Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (14): 2772-2791.doi: 10.3864/j.issn.0578-1752.2016.14.011

• HORTICULTURE • Previous Articles     Next Articles

Genetic Diversity and Structure of 255 Cultivars of Ziziphus jujuba Mill.

LIU Xiu-yun1, LI Hui1,2, LIU Zhi-guo1, ZHAO Jin3, LIU Meng-jun1,4   

  1. 1Reserch Center of Chinese Jujube, Agricultural University of Hebei, Baoding 071001, Hebei
    2Germplasm Resources Institute of Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002
    3College of Life Science, Agricultural University of Hebei, Baoding 071001, Hebei
    4Beijing Collaborative Innovation Center for Eco-enviromental Improvement with Forestry and Fruit Trees, Beijing 102206
  • Received:2016-01-18 Online:2016-07-16 Published:2016-07-16

Abstract: 【Objective】 There are abundant jujube germplasm resources in China. A total of 255 cultivars of Ziziphus jujuba Mill. from 22 provenances were used as materials to reveal their genetic diversity and phylogenetic relationship by SSR analysis, and the results of analysis would help us to manage jujube germplasm resources and offer references for molecular maker-assisted breeding.【Method】 Good genomic DNA was extracted from young leaves of jujube germplasm resources following the improved CTAB method, and then were amplified by simple sequence repeat molecular markers to analyze genetic diversity and genetic structure with the selected high-efficiency primer pairs which were excavated based on the genome sequencing. Separation of the amplified fragments was performed on 8% denaturing polyacrylamide gels and the gels were stained with AgNO3 for visualizing the SSR fragments. The data were counted by presence or absence of the band and the percentage of polymorphic loci (PIC) was calculated. UPGMA cluster analysis was carried by software NTSYS, the optimal number of groups and population genetic structure was analyzed by software Structure.【Result】Totally, 117 polymorphic alleles were revealed with 23 primer pairs which was selected from 64 primer pairs, each primer amplified polymorphic loci ranged from 2 to 10, with an average of 5.09 for each primer pairs. Polymorphism information content (PIC) values for the primer pairs ranged from 0.359 to 0.727, with an average of 0.548, these polymorphisms primers could be further applied to other study. The fingerprint for some jujube cultivars was established with 1-2 markers, providing a reference for the management of jujube germplasm. Meanwhile, based on the UPGMA cluster analysis, 255 cultivars were divided into fifteen subgroups, which included four big groups and eleven small groups. Similarity coefficients among the cultivars were between 0.71 to 1.00, ‘Beijinghuashengzao’ was clustered into one separate group, which has a distant relationship with other cultivars. The similarity coefficients of ‘Fengjiejidanzao’ and ‘Xupujidanzao’, ‘Shannxinaizao’ and ‘Tianjindamayazao’ were both 1.00. In some subgroups the genetic relationship between cultivars and their provenances has a significant positive correlation, but the cultivars and their uses has no significant correlation. Based on K and ΔK values, 255 jujube cultivars were also divided into fifteen populations by the population genetic structure analysis. The kinship among cultivars in the same population was relatively simple, and a few cultivars contained genetic component of other groups. The cultivars from Shanxi or Shannxi were distributed in most populations, indicating jujube cultivars of the two provinces played important roles in the gene exchange among populations. The jujube cultivars from Hunan of the South region formed a relatively alone population, indicating that the cultivars might be from the same source, or in the long-term cultivation few times of gene exchange were happened in Hunan cultivars with other populations. Different geographical environment played a key role in the evolution of jujube germplasm populations, some cultivars were selected from the same geographical environment and the others were selected by genetic recombination among those cultivars from the various geographical environment. Meanwhile, the consistency of the two different methods was further verifed the accuracy of the results, which provide useful clues and reference for the genetic diversity and structure of jujube germplasm.【Conclusion】Geographical environment play significant roles in the population evolution of jujube cultivars, affecting the genetic structure composition between different habitats.

Key words: Chinses jujube, SSR markers, provenances, genetic diversity, population structure

[1]    赵锦, 刘孟军. 枣树品种, 品系及其近缘种的RAPD分析. 中国农业科学, 2003, 36(5): 590-594.
Zhao J, Liu M J. RAPD analysis on the cultivars, strains and related species of Chinese jujube (Ziziphus jujuba Mill.). Scientia Agricultura Sinica, 2003, 36(5): 590-594. (in Chinese)
[2]    乔勇, 赵锦, 杨海旭, 刘孟军. 21个枣品种(系)的AFLP指纹分析. 植物遗传资源学报, 2009, 10(2): 205-210.
Qiao Y, Zhao J, Yang H X, Liu M J. AFLP analysis on 21 cultivars and strains of Chinese jujube. Journal of Plant Genetic Resources, 2009, 10(2): 205-210. (in Chinese)
[3]    Union for the Protection of New Varieties of Plants. Guidelines for DNA-profiling: Molecular marker selection and database construction. Switzerland, 2007: 3-4.
[4]    张萌. 基于SSR分子标记的葡萄种质资源遗传多样性分析及品种鉴定[D]. 江苏: 南京农业大学, 2012.
Zhang M. Analysis of genetic diversity and cultivar identification of grapevine germplasm resources based on SSR molecular markers [D]. Jiangsu: Nanjing Agricultural University, 2012. (in Chinese)
[5]    徐小彪, 廖娇, 黄春辉, 辜青青, 曲雪艳, 刘善军, 陈金印. 基于EST-SSR标记分析猕猴桃种质遗传关系. 果树学报, 2012, 29(2): 212-216.
Xu X B, Liao J, Huang C H, Gu Q Q, Qu X Y, Liu S J, CHEN J Y. Genetic relationships from Kiwifruit germplasms based on EST-SSR markers. Journal of Fruit Science, 2012, 29(2): 212-216. (in Chinese)
[6]    王玉安, 欧巧明, 陈建军, 胡达, 王发林. 甘肃地方杏品种资源的SSR遗传多样性分析. 西北农业学报, 2013, 22(3): 98-102.
Wang Y A, Ou Q M, Chen J J, Hu D, Wang F L. Analysis of genetic diversities in Gansu local apricot varieties with simple sequence repeat (SSR) markers. Acta Agriculturae Boreali- occidentalis Sinica, 2013, 22(3):98-102. (in Chinese)
[7]    巴巧瑞. 苹果栽培品种亲缘关系的SSR和SRAP分析研究[D]. 杨陵: 西北农林科技大学, 2011.
Ba Q R. Genetic relationship analysis of apple cultivars using SSR and SRAP markers [D]. Yangling: Northwest A & F University, 2011. (in Chinese)
[8]    麻丽颖, 孔德仓, 刘华波, 王斯琪, 李颖岳, 庞晓明. 36份枣品种SSR指纹图谱的构建. 园艺学报, 2012, 39(4): 647-654.
Ma L Y, Kong D C, Liu H B, Wang S Q, Li Y Y, Pang X M. Construction of SSR fingerprint on 36 Chinese jujube cultivars. Acta Horticulturae Sinica, 2012, 39(4): 647-654. (in Chinese)
[9]    Zhang C Y, Chen X S, He T M, Liu X L, Feng T, Yuan Z H. Genetic structure of Malus sieversii population from Xinjiang, China, revealed by SSR markers. Journal of Genetics and Genomics, 2007, 34(10): 947-955.
[10]   张春雨, 陈学森, 林群, 苑兆和, 张红, 张小燕, 刘崇祺, 吴传金. 新疆野苹果群体遗传结构和遗传多样性的SRAP分析. 园艺学报, 2009, 36(1): 7-14.
Zhang C Y, Chen X S, Lin Q, Yuan Z H, Zhang H, Zhang X Y, Liu C Q, Wu C J. SRAP markers for population genetics structure and genetic diversity in Malus sieversii from xinjiang, China. Acta Horticulturae Sinica, 2009, 36(1): 7-14. (in Chinese)
[11]   刘晶. 中国豆梨与川梨的遗传多样性和群体遗传结构研究[D]. 杭州: 浙江大学, 2013.
Liu J. Studies on genetic diversity and structure of Pyrus calleryana and P. pashia in China [D]. Hangzhou: Zhejiang University, 2013. (in Chinese)
[12]   章秋平, 刘东成, 刘威生, 刘硕, 张爱民, 刘宁, 张玉萍. 华北生态群普通杏遗传多样性与群体结构分析. 中国农业科学, 2013, 46(1): 89-98.
Zhang Q P, Liu D C, Liu W S, Liu S, Zhang A M, Liu N, Zhang Y P. Genetic diversity and population structure of the north China populations of apricot (Prunus armeniaca L.). Scientia Agricultura Sinica, 2013, 46(1): 89-98. (in Chinese)
[13]   张俊环, 王玉柱, 孙浩元, 杨丽. 不同用途杏品种群的AFLP分析. 果树学报, 2011, 28(4): 610-616.
Zhang J H, Wang Y Z, Sun H Y, Yang L. Genetic analysis of apricot (Armeniaca) by fluorescent-AFLP markers. Journal of Fruit Science, 2011, 28(4): 610-616. (in Chinese)
[14]   Yuan Z H, Chen X S, He T M, Feng J R, Feng T, Zhang C Y. Population genetic structure in apricot (Prunus armeniaca L.) cultivars revealed by fluorescent-AFLP markers in southern  Xinjiang, China. Journal of Genetics and Genomics, 2007, 34(11): 1037-1047.
[15]   何天明, 陈学森, 高疆生, 张大海, 徐麟, 吴燕. 新疆栽培杏群体遗传结构的SSR分析. 园艺学报, 2006, 33(4): 809-812.
He T M, Chen X S, Gao J S, Zhang D H, Xu L, Wu Y. Using SSR markers to study population genetic structure of cultivated apricots native to xinjiang. Acta Horticulturae Sinica, 2006, 33(4): 809-812. (in Chinese)
[16]   苑兆和, 陈学森, 张春雨, 何天明, 冯建荣, 冯涛. 普通杏群体遗传结构的荧光AFLP分析. 园艺学报, 2008, 35(3): 319-328.
Yuan Z H, Chen X S, Zhang C Y, He T M, Feng J R, Feng T. Population genetic structure in apricot (Armeniaca L.) cultivars revealed by fluorescent-AFLP markers. Acta Horticulturae Sinica, 2008, 35(3): 319-328. (in Chinese)
[17]   宛甜, 蔡宇良, 冯瑛, 张雪, 何恒流. 野生毛樱桃SSR遗传多样性和遗传结构分析. 西北植物学报, 2013, 33(8): 1544-1550.
Wan T, Cai Y L, Feng Y, Zhang X, He H L, Wan T. Genetic diversity and genetic structure of wild Prunus tomentosa Thub. based on simple sequence repeats markers. Acta Botanica Boreali- Occidentalia Sinica, 2013, 33(8): 1544-1550. (in Chinese)
[18]   赖恭梯, 刘炜婳, 张梓浩, 冯新, 林玉玲, 刘生财, 祁芳斌, 赖钟雄. 戴云山野生杨梅自然群体遗传结构的ISSR分析. 热带作物学, 2013, 34(10): 1863-1870.
Lai G T, Liu W H, Zhang Z H, Feng X, Lin Y L, Liu S C, Qi F B, Lai Z X. Genetic structure of natural populations revealed by ISSR in Myrica rubra from daiyunshan mountains. Chinese Journal of Tropical Crops, 2013, 34(10): 1863-1870. (in Chinese)
[19]   昝逢刚, 吴转娣, 曾淇, 张惠云, 李明芳, 郑学勤. 荔枝种质遗传多样性的SRAP分析. 分子植物育种, 2009, 7(3): 562-568.
Zan F G, Wu Z D, Zeng Q, Zhang H Y, Li M F, Zheng X Q. Genetic diversity analysis of litchi germplasm by SRAP markers. Molecular Plant Breeding, 2009, 7(3): 562-568. (in Chinese)
[20]   余贤美, 艾呈祥. 杧果野生居群遗传多样性ISSR分析. 果树学报, 2007, 24(3): 329-333.
Yu X M, Ai C X. Genetic diversity of wild Mangifera indica populations detected by ISSR. Journal of Fruit Science, 2007, 24(3): 329-333. (in Chinese)
[21]   刘亚令, 李作洲, 姜正旺, 刘义飞, 黄宏文. 中华猕猴桃和美味猕猴桃自然居群遗传结构及其种间杂交渐渗. 植物生态学报, 2008, 32(3): 704-718.
Liu Y L, Li Z Z, Jiang Z W, Liu Y F, Huang H W. Genetic structure and hybridization introgession in natural populations of two closely related Actinidia species, A. Chinensis and A. Deliciosa. Journal of Plant Ecology (Chinese Version), 2008, 32(3): 704-718. (in Chinese)
[22]   刘晓丽, 陈学森, 张美勇, 陈晓流, 何天明, 张立杰, 张春雨. 普通核桃(Juglans regia) 3个群体遗传结构的SSR分析. 果树学报, 2008, 25(4): 526-530.
Liu X L, Chen X S, Zhang M Y, Chen X L, He T M, Zhang L J, Zhang C Y. Population genetic structure analysis of Juglans regia using SSR markers. Journal of Fruit Science. 2008, 25(4): 526-530. (in Chinese)
[23]   郭传友, 黄坚钦, 王正加, 方炎明. 山核桃天然群体遗传结构的RAPD分析. 南京农业大学学报, 2006, 29(3): 12-17.
Guo C Y, Huang J Q, Wang Z J, Fang Y M. RAPD analysis  for natural population genetic structure of Carya cathayensis.  Journal of Nanjing Agricultural University, 2006, 29(3): 12-17. (in Chinese)
[24]   Yuan Z H, Yin Y L, Qu J L, Zhu L Q, Li Y. Population genetic diversity in Chinese pomegranate (Punica granatum L.) cultivars revealed by fluorescent-AFLP markers. Journal of Genetics and Genomics, 2007, 34(12): 1061-1071.
[25]   吕志江, 李疆, 吾买尔夏提·塔汉, 曾斌, 罗淑萍. 新疆野扁桃种质资源遗传多样性的ISSR分析. 果树学报, 2010, 27(6): 918-923.
LÜ Z J, Li J, Omir S T, Zeng B, Luo S P. ISSR analysis for  genetic diversity of Amygdalus ledebouriana germplasm from xinjiang, China. Journal of Fruit Science, 2010, 27(6): 918-923. (in Chinese)
[26]   李海涛. 河南枣主栽品种及灰枣群体遗传变异分析[D]. 郑州: 河南农业大学, 2008.
Li H T. Analysis of genetic variation in Henan main cultivated Ziziphus jujuba varieties and Z. ‘Huizao’ population [D]. Zhengzhou: Agricultural University of Henan, 2008. (in Chinese)
[27]   殷晓. 基于SSR标记的中国枣遗传多样性研究[D]. 杨凌: 西北农林科技大学, 2013.
Yin X. Genetic diversity and population structure of Chinese jujube analysed by SSR markers [D]. Yangling: Northwst A & F University, 2013. (in Chinese)
[28]   Xiao J, Zhao J, Liu M J, Liu P, Dai L, Zhao Z H. Genome-wide characterization of simple sequence repeat (SSR) loci in Chinese jujube and jujube SSR primer transferability. PLoS One, 2015, 10(5): e0127812.
[29]   肖京. 枣基因组SSR位点特征分析及引物开发[D]. 保定: 河北农业大学, 2014.
Xiao J. Characterization of SSR loci in jujube genome and development of SSR primers [D]. Baoding: Agricultural University of Hebei, 2014. (in Chinese)
[30]   Rohlf F J. NTSYS-PC: Numerical taxonomy and multivariate analysis system version 1.80. Setauket, New York: Distribution by Exeter SoftWare, 1994.
[31]   Botstein D, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map in man using restriction fragment length polymorphism. American Journal of Human Genetics, 1980, 32(3): 314-331.
[32]   Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology, 2005, 14(8): 2611-2620.
[33]   吴承来, 张倩倩, 董炳雪, 李圣福, 张春庆. 我国部分玉米自交系遗传关系和遗传结构解析. 作物学报, 2010, 36(11): 1820-1831.
Wu C L, Zhang Q Q, Dong B X, Li S F, Zhang C Q. Analysis of genetic structure and genetic relationships of partial maize inbred lines in China. Acta Agronomica Sinica, 2010, 36(11): 1820-1831. (in Chinese)
[34]   李莉, 彭建营, 白瑞霞. 中国枣属植物亲缘关系的RAPD分析. 园艺学报, 2009, 36(4): 475-480.
Li L, Peng J Y, Bai R X. Studies on the phylogenetic relationship of Chinese Ziziphus by RAPD technique. Scientia Agricultura Sinica, 2009, 36(4): 475-480. (in Chinese)
[35]   白瑞霞. 枣种质资源遗传多样性的分子评价及其核心种质的构建[D]. 保定: 河北农业大学, 2008.
Bai R X. Studies on genetic diversity and core collection construction of Ziziphus jujuba germsplasm resources using AFLP and SRAP markers. Baoding: Agricultural University of Hebei, 2008. (in Chinese)
[36]   谢永波. 枣属种质资源形态学评价及品种AFLP鉴定[D]. 泰安: 山东农业大学, 2014.
Xie Y B. Morphological evaluation on germplasm resources jujube and cultivar identification by AFLP [D]. Tai’an: Shangdong Agricultural University, 2014. (in Chinese)
[1] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[2] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[3] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[4] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[5] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[6] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[7] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[8] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
[9] WANG FuQiang,ZHANG Jian,WEN ChangLong,FAN XiuCai,ZHANG Ying,SUN Lei,LIU ChongHuai,JIANG JianFu. Identification of Grape Cultivars Based on KASP Markers [J]. Scientia Agricultura Sinica, 2021, 54(13): 2830-2842.
[10] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[11] CUI YiPing,PENG AiTian,SONG XiaoBing,CHENG BaoPing,LING JinFeng,CHEN Xia. Investigation on Occurrence of Citrus Huanglongbing and Virus Diseases, and Prophage Genetic Diversity of Huanglongbing Pathogen in Meizhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(8): 1572-1582.
[12] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
[13] MoRan XU,RuiMing LIN,FengTao WANG,Jing FENG,ShiChang XU. Evaluation of Resistance to Stripe Rust and Genetic Diversity and Detection of Resistance Genes in 103 Wheat Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(4): 748-760.
[14] ZhiJun XU,Sheng ZHAO,Lei XU,XiaoWen HU,DongSheng AN,Yang LIU. Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea) [J]. Scientia Agricultura Sinica, 2020, 53(4): 695-706.
[15] GAO Yuan,WANG DaJiang,WANG Kun,CONG PeiHua,ZHANG CaiXia,LI LianWen,PIAO JiCheng. Genetic Diversity and Phylogenetics of Malus baccata (L.) Borkh Revealed by Chloroplast DNA Variation [J]. Scientia Agricultura Sinica, 2020, 53(3): 600-611.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!