Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (13): 2474-2490.doi: 10.3864/j.issn.0578-1752.2023.13.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Integrating Multi-Source Gaofen Images and Object-Based Methods for Crop Type Identification in South China

WANG JiaYue1(), CAI ZhiWen2, WANG WenJing1, WEI HaoDong3, WANG Cong1(), LI ZeXuan1, LI XiuNi1, HU Qiong1()   

  1. 1 College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079
    2 College of Resources and Environment/Macro Agriculture Research Institute, Huazhong Agricultural University, Wuhan 430070
    3 College of Plant Science and Technology/Macro Agriculture Research Institute, Huazhong Agricultural University, Wuhan 430070
  • Received:2022-12-04 Accepted:2022-02-06 Online:2023-07-01 Published:2023-07-06
  • Contact: WANG JiaYue, WANG Cong, HU Qiong

Abstract:

【Objective】 Due to frequent cloudy and rainy weather, it is challenging to map crop types over South China with fragmented agricultural landscapes. The Gaofen (GF) series satellites developed by China have high spatial-temporal resolution and good image quality. This study exploited the spatial and temporal advantages of multi-source GF images for fine crop classification in heterogeneous agricultural areas with frequent clouds and rain. 【Method】This study characterized the spatial geometry of agricultural fields based on GF-2 data with high spatial resolution, and cooperated with the encrypted observations from GF-1 and GF-6 time series to fully characterize the spectral seasonal variations of crops. By constructing three-dimensional classification features of spectrum-time-space, the crop classification based on random forest classifier were conducted, and the importance scores of different features were calculated. Furthermore, several classification scenarios were set based on different satellite combinations and different classification units, for further analyzing the performances of integrating different GF datasets on crop type mapping. 【Result】The overall accuracy of synergistic GF-1, GF-2 and GF-6 by object-oriented crop classification was 95.49% with Kappa of 0.94 in Qianjiang city; the overall accuracy in Zaoyang city was 93.78% with Kappa of 0.92. The accuracy of crop classification by integrating GF-2 and GF-6 was higher than that by GF-2 and GF-1. In addition, the object-oriented crop classification based on GF-2 outperformed the pixel-oriented one, in which the overall accuracy improved by 1.4% and 1.32% in Qianjiang and Zaoyang, respectively. Compared with the spectral and spatial features of GF-1 and GF-2, the GF-6 spectral bands had the largest contribution to crop type identification, and the cumulative importance score accounted for 82% (Qianjiang) and 77% (Zaoyang) of all spectral bands. Among them, the four new spectral bands of GF-6, namely, red-edge I band (B5), red-edge Ⅱ band (B6), purple band (B7) and yellow band (B8), accounted for 47% (Qianjiang) and 33% (Zaoyang) of all spectral bands for crop type identification. 【Conclusion】Integrating multi-source GF images by taking advantages of their spectral, spatial and temporal features could not only alleviate the "mixed pixel" problem caused by the fragmented agricultural landscape, but also reduce the uncertainty of crop type identification in cloudy and rainy areas, providing great potential for accurate crop mapping in South China.

Key words: GF data, object-oriented, random forest, remote sensing identification, crop classification

Fig. 1

Location of the study area and spatial distribution of crop samples"

Fig. 2

Crop calendars for major crops in study area and temporal information of GF images"

Table 1

Parameters of GF-1, GF-2 and GF-6 sensors"

参数Parameter GF-2 PMS GF-1 WFV GF-6 WFV
光谱范围
Spectral range (μm)
全色Panchromatic band 0.45-0.90
蓝Blue(B1 0.45-0.52 0.45-0.52 0.45-0.52
绿Green(B2 0.52-0.59 0.52-0.59 0.52-0.59
红Red(B3 0.63-0.69 0.63-0.69 0.63-0.69
近红外NIR(B4 0.77-0.89 0.77-0.89 0.77-0.89
红边 I Red-edge I(B5 0.69-0.73
红边Ⅱ Red-edge Ⅱ(B6 0.73-0.77
紫Purple(B7 0.40-0.45
黄Yellow(B8 0.59-0.63
幅宽Width (km) 45 800
空间分辨率Spatial resolution (m) 1(全色PAN)/4(多光谱MSS) 16
重访周期
Revisit cycle (d)
5 2(GF-1和GF-6组网运行
Joint operation with GF-1 and GF-6 satellites)

Table 2

The classification scenarios based on GF-1, GF-2 and GF-6 images"

方案
Scenarios
数据源与分类单元
Data source and classification units
光谱特征
Spectral features
GF-1/GF-6
空间特征
Spatial features
GF-2
影像数量
Number of images
特征总数
Number of features
潜江
Qianjiang
枣阳
Zaoyang
潜江
Qianjiang
枣阳
Zaoyang
1
试验组
Experimental group
GF-2(面向对象
Object-oriented)
&GF-1+GF-6
蓝、绿、红、近红外、红边Ⅰ、红边Ⅱ、紫、黄
Blue, Green, Red, NIR, Red-edge I, Red-edge Ⅱ, Purple, Yellow
范围、方向、最大边长、最小边长
Extent, Orientation, Major length, Minor length
GF-1 3 8 56 116
GF-6 5 10
GF-2 1 1
2
对照组
Control group
GF-2(面向对象
Object-oriented)
&GF-1
蓝、绿、红、近红外
Blue, Green, Red, NIR
范围、方向、最大边长、最小边长
Extent, Orientation, Major length, Minor length
GF-1 3 8 16 36
3
对照组
Control group
GF-2(面向对象
Object-oriented)
&GF-6
蓝、绿、红、近红外、红边Ⅰ、红边Ⅱ、紫,黄
Blue, Green, Red, NIR, Red-edge I, Red-edge Ⅱ, Purple, Yellow
范围、方向、最大边长、最小边长
Extent, Orientation, Major length, Minor length
GF-6 5 10 44 84
GF-2 1 1
4
对照组
Control group
GF-1+GF-6
(面向像元
Pixel-oriented)
蓝、绿、红、近红外、红边Ⅰ、红边Ⅱ、紫、黄
Blue, Green, Red, NIR, Red-edge I, Red-edge Ⅱ, Purple, Yellow
/ GF-1 3 8 52 112
GF-6 5 10

Fig. 3

The ROC curves calculated by ESP2 tool"

Fig. 4

Results of farmland segmentation under different segmentation scales (Typical regions)"

Fig. 5

Examples of segmentation results with different shape and compactness parameters"

Fig. 6

Average spectral reflectance curves of major crop types The abscissa is the Day of year (DOY), and the ordinate is the average spectral reflectance calculated from the samples"

Table 3

Crop classification results based on different GF data sources in Qianjiang"

方案1 Scenario 1
GF-2(面向对象Object-oriented)
&GF-1+GF-6
方案2 Scenario 2
GF-2(面向对象Object-oriented)
&GF-1
方案3 Scenario 3
GF-2(面向对象Object-oriented)
&GF-6
方案4 Scenario 4
GF-1+GF-6
(面向像元Pixel-oriented)
PA (%) UA (%) F1-score PA (%) UA (%) F1-score PA (%) UA (%) F1-score PA (%) UA (%)
小麦 Wheat 96.20 98.70 0.97 92.40 92.40 0.92 96.30 97.43 0.95 97.50 98.73
油菜 Rape 98.77 97.56 0.97 96.29 95.12 0.96 97.53 97.53 0.96 98.79 97.61
早稻 Early rice 98.57 94.52. 0.98 92.85 86.66 0.91 97.14 94.44 0.96 98.57 93.24
虾稻Rice-crayfish 98.79 92.13 0.92 90.36 91.46 0.88 97.59 90.00 0.91 97.59 88.04
其他作物
Other crops
86.00 91.49 0.84 74.00 75.51 0.77 86.00 89.58 0.81 75.47 90.90
总体精度OA (%) 95.49 90.12 94.42 94.09
Kappa 0.94 0.88 0.93 0.93

Table 4

Crop classification results based on different GF data sources in Zaoyang"

方案1 Scenario 1
GF-2(面向对象Object-oriented)
&GF-1+GF-6
方案2 Scenario 2
GF-2(面向对象Object-oriented)
&GF-1
方案3 Scenario 3
GF-2(面向对象Object-oriented)
&GF-6
方案4 Scenario 4
GF-1+GF-6
(面向像元Pixel-oriented)
PA (%) UA (%) F1-score PA (%) UA (%) F1-score PA (%) UA (%) F1-score PA (%) UA (%)
小麦 Wheat 94.85 98.92 0.97 91.75 96.73 0.94 92.78 98.90 0.95 93.00 96.87
早稻 Early rice 92.86 85.53 0.89 88.57 79.48 0.84 91.42 85.33 0.88 90.24 85.05
其他作物
Other crops
80.36 83.33 0.82 73.21 78.84 0.76 82.14 79.31 0.80 77.04 79.66
总体精度OA (%) 93.78 91.35 92.97 92.46
Kappa 0.92 0.89 0.91 0.90

Fig. 7

Crop classification maps based on random forest in Qianjiang a and a1 are pixel-based classification results, b and b1 are object-based classification results, and c are GF-2 images of local typical areas on April 5. a1 and b1 are the results of random forest classification at pixel and object scales of the typical areas displayed, respectively"

Fig. 8

Crop classification maps based on random forest in Zaoyang a and a1 are pixel-based classification results, b and b1 are object-based classification results, and c is GF-2 images of local typical areas on March 15. a1 and b1 are the results of random forest classification at pixel and object scales of the typical areas displayed, respectively"

Fig. 9

Importance scores of crop identification features based on random forest The gray lattice is the background value, indicating that the corresponding image of DOY is GF-1, with only four spectral bands of blue, green, red and near infrared. The abscissa is the Day of Year (DOY), the ordinate is the spectral band of GF images, and the legend is the random forest evaluation index representing the feature importance score -- mean decrease impurity (MDI)"

Fig. 10

Cumulative importance scores of crop identification features for GF-1/6 based on random forest The abscissa is the Day of Year (DOY), and the ordinate is the random forest evaluation index representing the feature importance score—mean decrease impurity (MDI)"

[1]
唐华俊, 吴文斌, 杨鹏, 周清波, 陈仲新. 农作物空间格局遥感监测研究进展. 中国农业科学, 2010, 43(14): 2879-2888.
TANG H J, WU W B, YANG P, ZHOU Q B, CHEN Z X. Recent progresses in monitoring crop spatial patterns by using remote sensing technologies. Scientia Agricultura Sinica, 2010, 43(14): 2879-2888. (in Chinese)
[2]
宋茜, 胡琼, 陆苗, 余强毅, 杨鹏, 史云, 段玉林, 吴文斌. 农作物空间分布遥感制图发展方向探讨. 中国农业资源与区划, 2020, 41(6): 57-65.
SONG Q, HU Q, LU M, YU Q Y, YANG P, SHI Y, DUAN Y L, WU W B. Prospect of crop mapping. Chinese Journal of Agricultural Resources and Regional Planning, 2020, 41(6): 57-65. (in Chinese)
[3]
唐华俊. 农业遥感研究进展与展望. 农学学报, 2018, 8(1): 167-171.
TANG H J. Progress and prospect of agricultural remote sensing research. Journal of Agriculture, 2018, 8(1): 167-171. (in Chinese)
[4]
HU Q, WU W B, SONG Q, LU M, CHEN D, YU Q Y, TANG H J. How do temporal and spectral features matter in crop classification in Heilongjiang Province, China?. Journal of Integrative Agriculture, 2017, 16(2): 324-336.

doi: 10.1016/S2095-3119(15)61321-1
[5]
LIU Y F, XIAO D Q, YANG W T. An algorithm for early rice area mapping from satellite remote sensing data in southwestern Guangdong in China based on feature optimization and random Forest. Ecological Informatics, 2022, 72: 101853.

doi: 10.1016/j.ecoinf.2022.101853
[6]
胡琼, 吴文斌, 宋茜, 余强毅, 杨鹏, 唐华俊. 农作物种植结构遥感提取研究进展. 中国农业科学, 2015, 48(10): 1900-1914.

doi: 10.3864/j.issn.0578-1752.2015.10.004
HU Q, WU W B, SONG Q, YU Q Y, YANG P, TANG H J. Recent progresses in research of crop patterns mapping by using remote sensing. Scientia Agricultura Sinica, 2015, 48(10): 1900-1914. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2015.10.004
[7]
HU Q, SULLA-MENASHE D, XU B D, YIN H, TANG H J, YANG P, WU W B. A phenology-based spectral and temporal feature selection method for crop mapping from satellite time series. International Journal of Applied Earth Observation and Geoinformation, 2019, 80: 218-229.

doi: 10.1016/j.jag.2019.04.014
[8]
OZDARICI-OK A, OK A, SCHINDLER K. Mapping of agricultural crops from single high-resolution multispectral images—Data-driven smoothing vs.parcel-based smoothing. Remote Sensing, 2015, 7(5): 5611-5638.

doi: 10.3390/rs70505611
[9]
LI M Y, ZHANG R, LUO H X, GU S W, QIN Z L. Crop mapping in the Sanjiang plain using an improved object-oriented method based on google earth engine and combined growth period attributes. Remote Sensing, 2022, 14(2): 273.

doi: 10.3390/rs14020273
[10]
BLICKENSDÖRFER L, SCHWIEDER M, PFLUGMACHER D, NENDEL C, ERASMI S, HOSTERT P. Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sensing of Environment, 2022, 269: 112831.

doi: 10.1016/j.rse.2021.112831
[11]
周珂, 柳乐, 张俨娜, 苗茹, 杨阳. GEE支持下的河南省冬小麦面积提取及长势监测. 中国农业科学, 2021, 54(11): 2302-2318.

doi: 10.3864/j.issn.0578-1752.2021.11.005
ZHOU K, LIU L, ZHANG Y N, MIAO R, YANG Y. Area extraction and growth monitoring of winter wheat in Henan Province supported by google earth engine. Scientia Agricultura Sinica, 2021, 54(11): 2302-2318. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.11.005
[12]
HU Q, MA Y X, XU B D, SONG Q, TANG H J, WU W B. Estimating sub-pixel soybean fraction from time-series MODIS data using an optimized geographically weighted regression model. Remote Sensing, 2018, 10(4): 491.

doi: 10.3390/rs10040491
[13]
SONG X P, HUANG W L, HANSEN M C, POTAPOV P. An evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS data for crop type mapping. Science of Remote Sensing, 2021, 3: 100018.

doi: 10.1016/j.srs.2021.100018
[14]
SKAKUN S, FRANCH B, VERMOTE E, ROGER J C, BECKER-RESHEF I, JUSTICE C, KUSSUL N. Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture model. Remote Sensing of Environment, 2017, 195: 244-258.

doi: 10.1016/j.rse.2017.04.026
[15]
WEI H D, HU Q, CAI Z W, YANG J Y, SONG Q, YIN G F, XU B D. An object- and topology-based analysis (OTBA) method for mapping rice-crayfish fields in South China. Remote Sensing, 2021, 13(22): 4666.

doi: 10.3390/rs13224666
[16]
BELGIU M, CSILLIK O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sensing of Environment, 2018, 204: 509-523.

doi: 10.1016/j.rse.2017.10.005
[17]
LIU L, XIAO X M, QIN Y W, WANG J, XU X L, HU Y M, QIAO Z. Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine. Remote Sensing of Environment, 2020, 239: 111624.

doi: 10.1016/j.rse.2019.111624
[18]
HAO P Y, TANG H J, CHEN Z X, YU L, WU M Q. High resolution crop intensity mapping using harmonized Landsat-8 and Sentinel-2 data. Journal of Integrative Agriculture, 2019, 18(12): 2883-2897.

doi: 10.1016/S2095-3119(19)62599-2
[19]
HU Q, YIN H, FRIEDL M A, YOU L Z, LI Z L, TANG H J, WU W B. Integrating coarse-resolution images and agricultural statistics to generate sub-pixel crop type maps and reconciled area estimates. Remote Sensing of Environment, 2021, 258: 112365.

doi: 10.1016/j.rse.2021.112365
[20]
杨靖雅, 胡琼, 魏浩东, 蔡志文, 张馨予, 宋茜, 徐保东. 基于Sentinel-1/2数据的中国南方单双季稻识别结果一致性分析. 中国农业科学, 2022, 55(16): 3093-3109.

doi: 10.3864/j.issn.0578-1752.2022.16.003
YANG J Y, HU Q, WEI H D, CAI Z W, ZHANG X Y, SONG Q, XU B D. Consistency analysis of classification results for single and double cropping rice in Southern China based on sentinel-1/2 imagery. Scientia Agricultura Sinica, 2022, 55(16): 3093-3109. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.16.003
[21]
TAO W C, XIE Z X, ZHANG Y, LI J Y, XUAN F, HUANG J X, LI X C, SU W, YIN D Q. Corn residue covered area mapping with a deep learning method using Chinese GF-1 B/D high resolution remote sensing images. Remote Sensing, 2021, 13(15): 2903.

doi: 10.3390/rs13152903
[22]
XIA T, HE Z, CAI Z W, WANG C, WANG W J, WANG J Y, HU Q, SONG Q. Exploring the potential of Chinese GF-6 images for crop mapping in regions with complex agricultural landscapes. International Journal of Applied Earth Observation and Geoinformation, 2022, 107: 102702.

doi: 10.1016/j.jag.2022.102702
[23]
FAN J L, ZHANG X Y, ZHAO C L, QIN Z H, DE VROEY M, DEFOURNY P. Evaluation of crop type classification with different high resolution satellite data sources. Remote Sensing, 2021, 13(5): 911.

doi: 10.3390/rs13050911
[24]
WANG L J, WANG J Y, LIU Z Z, ZHU J, QIN F. Evaluation of a deep-learning model for multispectral remote sensing of land use and crop classification. The Crop Journal, 2022, 10(5): 1435-1451.

doi: 10.1016/j.cj.2022.01.009
[25]
WU M Q, HUANG W J, NIU Z, WANG Y, WANG C Y, LI W, HAO P Y, YU B. Fine crop mapping by combining high spectral and high spatial resolution remote sensing data in complex heterogeneous areas. Computers and Electronics in Agriculture, 2017, 139: 1-9.

doi: 10.1016/j.compag.2017.05.003
[26]
WU M Q, ZHANG X Y, HUANG W J, NIU Z, WANG C Y, LI W, HAO P Y. Reconstruction of daily 30 m data from HJ CCD, GF-1 WFV, landsat, and MODIS data for crop monitoring. Remote Sensing, 2015, 7(12): 16293-16314.

doi: 10.3390/rs71215826
[27]
郑利娟. 基于高分一/六号卫星影像特征的农作物分类研究[D]. 北京: 中国科学院大学, 2017.
ZHENG L J. Crop classification using multi-features of Chinese Gaofen-1/6 satellite remote sensing images[D]. Beijing: University of Chinese Academy of Sciences, 2017. (in Chinese)
[28]
童旭东. 中国高分辨率对地观测系统重大专项建设进展. 遥感学报, 2016, 20(5): 775-780.
TONG X D. Development of China high-resolution earth observation system. Journal of Remote Sensing, 2016, 20(5): 775-780. (in Chinese)
[29]
蔡志文, 何真, 王文静, 杨靖雅, 魏浩东, 王聪, 徐保东. 基于多源国产高分卫星时空信息的米级分辨率耕地提取. 遥感学报, 2022, 26(7): 1368-1382.
CAI Z W, HE Z, WANG W J, YANG J Y, WEI H D, WANG C, XU B D. Mapping cropland at metric resolution using the spatiotemporal information from multi-source GF satellite data. National Remote Sensing Bulletin, 2022, 26(7): 1368-1382. (in Chinese)

doi: 10.11834/jrs.20221069
[30]
季富华, 刘佳, 王利民. 农作物类型遥感识别算法及国产高分卫星应用示例. 中国农业资源与区划, 2021, 42(7): 254-268.
JI F H, LIU J, WANG L M. Summary of remote sensing algorithm in crop type identification and its application based on Gaofen satellites. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(7): 254-268. (in Chinese)
[31]
SONG Q, ZHOU Q B, WU W B, HU Q, LU M, LIU S B. Mapping regional cropping patterns by using GF-1 WFV sensor data. Journal of Integrative Agriculture, 2017, 16(2): 337-347.

doi: 10.1016/S2095-3119(16)61392-8
[32]
何真, 胡洁, 蔡志文, 王文静, 胡琼. 协同多时相国产GF-1和GF-6卫星影像的艾草遥感识别. 农业工程学报, 2022, 38(1): 186-195.
HE Z, HU J, CAI Z W, WANG W J, HU Q. Remote sensing identification for Artemisia argyi integrating multi-temporal GF-1 and GF-6 images. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(1): 186-195. (in Chinese)
[33]
JIANG X Q, FANG S H, HUANG X A, LIU Y H, GUO L L. Rice mapping and growth monitoring based on time series GF-6 images and red-edge bands. Remote Sensing, 2021, 13(4): 579.

doi: 10.3390/rs13040579
[34]
KANG Y P, MENG Q Y, LIU M, ZOU Y F, WANG X M. Crop classification based on red edge features analysis of GF-6 WFV data. Sensors, 2021, 21(13): 4328.

doi: 10.3390/s21134328
[35]
KANG Y P, HU X L, MENG Q Y, ZOU Y F, ZHANG L L, LIU M A, ZHAO M F. Land cover and crop classification based on red edge indices features of GF-6 WFV time series data. Remote Sensing, 2021, 13(22): 4522.

doi: 10.3390/rs13224522
[36]
YANG L B, WANG L M, ABUBAKAR G A, HUANG J F. High-resolution rice mapping based on SNIC segmentation and multi-source remote sensing images. Remote Sensing, 2021, 13(6): 1148.

doi: 10.3390/rs13061148
[37]
CAI Z W, HU Q, ZHANG X Y, YANG J Y, WEI H D, HE Z, SONG Q, WANG C, YIN G F, XU B D. An adaptive image segmentation method with automatic selection of optimal scale for extracting cropland parcels in smallholder farming systems. Remote Sensing, 2022, 14(13): 3067.

doi: 10.3390/rs14133067
[38]
XU L, MING D P, ZHOU W, BAO H Q, CHEN Y Y, LING X A. Farmland extraction from high spatial resolution remote sensing images based on stratified scale pre-estimation. Remote Sensing, 2019, 11(2): 108.

doi: 10.3390/rs11020108
[39]
SONG Q, HU Q, ZHOU Q B, HOVIS C, XIANG M T, TANG H J, WU W B. In-season crop mapping with GF-1/WFV data by combining object-based image analysis and random forest. Remote Sensing, 2017, 9(11): 1184.

doi: 10.3390/rs9111184
[40]
ZHANG L, LIU Z, REN T W, LIU D Y, MA Z, TONG L A, ZHANG C, ZHOU T Y, ZHANG X D, LI S M. Identification of seed maize fields with high spatial resolution and multiple spectral remote sensing using random forest classifier. Remote Sensing, 2020, 12(3): 362.

doi: 10.3390/rs12030362
[41]
张超, 金虹杉, 刘哲, 李智晓, 宁明宇, 孙海艳. 基于GF遥感数据纹理分析识别制种玉米. 农业工程学报, 2016, 32(21): 183-188.
ZHANG C, JIN H S, LIU Z, LI Z X, NING M Y, SUN H Y. Seed maize identification based on texture analysis of GF remote sensing data. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(21): 183-188. (in Chinese)
[42]
LUO H X, LI M F, DAI S P, LI H L, LI Y P, HU Y Y, ZHENG Q A, YU X A, FANG J H. Combinations of feature selection and machine learning algorithms for object-oriented betel palms and mango plantations classification based on Gaofen-2 imagery. Remote Sensing, 2022, 14(7): 1757.

doi: 10.3390/rs14071757
[43]
SCHEFFLER D, HOLLSTEIN A, DIEDRICH H, SEGL K, HOSTERT P. AROSICS: An automated and robust open-source image co-registration software for multi-sensor satellite data. Remote Sensing, 2017, 9(7): 676.

doi: 10.3390/rs9070676
[44]
宋茜. 基于GF-1/WFV和面向对象的农作物种植结构提取方法研究[D]. 北京: 中国农业科学院, 2016.
SONG Q. Object-based image analysis with machine learning algorithms for cropping pattern mapping using GF-1/WFV imagery[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[45]
苏伟, 李京, 陈云浩, 张锦水, 胡德勇, 刘翠敏. 基于多尺度影像分割的面向对象城市土地覆被分类研究——以马来西亚吉隆坡市城市中心区为例. 遥感学报, 2007, 11(4): 521-530.
SU W, LI J, CHEN Y H, ZHANG J S, HU D Y, LIU C M. Object-oriented urban land-cover classification of multi-scale image segmentation method—— a case study in Kuala Lumpur city center Malaysia. Journal of Remote Sensing, 2007, 11(4): 521-530. (in Chinese)
[46]
佃袁勇, 方圣辉, 姚崇怀. 多尺度分割的高分辨率遥感影像变化检测. 遥感学报, 2016, 20(1): 129-137.
DIAN Y Y, FANG S H, YAO C H. Change detection for high- resolution images using multilevel segment method. Journal of Remote Sensing, 2016, 20(1): 129-137. (in Chinese)
[47]
YANG L B, MANSARAY L, HUANG J F, WANG L M. Optimal segmentation scale parameter, feature subset and classification algorithm for geographic object-based crop recognition using multisource satellite imagery. Remote Sensing, 2019, 11(5): 514.

doi: 10.3390/rs11050514
[48]
SHEN Y, CHEN J Y, XIAO L, PAN D L. Optimizing multiscale segmentation with local spectral heterogeneity measure for high resolution remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 157: 13-25.

doi: 10.1016/j.isprsjprs.2019.08.014
[49]
马燕妮, 明冬萍, 杨海平. 面向对象影像多尺度分割最大异质性参数估计. 遥感学报, 2017, 21(4): 566-578.
MA Y N, MING D P, YANG H P. Scale estimation of object-oriented image analysis based on spectral-spatial statistics. Journal of Remote Sensing, 2017, 21(4): 566-578. (in Chinese)
[50]
DRĂGUŢ L, CSILLIK O, EISANK C, TIEDE D. Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 88: 119-127.

doi: 10.1016/j.isprsjprs.2013.11.018
[51]
BREIMAN L. Random forests. Machine Learning, 2001, 45(1): 5-32.

doi: 10.1023/A:1010933404324
[52]
DOS SANTOS LUCIANO A C, PICOLI M C A, ROCHA J V, DUFT D G, LAMPARELLI R A C, LEAL M R L V, LE MAIRE G. A generalized space-time OBIA classification scheme to map sugarcane areas at regional scale, using Landsat images time-series and the random forest algorithm. International Journal of Applied Earth Observation and Geoinformation, 2019, 80: 127-136.

doi: 10.1016/j.jag.2019.04.013
[53]
HU Q, WU W B, SONG Q, YU Q Y, LU M, YANG P, TANG H J, LONG Y Q. Extending the pairwise separability index for multicrop identification using time-series MODIS images. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(11): 6349-6361.

doi: 10.1109/TGRS.2016.2581210
[54]
CONGALTON R G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 1991, 37(1): 35-46.

doi: 10.1016/0034-4257(91)90048-B
[55]
ZURQANI H A, POST C J, MIKHAILOVA E A, COPE M P, ALLEN J S, LYTLE B A. Evaluating the integrity of forested riparian buffers over a large area using LiDAR data and Google Earth Engine. Scientific Reports, 2020, 10: 14096.

doi: 10.1038/s41598-020-69743-z pmid: 32839474
[1] HUANG Chong,HOU XiangJun. Crop Classification with Time Series Remote Sensing Based on Bi-LSTM Model [J]. Scientia Agricultura Sinica, 2022, 55(21): 4144-4157.
[2] WU Jun,GUO DaQian,LI Guo,GUO Xi,ZHONG Liang,ZHU Qing,GUO JiaXin,YE YingCong. Prediction of Soil Organic Carbon Content in Jiangxi Province by Vis-NIR Spectroscopy Based on the CARS-BPNN Model [J]. Scientia Agricultura Sinica, 2022, 55(19): 3738-3750.
[3] GUO Can,YUE XiaoFeng,BAI YiZhen,ZHANG LiangXiao,ZHANG Qi,LI PeiWu. Research on the Application of a Balanced Sampling-Random Forest Early Warning Model for Aflatoxin Risk in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(17): 3426-3436.
[4] SHEN Zhe,ZHANG RenLian,LONG HuaiYu,XU AiGuo. Research on Spatial Distribution of Soil Texture in Southern Ningxia Based on Machine Learning [J]. Scientia Agricultura Sinica, 2022, 55(15): 2961-2972.
[5] MI XiaoTian,SHI Lei,HE Gang,WANG ZhaoHui. Fertilizer Reduction Potential and Economic Benefits of Crop Production for Smallholder Farmers in Shaanxi Province [J]. Scientia Agricultura Sinica, 2021, 54(20): 4370-4384.
[6] ZHOU Ke, LIU Le, ZHANG YanNa, MIAO Ru, YANG Yang. Area Extraction and Growth Monitoring of Winter Wheat in Henan Province Supported by Google Earth Engine [J]. Scientia Agricultura Sinica, 2021, 54(11): 2302-2318.
[7] ZHANG ZhenHua,DING JianLi,WANG JingZhe,GE XiangYu,WANG JinJie,TIAN MeiLing,ZHAO QiDong. Digital Soil Properties Mapping by Ensembling Soil-Environment Relationship and Machine Learning in Arid Regions [J]. Scientia Agricultura Sinica, 2020, 53(3): 563-573.
[8] XIA ShuFeng,WANG Fan,WANG LongJun,ZHOU Qin,CAI Jian,WANG Xiao,HUANG Mei,DAI TingBo,JIANG Dong. Study on the Adaptability of Wheat Reaching the Protein Content Standard of Soft Wheat in Jiangsu Province [J]. Scientia Agricultura Sinica, 2020, 53(24): 4992-5004.
[9] SHEN Zhe,ZHANG RenLian,LONG HuaiYu,WANG Zhuan,ZHU GuoLong,SHI QianXiong,YU KeFan,XU AiGuo. Research on Spatial Distribution of Soil Particle Size Distribution in Loess Region Based on Three Spatial Prediction Methods—Taking Haiyuan County in Ningxia as an Example [J]. Scientia Agricultura Sinica, 2020, 53(18): 3716-3728.
[10] JI XuSheng,LI Xu,WAN ZeFu,YAO Xia,ZHU Yan,CHENG Tao. Pixel-Based and Object-Oriented Classification of Jujube and Cotton Based on High Resolution Satellite Imagery over Alear, Xinjiang [J]. Scientia Agricultura Sinica, 2019, 52(6): 997-1008.
[11] ZHANG ChunLan, YANG GuiJun, LI HeLi, TANG FuQuan, LIU Chang, ZHANG LiYan. Remote Sensing Inversion of Leaf Area Index of Winter Wheat Based on Random Forest Algorithm [J]. Scientia Agricultura Sinica, 2018, 51(5): 855-867.
[12] WANG Fei,YANG ShengTian,WEI Yang,YANG XiaoDong,DING JianLi. Influence of Sub-Region Priority Modeling Constructed by Random Forest and Stochastic Gradient Treeboost on the Accuracy of Soil Salinity Prediction in Oasis Scale [J]. Scientia Agricultura Sinica, 2018, 51(24): 4659-4676.
[13] HE Ying, DENG Lei, MAO ZhiHui, SUN Jie. Remote Sensing Estimation of Canopy SPAD Value for Maize Based on Digital Camera [J]. Scientia Agricultura Sinica, 2018, 51(15): 2886-2897.
[14] LIU HuanJun, YU ShengNan, ZHANG XinLe, GUO Dong, YIN JiXian. Timeliness Analysis of Crop Remote Sensing Classification One Crop A Year [J]. Scientia Agricultura Sinica, 2017, 50(5): 830-839.
[15] LIU Ya-qiu, CHEN Hong-yan, WANG Rui-yan, CHANG Chun-yan, CHEN Zhe. Quantitative Analysis of Soil Salt and Its Main Ions Based on Visible/Near Infrared Spectroscopy in Estuary Area of Yellow River [J]. Scientia Agricultura Sinica, 2016, 49(10): 1925-1935.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!