毛壳菌对植物病原真菌和根结线虫的生物防治潜力. 天然产物研究与开发, 2022, 34(6): 1076-1089.
LIAO H J, ZHANG Z B, JIANG Y M, ZHU D. Biocontrol potential of Chaetomium globosum against plant pathogenic fungi and root-knot nematodes: A review. Natural Product Research and Development, 2022, 34(6): 1076-1089. (in Chinese)
[11]
BURKHARDT A, DAY B. A genomics perspective on cucurbit- oomycete interactions. Plant Biotechnology, 2013, 30(3): 265-271.

doi: 10.5511/plantbiotechnology.13.0315a
[12]
GRANKE L L, QUESADA-OCAMPO L, LAMOUR K, HAUSBECK M K. Advances in research on Phytophthora capsici on vegetable crops in the United States. Plant Disease, 2012, 96(11): 1588-1600.

doi: 10.1094/PDIS-02-12-0211-FE
[13]
KAMOUN S, FURZER O, JONES J D G, JUDELSON H S, ALI G S, DALIO R J D, ROY S G, SCHENA L, ZAMBOUNIS A, PANABIERES F, et al. The Top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology, 2015, 16(4): 413-434.

doi: 10.1111/mpp.12190 pmid: 25178392
[14]
梁海林, 童志武, 朱笃. 球毛壳菌次级代谢产物及其生物活性研究进展. 天然产物研究与开发, 2018, 30(4): 609, 702-707.
LIANG H L, TONG Z W, ZHU D. Secondary metabolites from Chaetomiun globosum and their bioactivities. Natural Product Research and Development, 2018, 30(4): 609, 702-707. (in Chinese)
[15]
徐国波, 张青艳, 周孟. 毛壳属真菌的次生代谢产物及其生物活性研究进展. 天然产物研究与开发, 2018, 30(3): 515-525.
XU G B, ZHANG Q Y, ZHOU M. Review on the secondary metabolites and its biological activities from Chaetomium fungi. Natural Product Research and Development, 2018, 30(3): 515-525. (in Chinese)
[16]
PARK J H, CHOI G J, JANG K S, LIM H K, KIM H T, CHO K Y, KIM J C. Antifungal activity against plant pathogenic fungi of chaetoviridins isolated from Chaetomium globosum. FEMS Microbiology Letters, 2005, 252(2): 309-313.

doi: 10.1016/j.femsle.2005.09.013
[17]
YAN W, CAO L L, ZHANG Y Y, ZHAO R, ZHAO S S, KHAN B, YE Y H. New metabolites from endophytic fungus Chaetomium globosum CDW7. Molecules, 2018, 23(11): 2873.

doi: 10.3390/molecules23112873
[18]
ZHANG Y, ZHU H Q, YE Y H, TANG C M. Antifungal activity of chaetoviridin A from Chaetomium globosum CEF-082 metabolites against Verticillium dahliae in cotton. Molecular Plant-Microbe Interactions, 2021, 34(7): 758-769.

doi: 10.1094/MPMI-02-21-0032-R
[19]
XIAO Y, LI H X, LI C, WANG J X, LI J, WANG M H, YE Y H. Antifungal screening of endophytic fungi from Ginkgo biloba for discovery of potent anti-phytopathogenic fungicides. FEMS Microbiology Letters, 2013, 339(2): 130-136.

doi: 10.1111/fml.2013.339.issue-2
[20]
MONDOL M A M, FARTHOUSE J, ISLAM M T, SCHUFFLER A, LAATSCH H. A new lactone from Chaetomium globosum strain M65 that inhibits the motility of zoospores. Natural Product Communications, 2016, 11(12): 1865-1868.
[21]
张春珍, 石丹姝, 张文波, 席雪冬, 于志国. 伯氏致病杆菌SN269发酵液中madumycin Ⅱ的分离与纯化. 农药学学报, 2016, 18(6): 783-786.
ZHANG C Z, SHI D S, ZHANG W B, XI X D, YU Z G. Isolation and purification of madumycin Ⅱ from fermented broth of Xenorhabdus bovienii SN269. Chinese Journal of Pesticide Science, 2016, 18(6): 783-786. (in Chinese)
[22]
韩云飞, 他永全, 王勇, 冯俊涛, 王永红. 致病杆菌属细菌代谢物抑菌活性研究进展. 农药学学报, 2022, 24(2): 217-231.
HAN Y F, TA Y Q, WANG Y, FENG J T, WANG Y H. Advances in antimicrobial substances from genus Xenorhabdus. Chinese Journal of Pesticide Science, 2022, 24(2): 217-231. (in Chinese)
[23]
JUNG B K, HONG S J, PARK G S, KIM M C, SHIN J H. Isolation of Burkholderia cepacia JBK9 with plant growth-promoting activity while producing pyrrolnitrin antagonistic to plant fungal diseases. Applied Biological Chemistry, 2018, 61(2): 173-180.

doi: 10.1007/s13765-018-0345-9
[24]
PAWAR S, CHAUDHARI A, PRABHA R, SHUKLA R, SINGH D P. Microbial pyrrolnitrin: Natural metabolite with immense practical utility. Biomolecules, 2019, 9(9): 443.

doi: 10.3390/biom9090443
[25]
LEE S H, CHO Y E, PARK S H, BALARAJU K, PARK J W, LEE S W, PARK K. An antibiotic fusaricidin: A cyclic depsipeptide from Paenibacillus polymyxa E681 induces systemic resistance against phytophthora blight of red-pepper. Phytoparasitica, 2013, 41(1): 49-58.

doi: 10.1007/s12600-012-0263-z
[26]
郭赛赛, 张敬泽. 多粘类芽孢杆菌及其脂肽化合物研究进展. 农药学学报, 2019, 21(5/6): 787-798.
GUO S S, ZHANG J Z. Research progress of Paenibacillus polymyxa and its lipopeptide compounds. Chinese Journal of Pesticide Science, 2019, 21(5/6): 787-798. (in Chinese)
[27]
廖宏娟, 江玉梅, 冶霞, 张志斌, 马童雨, 朱笃. 球毛壳菌固态发酵产抗植物病原真菌活性物质的工艺优化. 中国农业科学, 2023, 56(11): 2106-2117. doi: 10.3864/j.issn.0578-1752.2023.11.006.
LIAO H J, JIANG Y M, YE X, ZHANG Z B, MA T Y, ZHU D. Optimization of solid state fermentation for production of active substances against plant pathogenic fungi from Chaetomium globosum. Scientia Agricultura Sinica, 2023, 56(11): 2106-2117. doi: 10.3864/j.issn.0578-1752.2023.11.006. (in Chinese)
[28]
PAN F, LIU Z Q, CHEN Q, XU Y W, HOU K, WU W. Endophytic fungus strain 28 isolated from Houttuynia cordata possesses wide-spectrum antifungal activity. Brazilian Journal of Microbiology, 2016, 47(2): 480-488.

doi: 10.1016/j.bjm.2016.01.006
[29]
王轶楠, 赵特, 高飞, 段鹏飞, 刘向阳, 周琳. 山苍子精油对辣椒疫霉生长发育的影响及对辣椒疫病的防效. 植物保护学报, 2018, 45(5): 1112-1120.
WANG Y N, ZHAO T, GAO F, DUAN P F, LIU X Y, ZHOU L. Effects of Litsea cubeba essential oils on the growth and development of oomycete pathogen Phytophthora capsici and pepper blight. Journal of Plant Protection, 2018, 45(5): 1112-1120. (in Chinese)
[30]
田立鹏, 万强贵, 王婷, 李春爱, 蔡梦, 蒲陆梅. 油橄榄叶提取物对Botrytis cinerea抑菌效果与机理研究. 核农学报, 2023, 37(2): 329-337.

doi: 10.11869/j.issn.1000-8551.2023.02.0329
TIAN L P, WAN Q G, WANG T, LI C A, CAI M, PU L M. Study on antibacterial effect and mechanism of olive leaf extract on Botrytis cinerea. Journal of Nuclear Agricultural Sciences, 2023, 37(2): 329-337. (in Chinese)
[31]
蒋大程, 高珊, 高海伦, 邱念伟. 考马斯亮蓝法测定蛋白质含量中的细节问题. 实验科学与技术, 2018, 16(4): 143-147.
JIANG D C, GAO S, GAO H L, QIU N W. The details of protein content determination by coomassie brilliant blue staining. Experiment Science and Technology, 2018, 16(4): 143-147. (in Chinese)
[32]
DIAO W R, HU Q P, ZHANG H, XU J G. Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill). Food Control, 2014, 35(1): 109-116.

doi: 10.1016/j.foodcont.2013.06.056
[33]
PAN X, XU S, WU J, LUO J, DUAN Y, WANG J, ZHANG F, ZHOU M. Screening and characterization of Xanthomonas oryzae pv. oryzae strains with resistance to pheazine-1-carboxylic acid. Pesticide Biochemistry and Physiology, 2018, 145: 8-14.

doi: 10.1016/j.pestbp.2017.12.003
[34]
TANG X, OUYANG Q L, JING G X, SHAO X F, TAO N G. Antifungal mechanism of sodium dehydroacetate against Geotrichum citri-aurantii. World Journal of Microbiology and Biotechnology, 2018, 34(2): 29.

doi: 10.1007/s11274-018-2413-z
[35]
WANG Z C, XUE R H, CUI J W, WANG J P, FAN W H, ZHANG H R, ZHAN X B. Antibacterial activity of a polysaccharide produced from Chaetomium globosum CGMCC 6882. International Journal of Biological Macromolecules, 2019, 125: 376-382.

doi: 10.1016/j.ijbiomac.2018.11.248
[36]
KONG W W, HUANG C Y, CHEN Q, ZOU Y J, ZHANG J X. Nitric oxide alleviates heat stress induced oxidative damage in Pleurotus eryngii var. tuoliensis. Fungal Genetics and Biology, 2012, 49(1): 15-20.

doi: 10.1016/j.fgb.2011.12.003
[37]
WANG B, LIU F, LI Q, XU S, ZHAO X, XUE P, FENG X. Antifungal activity of zedoary turmeric oil against Phytophthora capsici through damaging cell membrane. Pesticide Biochemistry and Physiology, 2019, 159: 59-67.

doi: 10.1016/j.pestbp.2019.05.014
[38]
YANG J J, WANG Q Z, LI L W, LI P R, YIN M, XU S, CHEN Y, FENG X, WANG B. Chemical composition and antifungal activity of Zanthoxylum armatum fruit essential oil against Phytophthora capsici. Molecules, 2022, 27(23): 8636.

doi: 10.3390/molecules27238636
[39]
杨康, 陈健, 辛爱景, 蔡金霞, 石志琦, 杨立飞. 麝香草酚抑制灰霉菌的作用机理: PAO-H2O2系统. 应用生态学报, 2020, 31(7): 2441-2448.

doi: 10.13287/j.1001-9332.202007.031
YANG K, CHEN J, XIN A J, CAI J X, SHI Z Q, YANG L F. Mechanism of thymol inhibiting Botrytis cinerea: PAO-H2O2 system. Chinese Journal of Applied Ecology, 2020, 31(7): 2441-2448. (in Chinese)

doi: 10.13287/j.1001-9332.202007.031
[40]
李萍, 张茜茹, 吴亚, 高智谋. 辣椒疫霉多聚半乳糖醛酸酶活性对其致病力的影响. 安徽农业科学, 2015, 43(19): 111-113, 167.
LI P, ZHANG Q R, WU Y, GAO Z M. Effect of activities of polygalacturonase on pathogenicity in Phytophthora capsici. Journal of Anhui Agricultural Sciences, 2015, 43(19): 111-113, 167. (in Chinese)
[41]
XIA Y, YANG L R, XIA L M. High-level production of a fungal β-glucosidase with application potentials in the cost-effective production of Trichoderma reesei cellulase. Process Biochemistry, 2018, 70: 55-60.

doi: 10.1016/j.procbio.2018.03.031
[42]
GLARE T, CARADUS J, GELERNTER W, JACKSON T, KEYHANI N, KOHL J, MARRONE P, MORIN L, STEWART A. Have biopesticides come of age? Trends in Biotechnology, 2012, 30(5): 250-258.

doi: 10.1016/j.tibtech.2012.01.003 pmid: 22336383
[43]
ZHAO S S, ZHANG Y Y, YAN W, CAO L L, XIAO Y, YE Y H. Chaetomium globosum CDW7, a potential biological control strain and its antifungal metabolites. FEMS Microbiology Letters, 2017, 364(3): fnw287.
[44]
BALAMAYOORAN G, BATRA S, FESSLER M B, HAPPEL K I, JEYASEELAN S. Mechanisms of neutrophil accumulation in the lungs against bacteria. American Journal of Respiratory Cell and Molecular Biology, 2010, 43(1): 5-16.

doi: 10.1165/rcmb.2009-0047TR pmid: 19738160
[45]
王荣波, 陈姝樽, 肖小露, 李本金, 刘裴清, 石茗月, 陈庆河, 翁启勇. 枯草芽胞杆菌BS193对辣椒疫霉的拮抗作用及其相关生防因子检测. 农业生物技术学报, 2022, 30(4): 772-782.
WANG R B, CHEN S Z, XIAO X L, LI B J, LIU P Q, SHI M Y, CHEN Q H, WENG Q Y. Antagonistic activity and related biocontrol factors detection of Bacillus subtilis BS193 on Phytophthora capsici. Journal of Agricultural Biotechnology, 2022, 30(4): 772-782. (in Chinese)
[46]
INGLIS G D, KAWCHUK L M. Comparative degradation of oomycete, ascomycete, and basidiomycete cell walls by mycoparasitic and biocontrol fungi. Canadian Journal of Microbiology, 2002, 48(1): 60-70.

pmid: 11888164
[47]
LIU Z H, YANG Q, HU S, ZHANG J D, MA J. Cloning and characterization of a novel chitinase gene (chi46) from Chaetomium globosum and identification of its biological activity. Applied Microbiology and Biotechnology, 2008, 80(2): 241-252.

doi: 10.1007/s00253-008-1543-x
[48]
WANG Z C, ZHU J F, LI W T, LI R F, WANG X Q, QIAO H Z, SUN Q, ZHANG H R. Antibacterial mechanism of the polysaccharide produced by Chaetomium globosum CGMCC 6882 against Staphylococcus aureus. International Journal of Biological Macromolecules, 2020, 159: 231-235.

doi: 10.1016/j.ijbiomac.2020.04.269
[49]
ZHOU T T, YANG X F, QIU D W, ZENG H M. Inhibitory effects of xenocoumacin 1 on the different stages of Phytophthora capsici and its control effect on phytophthora blight of pepper. Biological Control, 2017, 62: 151-160.
[50]
CHEN Y Y, CHEN P C, TSAY T T. The biocontrol efficacy and antibiotic activity of Streptomyces plicatus on the oomycete Phytophthora capsici. BioControl, 2016, 98: 34-42.
[51]
GAO Y M, WANG X J, ZHANG J, LI M, LIU C X, AN J, JIANG L, XIANG W S. Borrelidin, a potent antifungal agent: Insight into the antifungal mechanism against Phytophthora sojae. Journal of Agricultural and Food Chemistry, 2012, 60: 9874-9881.

doi: 10.1021/jf302857x
[52]
LI Y, ZHANG W, NIU J F, CHEN Y S. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano, 2012, 6(6): 5164-5173.

doi: 10.1021/nn300934k pmid: 22587225
[53]
HUANG T, HOLDEN J A, HEATH D E, O'BRIEN-SIMPSON N M, O’CONNOR A J. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale, 2019, 11(31): 14937-14951.

doi: 10.1039/c9nr04424h pmid: 31363721
[54]
STANCILL J S, BRONIOWSKA K A, OLESON B J, NAATZ A, CORBETT J A. Pancreatic β-cells detoxify H2O2 through the peroxiredoxin/thioredoxin antioxidant system. Journal of Biological Chemistry, 2019, 294(13): 4843-4853.

doi: 10.1074/jbc.RA118.006219
[55]
ESTRADA B, AROCA R, BAREA J M, RUIZ-LOZANO J M. Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Science, 2013, 201/202: 42-51.

doi: 10.1016/j.plantsci.2012.11.009
[56]
AHMAD P, ABDEL LATEF A A, HASHEM A, ABD ALLAH E F, GUCEL S, TRAN L S P. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Frontiers in Plant Science, 2016, 7: 347.

doi: 10.3389/fpls.2016.00347 pmid: 27066020
[57]
刘青, 李升, 梁才康, 张红辉, 吴静, 王嘉福, 冉雪琴. 贵州地区木霉菌分离鉴定及对辣椒疫霉的拮抗作用. 微生物学通报, 2019, 46(4): 741-751.
LIU Q, LI S, LIANG C K, ZHANG H H, WU J, WANG J F, RAN X Q. Isolation and identification of Trichoderma spp. against Phytophthora capsici. Microbiology China, 2019, 46(4): 741-751. (in Chinese)
[58]
YIN F M, LIU Q F, ZHANG B J, ZHANG X, HE J G, XIE J, HU Z, SUN R F. Microemulsion preparation of Waltheria indica extracts and preliminary antifungal mechanism exploration. Industrial Crops and Products, 2021, 172: 114000.

doi: 10.1016/j.indcrop.2021.114000
[1] LIAO HongJuan, JIANG YuMei, YE Xia, ZHANG ZhiBin, MA TongYu, ZHU Du. Optimization of Solid State Fermentation for Production of Active Substances Against Plant Pathogenic Fungi from Chaetomium globosum [J]. Scientia Agricultura Sinica, 2023, 56(11): 2106-2117.
[2] BI Jian-Hua-1, YANG Jin-Guang-1, 欧Yang-Ming-An-2 , LI Xi-Hong-3, ZHANG Chang-Hua-4, SHEN Li-Li-1, QIAN Yu-Mei-1, WANG Pan-1, WANG Sheng-Ping-1, WANG Feng-Long-1. Secondary Metabolites Produced by Serratia marcescens as an Inhibitor Against TMV [J]. Scientia Agricultura Sinica, 2014, 47(5): 912-922.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!