Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (21): 4234-4244.doi: 10.3864/j.issn.0578-1752.2023.21.008

• PLANT PROTECTION • Previous Articles     Next Articles

The Variation of GRSPaV in Different Parts of Shine Muscat Grapevines During Their Phenological Periods

LI MeiXuan(), ZHANG XiangKun(), WANG Li, QIAO YueLian, SHI XiaoXin, DU GuoQiang()   

  1. College of Horticulture, Hebei Agricultural University, Baoding 071000, Hebei
  • Received:2023-06-21 Accepted:2023-08-21 Online:2023-11-01 Published:2023-11-06
  • Contact: DU GuoQiang

Abstract:

【Background】Grapevine rupestris stem pitting associated virus (GRSPaV) is the most common virus causing rugose wood disease. It is mainly transmitted via asexual reproduction. Sensitive detection technology and cultivation of virus-free plants are essential for preventing GRSPaV.【Objective】The purpose of this study was to establish a GRSPaV detection system, and to determine the appropriate periods and sites of sample collection for virus detection, so as to provide a reference for virus detection and obtaining virus-free materials.【Method】An RT-qPCR detection method was established using the AugeGreen dye method and primers according to the coat protein gene (CP) region. The detection rate and gene expression of GRSPaV in samples from different parts of Shine Muscat grapevines during various phenological stages were examined.【Result】The RT-qPCR detection method for GRSPaV using GRS q CP1 as primer showed 10 times higher sensitivity than that of RT-PCR method. The detection rates of GRSPaV were 100% during the budbreak, shoot growing period, and florescence, 91.7% during the fruit enlargement stage, 94.4% for mature tendrils, and 100% for mature leaves, mature petioles, and tender shoots. Samples showing negative results were all from the young parts of the plants. The young tendrils at florescence showed the highest level of GRSPaV CP gene expression, followed by the mature leaves at florescence. The expression level in mature leaves was the highest among the parts in the same phenological period from berry expansion to maturity. The expression levels in secondary winter buds at the budbreak stage and the secondary laterals at the shoot growing period were both relatively low.【Conclusion】The detection rate of GRSPaV and the GRSPaV CP gene expression level of Shine Muscat grape varied with the progression of phenological periods. The detection rate was the highest from budbreak to florescence, while which was the lowest at berry maturity period. The GRSPaV CP gene expression level was the highest at florescence. Based on both the detection rate and the expression level factors, it could be concluded that the mature leaves at florescence were suitable as samples for GRSPaV virus detection, and the winter buds from the berry expansion to maturity period and the lateral shoots germinated from these buds was appropriate for obtaining virus-free materials.

Key words: Shine Muscat grapevines, grapevine rupestris stem pitting associated virus, real-time fluorescence quantitative PCR, detection rate of viruses, gene expression level

Table 1

Sequences of GRSPaV RT-qPCR primers"

引物名称 Primer 基因区域 Gene region 引物序列 Primer sequence 产物长度 Product length (bp)
GRS q CP1 CP F: TCTCACTGCTCTGATGTTGGTAG
R: TAGATGGTGGTATCCCCGTC
184
GRS q CP2 F: GGCTATGAAACACGAAACGGT
R: CCTTAGGTCACAAAATGGACTCTT
205
GRS q TGB TGB F: TCGGACCCATACCAAAACAT
R: CCAAACCGTCACTGCTAACC
130
GRS q RdRp1 RdRp F: GTATCGGGAGGTGCGTTGT
R: GATTTCCTTTATGCCTTGGGT
131
GRS q RdRp2 F: GCTTCCTTATGGCTGTCCG
R: TTCTTCGCCTCAAACTCCTG
184

Fig. 1

Comparison of five pairs of GRSPaV primers for RT-PCR detection CK: No template control; 1-9: Grape samples infected GRSPaV"

Fig. 2

RT-qPCR amplification results of GRSPaV at different temperatures"

Fig. 3

GRSPaV RT-qPCR amplification results with different primer concentrations"

Fig. 4

Standard curve of GRSPaV primer GRS q CP1"

Fig. 5

Sensitivity comparison of RT-PCR (left) and RT-qPCR (right) detection methods with different dilution gradients for positive grape samples"

Table 2

GRSPaV detection results of Shine Muscat grapevines samples in different parts of different phenological periods"

物候期
Phenological period
休眠枝条
Dormant shoot
嫩芽
Bud
嫩叶片
Tender leaf
嫩叶柄
Tender petiole
成龄叶片
Mature leaf
成龄叶柄
Mature petiole
幼嫩卷须
Tender
tendril
成熟卷须
Mature tendril
1—2片叶副梢
1-2 leaves lateral shoot
3—5片叶副梢
3-5 leaves lateral shoot
幼嫩新梢
Tender shoot
木质化新梢
Lignify
shoot
休眠期
Dormant period
2/3
萌芽期
Budbreak stage
3/3
新梢生长期
Growing period
3/3 3/3 3/3 3/3 3/3 3/3
花期
Florescence
3/3 3/3 3/3 3/3 3/3 3/3
果实膨大期
Berry expansion period
1/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3
果实转色期
Grape fruit veraison
1/3 1/3 3/3 3/3 1/3 2/3 0/3 1/3
果实成熟期
Maturity
0/3 0/3 3/3 3/3 0/3 3/3 1/3 0/3
落叶期
Defoliating period
3/3 3/3 3/3 2/3
当年冬芽萌芽期
Secondary winter bud embryonic stage
2/3
当年冬芽新梢
生长期
Secondary winter bud growing period
1/3 3/3 3/3 3/3 0/3 1/3

Fig. 6

The expression of GRSPaV CP gene in different parts of Shine Muscat grapevines at different phenological stages"

[1]
http://journal.crnews.net/ncpsczk/2021n/d18q/dcyj/944624_20220216034915.html. [2022-02-16].
[2]
https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0D0K&sj=. [2021].
[3]
胡国君, 董雅凤, 张尊平, 范旭东, 任芳, 朱红娟. 葡萄病毒脱除技术研究进展. 果树学报, 2013, 30(2): 304-310.
HU G J, DONG Y F, ZHANG Z P, FAN X D, REN F, ZHU H J. Research progress on virus elimination techniques of grapevine. Journal of Fruit Science, 2013, 30(2): 304-310. (in Chinese)
[4]
王令宇, 杨毓贤, 叶东东, 葛孟清, 诸葛雅贤, 王霏, 张晓雯, 肖鑫, 余文斌, 刘畅, 房经贵, 上官凌飞. 我国阳光玫瑰葡萄果实品质性状调查分析. 山西农业科学, 2022, 50(7): 1009-1015.
WANG L Y, YANG Y X, YE D D, GE M Q, ZHUGE Y X, WANG F, ZHANG X W, XIAO X, YU W B, LIU C, FANG J G, SHANGGUAN L F. Investigation and analysis of fruit quality traits of shine Muscat grape in China. Journal of Shanxi Agricultural Sciences, 2022, 50(7): 1009-1015. (in Chinese)
[5]
刘文林. ‘阳光玫瑰’葡萄病毒病调查及脱除病毒体系建立[D]. 保定: 河北农业大学, 2021.
LIU W L. Investigation of ‘Shine Muscat’ grape virus disease and establishment of virus elimination system[D]. Baoding: Hebei Agricultural University, 2021. (in Chinese)
[6]
范旭东, 董雅凤, 张尊平, 张梦妍, 任芳, 胡国君. ‘阳光玫瑰’葡萄病毒小RNA测序鉴定及RT-PCR检测. 植物病理学报, 2019, 49(6): 749-755.
FAN X D, DONG Y F, ZHANG Z P, ZHANG M Y, REN F, HU G J. Small RNA sequencing and RT-PCR detection of viruses infecting ‘Shine Muscat’ grapevines. Acta Phytopathologica Sinica, 2019, 49(6): 749-755. (in Chinese)
[7]
MENG B, PANG S Z, FORSLINE P L, MCFERSON J R, GONSALVES D. Nucleotide sequence and genome structure of grapevine rupestris stem pitting associated virus-1 reveal similarities to apple stem pitting virus. Journal of General Virology, 1998, 79(8): 2059-2069.

doi: 10.1099/0022-1317-79-8-2059
[8]
ZHANG Y P, UYEMOTO J K, GOLINO D A, ROWHANI A. Nucleotide sequence and RT-PCR detection of a virus associated with grapevine rupestris stem-pitting disease. Phytopathology, 1998, 88(11): 1231-1237.

doi: 10.1094/PHYTO.1998.88.11.1231 pmid: 18944859
[9]
RIBEIRO G P, SALDARELLI P, HONG N, XIANG B, ZHANG X L, WANG G, MARTELLI G. First record of three grapevine viruses in the Chinese Province of Sinkiang. Journal of Plant Pathology, 2004, 86(3): 264.
[10]
朱红娟. 沙地葡萄茎痘相关病毒PCR检测及外壳蛋白基因变异分析[D]. 北京: 中国农业科学院, 2014.
ZHU H J. PCR detection of grape stem pox associated virus in sandy land and variation analysis of coat protein gene[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese)
[11]
HU G J, DONG Y F, ZHU H J, ZHANG Z P, FAN X D, REN F. Detection and distribution of Grapevine rupestris stem pitting-associated virus in grapevine. Scientia Horticulturae, 2018, 239: 64-69.

doi: 10.1016/j.scienta.2018.05.028
[12]
WANG Y, OSTENDORF B, GAUTAM D, HABILI N, PAGAY V. Plant viral disease detection: From molecular diagnosis to optical sensing technology - A multidisciplinary review. Remote Sensing, 2022, 14(7): 1542.

doi: 10.3390/rs14071542
[13]
HU G J, DONG Y F, ZHANG Z P, FAN X D, REN F, LI Z N, ZHANG S N. Elimination of Grapevine rupestris stem pitting- associated virus from Vitis vinifera ‘Kyoho’ by an antiviral agent combined with shoot tip culture. Scientia Horticulturae, 2018, 229: 99-106.

doi: 10.1016/j.scienta.2017.10.041
[14]
陶源, 吴兴泉. 植物病毒检测方法的研究进展. 分子植物育种, 2017, 15(7): 2901-2906.
TAO Y, WU X Q. Research progress of plant virus detection methods. Molecular Plant Breeding, 2017, 15(7): 2901-2906. (in Chinese)
[15]
范旭东, 董雅凤, 张尊平, 任芳, 胡国君, 朱红娟. 葡萄病毒分子检测技术研究进展. 园艺学报, 2014, 41(5): 1009-1019.
FAN X D, DONG Y F, ZHANG Z P, REN F, HU G J, ZHU H J. Progress on molecular detection of grapevine viruses. Acta Horticulturae Sinica, 2014, 41(5): 1009-1019. (in Chinese)
[16]
OSMAN F, ROWHANI A. Real-time RT-PCR (TaqMan®) assays for the detection of viruses associated with Rugose wood complex of grapevine. Journal of Virological Methods, 2008, 154(1/2): 69-75.

doi: 10.1016/j.jviromet.2008.09.005
[17]
GREIG N, LUONG J, HOOKER J, STOBBS L W, MENG B. Optimization of a direct real-time quantitative reverse transcription polymerase reaction (DRT-qPCR) assay for the detection of grapevine rupestris stem-pitting associated viruses (GRSPaV) in grapevine. Canadian Journal of Plant Pathology, 2020, 42(2): 292-303.

doi: 10.1080/07060661.2019.1655483
[18]
STEWART S, NASSUTH A. RT-PCR based detection of Rupestris stem pitting associated virus within field-grown grapevines throughout the year. Plant Disease, 2001, 85(6): 617-620.

doi: 10.1094/PDIS.2001.85.6.617
[19]
张梦妍, 张尊平, 任芳, 胡国君, 范旭东, 董雅凤. 葡萄蚕豆萎蔫病毒实时荧光定量RT-PCR检测方法及应用. 园艺学报, 2020, 47(1): 187-194.

doi: 10.16420/j.issn.0513-353x.2019-0216
ZHANG M Y, ZHANG Z P, REN F, HU G J, FAN X D, DONG Y F. Establishment and application of a real-time fluorescent quantitative RT-PCR for detection of grapevine fabavirus. Acta Horticulturae Sinica, 2020, 47(1): 187-194. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2019-0216
[20]
任芳, 董雅凤, 张尊平, 范旭东, 胡国君. 葡萄病毒A实时荧光定量RT-PCR检测技术的建立及应用. 园艺学报, 2018, 45(11): 2243-2253.

doi: 10.16420/j.issn.0513-353x.2018-0124
REN F, DONG Y F, ZHANG Z P, FAN X D, HU G J. Development and application of a quantitative RT-PCR approach for detection of grapevine virus A. Acta Horticulturae Sinica, 2018, 45(11): 2243-2253. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2018-0124
[21]
周俊, 范旭东, 董雅凤, 张尊平, 胡国君, 任芳, 李正男. 葡萄扇叶病毒实时荧光定量RT-PCR检测方法的建立及应用. 园艺学报, 2016, 43(3): 538-548.

doi: 10.16420/j.issn.0513-353x.2015-0946
ZHOU J, FAN X D, DONG Y F, ZHANG Z P, HU G J, REN F, LI Z N. Development and application of a quantitative RT-PCR approach for quantification of grapevine fanleaf virus. Acta Horticulturae Sinica, 2016, 43(3): 538-548. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2015-0946
[22]
王玉倩, 薛秀花. 实时荧光定量PCR技术研究进展及其应用. 生物学通报, 2016, 51(2): 1-6.
WANG Y Q, XUE X H. Research progress and application of real-time fluorescence quantitative PCR technology. Bulletin of Biology, 2016, 51(2): 1-6. (in Chinese)

doi: 10.1086/BBLv51n1p1
[23]
乾义柯, 张娜, 魏霜, 陆平, 张祥林. 基于DPO引物的SYBR Green Ⅰ实时荧光RT-PCR检测葡萄卷叶伴随病毒3号. 植物保护学报, 2017, 44(2): 343-344.
QIAN Y K, ZHANG N, WEI S, LU P, ZHANG X L. Using SYBR Green Ⅰ RT-PCR based on DPO primers to detection Grapevine leafroll-associated virus 3. Journal of Plant Protection, 2017, 44(2): 343-344. (in Chinese)
[24]
任芳, 张尊平, 范旭东, 胡国君, 张梦妍, 董雅凤. 应用实时荧光定量RT-PCR高效检测葡萄病毒B. 植物病理学报, 2019, 49(4): 569-576.
REN F, ZHANG Z P, FAN X D, HU G J, ZHANG M Y, DONG Y F. Effective detection of Grapevine virus B by real-time fluorescent quantitative RT-PCR. Acta Phytopathologica Sinica, 2019, 49(4): 569-576. (in Chinese)
[25]
任芳, 张尊平, 范旭东, 胡国君, 张梦妍, 董雅凤. 葡萄卷叶伴随病毒2实时荧光定量RT-PCR技术的检测应用. 植物保护, 2020, 46(3): 180-187.
REN F, ZHANG Z P, FAN X D, HU G J, ZHANG M Y, DONG Y F. Application of a real-time quantitative RT-PCR for detection of Grapevine leafroll-associated virus 2. Plant Protection, 2020, 46(3): 180-187. (in Chinese)
[26]
苗艳梅, 赵敏. 马铃薯Y病毒属病毒外壳蛋白功能. 黑龙江农业科学, 2019(3): 165-168.
MIAO Y M, ZHAO M. Functional characterization of potyvirus- encoded coat protein. Heilongjiang Agricultural Sciences, 2019(3): 165-168. (in Chinese)
[27]
BODIN M, GLASA M, VERGER D, COSTES E, DOSBA F. Distribution of the sour cherry isolate of plum pox virus in infected Prunus rootstocks. Journal of Phytopathology, 2003, 151(11/12): 625-630.

doi: 10.1046/j.0931-1785.2003.00777.x
[28]
尚佑芬, 王升吉, 赵玖华, 张家魁, 吕志华, 路兴波, 孙红炜, 杨崇良. 山东省沙地葡萄茎痘相关病毒的检测. 果树学报, 2009, 26(2): 158-162.
SHANG Y F, WANG S J, ZHAO J H, ZHANG J K, Z H, LU X B, SUN H W, YANG C L. Detection of grapevine rupestris stem pitting associated virus occurred in Shandong Province. Journal of Fruit Science, 2009, 26(2): 158-162. (in Chinese)
[29]
XIAO H G, KIM W S, MENG B Z. A highly effective and versatile technology for the isolation of RNAs from grapevines and other woody perennials for use in virus diagnostics. Virology Journal, 2015, 12(1): 1-15.

doi: 10.1186/s12985-014-0235-7
[30]
MONIS J, BESTWICK R K. Detection and localization of grapevine leafroll associated closteroviruses in greenhouse and tissue culture grown plants. American Journal of Enology and Viticulture, 1996, 47(2): 199-205.

doi: 10.5344/ajev.1996.47.2.199
[1] LIU XiaoChen, WU ShengYong, LEI ZhongRen, WANG HaiHong. Growth Kinetics and Virulence of Two Beauveria bassiana Strains in Frankliniella occidentalis Under Different Temperatures [J]. Scientia Agricultura Sinica, 2018, 51(8): 1484-1492.
[2] WANG Sheng-1, ZHANG Bao-Qing-1, HUANG Xing-12, FAN Yan-Jiao-1, YANG Li-Tao-1, LI Yang-Rui-12. Molecular Cloning of Sugarcane Cu/Zn Superoxide Dismutase (Cu/Zn-SOD) and Its Expression Analysis [J]. Scientia Agricultura Sinica, 2013, 46(15): 3277-3284.
[3] . Study on Relationship Between Histone Acetylation and mRNA Expression Level of Histone Deacetylase of Porcine Early Parthenogenetic Embryos
[J]. Scientia Agricultura Sinica, 2011, 44(6): 1224-1231 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!