Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (19): 4070-4082.doi: 10.3864/j.issn.0578-1752.2020.19.019

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

A Review on Longevity Trait in Dairy Cattle Breeding

ZHANG HaiLiang(),LIU AoXing,MI SiYuan,LI Xiang,LUO HanPeng,YAN XinYi,WANG YaChun()   

  1. College of Animal Science and Technology, China Agricultural University, Beijing 100193
  • Received:2019-11-08 Accepted:2020-01-13 Online:2020-10-01 Published:2020-10-19
  • Contact: YaChun WANG E-mail:18813071851@163.com;wangyachun@cau.edu.cn

Abstract:

Longevity is an important functional trait in dairy cattle. In addition to yield traits, longevity is more economically important than other traits in dairy breeding. The characteristics of longevity include low heritability, unfollowing normal distribution and performance later, hence longevity is the most difficult trait to select in dairy breeding. Since the 1950s, dairy breeders have begun to pay attention to longevity traits. Now, researches on longevity traits have continued. After the 1990s, longevity has been included in total selection index in many countries. However, longevity traits currently are not included in China Dairy Performance Index (CPI), and the study on longevity traits is also in its infancy in China. This review presented the trait definitions, methods of genetic evaluation, relationships between other traits, genetic makers, and selection strategies on longevity traits to systematically introduce its research and application in dairy industry. The complex relationships between longevity and other traits were described by summarizing the genetic correlation coefficients reported by many studies. The selection strategies for longevity traits in the various countries with developed dairy industry were highlighted by summarizing information collected from their dairy breeding program. Furthermore, this review also summarized the studies on longevity traits in dairy cattle in China. Longevity traits had various definitions, and there were various models used to preform genetic analysis, including linear model, threshold model, survival model and random regression model. There were low to moderate genetic correlations between longevity and other traits, including yield, linear type, fertility, health and workability traits, in which the higher genetic correlations were found between longevity and linear type traits in udder system. Generally, dairy cows with better performance on fertility and health traits were better on longevity. Among different populations, there were some differences on relationships between longevity and other traits, which were largely influenced by selection goals of current population. The total selection indexes in many countries included longevity. In addition to using direct longevity to select it, the indirect selection methods were also used in many countries. Udder system, strength, rump angle, feet and leg system, and mastitis resistance were comment traits used to indirect selection. Many genetic markers associated with longevity have been found in various populations, most of which were in genetic regions that have been reported to be associated with traits such as reproduction, disease and body type. Finally, this review also proposed the necessities of collecting longevity data, estimating genetic parameters, locating genetic markers, exploring evaluation model and selection strategy in China dairy cattle population.

Key words: longevity, genetic evaluation, genetic correlation, genetic maker, genetic selection, dairy cattle

Fig. 1

Genetic correlations between longevity and type traits All confirmation traits are linear type traits of dairy cattle. The longevity traits defined as the survival status are uniformly converted into the survival rate (the survival is defined as 1), and the favorable direction of its EBV is consistent with the longevity traits defined as the life length. In figure 1, “ ” “ ” “ ” represent that the number of literature related to current trait was less than 5, 5 to 10, or more than 10, respectively. The literature related to this figure is not listed in references "

Fig. 2

Genetic correlations between longevity and production, fertility, health and workability traits The longevity traits defined as the survival status are uniformly converted into the survival rate (the survival is defined as 1), and the favorable direction of its EBV is consistent with the longevity traits defined as the life length. Among the non-return rate, clinical mastitis, and fertility diseases, cows with no return, clinical mastitis, or reproductive diseases respectively were defined as 1. In figure 2, “ ” “ ” “ ” represent that the number of literature related to current trait was less than 5, 5 to 10, or more than 10, respectively. The literature related to this figure is not listed in references "

Table 1

Genome-wide association analysis on longevity traits"

作者
Author
品种
Breed
性状定义
Trait definition
关联分析表型
Phenotype
分析方法
Analysis method
显著SNP所在染色体
Chromosome of significant SNP
候选基因
Candidate gene
STERI [61] 荷斯坦牛
Holstein
生产寿命
Productive life
表型离差
Trait deviations
简单回归
Simple regression
16、30 UBIAD1、MTOR、ANGPTL7、EXOSC10、SRM、MASP2、TARDBP、CASZ1、GPC3、PHF6
在群寿命
Herd life
产犊次数
The number of calving
16、30
NAYERI [60] 荷斯坦牛
Holstein
在群寿命
Herd life
逆回归育种值
Deregressed proof
单标记回归
Single SNP regression
5、6、7、14、18、
20、21
CTU1、NPFFR2
间接长寿性
Indirect longevity
5、6、18 NPFFR2
存活率
Survival
6、7、14、18、20、
21
HAY [62] 合成品种
Composite breed
生产寿命
Productive life
校正表型
Corrected phenotypes
单标记回归
Single SNP regression
1、2、3、8、9、
11、19、25
GBE1、GTDC1、ZEB2、CTNNA2、REG3A、REG3G、BTBD17、CD300A、CD300LB、CDR2L、FADS6、FDXR、GPRC5C、GRIN2C、HID1
贝叶斯
Bayesian
1、2、3、9、11、15、19、20、25、29
SAOWAPHAK[63] 杂交荷斯坦牛
Cross Holstein
生产寿命
Productive life
性状表型值
Phenotype
一步法
Single step GWAS
5、X SYT1、DOCK11、KLHL13、IL13RA1
ZHANG[64] 荷斯坦牛
Holstein
多胎次生产寿命
Partial productive life
逆回归育种值
Deregressed proof
线性混合模型
Linear mixed model
5、6、9、10、18、
23
NPFFR2、vitamin D-buinding protein、PPP1R14C、GCH1、ZNF613 ZNF617
北欧红牛
Nordic Red dairy cattle
6、21、23、25 CCDC149、LGI2、KCNK16
娟姗牛
Jersey
MéSZáROS [65] 西门塔尔牛
Simmental
生产寿命
Productive life
逆回归育种值
Deregressed proof
单标记回归
Single SNP regression
6、13、14、19、21 DERL1、SNTG1、LOC614437、ALB、AFP、LOC100140503、ADAMTS3、E2F1、RALY、SYT10、NTRK2
COLE[59] 荷斯坦牛
Holstein
生产寿命
Productive life
估计传递力
Predicted transmitting ability
单标记回归
Single SNP regression
7、X INSR、LOC520057

Table 2

Genetic evaluation and selection on longevity traits in various countries"

国家/地区
Country/region
性状定义
Trait definition
遗传评估方法
Methods of genetic evaluation
指数中的权重
Weight in index
加拿大
Canada
直接长寿:头胎产犊 - 120 d、120- 240 d、240 d-2胎产犊、2胎产犊 - 3胎产犊、3胎产犊- 4胎产犊期间的存活状态,共5个性状
Direct longevity: a total 5 traits, survival status from the 1st calving to day 120, day 120 to day 240, day 240 to 2nd calving, 2nd calving to 3rd calving, and 3rd calving to 4th calving
五性状 - BLUP - 动物模型
5 traits - BLUP - Animal model
8%(LPI,2019)
间接长寿:包括体细胞评分、泌乳速度、不返情率、产犊至首配间隔和部分体型性状
Indirect longevity: including somatic cell score, milking speed, non-return rate, calving to first service interval and some type traits
美国
US
直接长寿:生产寿命
Direct longevity: productive life
单性状 - BLUP - 动物模型
Single trait - BLUP - Animal model
4%(TPI,2017)
间接长寿:包括体细胞评分、产奶量、乳脂量、乳蛋白量和部分体型性状
Indirect longevity: including somatic cell score, milk yield, milk fat yield, milk protein yield and some type traits
3%(TPI,2017)
荷兰
Netherlands
头胎产犊后1 - 72月龄期间的存活状态
Survival status from the first calving to the age of 72 months
单性状 - 随机回归 - BLUP - 动物模型
Single trait - Random regression - BLUP - Animal model
8%(NVI,2019)
德国
Germany
前3胎次内泌乳0-49 d、50- 249 d、250 d -下次产犊期间的存活状态,共9个性状
A total of 9 traits, survival status from day 0 to 49, day 50 to 249 and day 250 to the next calving after the current calving among the first 3 lactations
多性状 - BLUP - 动物模型
Muti-traits - BLUP - Animal model
20%(RZG,2018)
法国
France
直接长寿:生产寿命
Direct longevity: productive life
单性状-生存分析-公畜外祖父模型
Single trait - Survival analysis - Sire-maternal grand sire model
5%(ISU,2019)
间接长寿:包括体细胞数、临床乳房炎、泌乳速度、部分繁殖和体型性状
Indirect longevity: including somatic cell count, clinical mastitis, some reproduction and type traits
北欧
Nodic
头胎产犊至2、3、4、5、6胎产犊时生产寿命,共5个性状
A total of 5 traits, the partial productive life from the first calving to the 2nd, 3rd, 4th, 5th, 6th calving
多性状 - BLUP - 动物模型
Muti-traits - BLUP - Animal model
6%(NTM,2018)
新西兰
New Zealand
直接长寿:头胎产犊至2、3、4胎产犊的存活状态,共3个性状
Direct longevity: a total of 3 traits, survival status from the first calving to the 2nd, 3rd, 4th calving
多性状 - BLUP - 动物模型
Muti-traits - BLUP - Animal model
6%(BW,2016)
间接长寿:包括头胎乳蛋白量、头胎体况评分、头胎泌乳速度、头胎体细胞数和部分体型性状等
Indirect longevity: including milk protein yield, body condition score, milking speed and somatic cell count in 1st lactation, and some type traits
澳大利亚
Australia
前7胎各胎次内母牛的存活状态,共7个性状
A total of 7 traits, survival status from the first calving to the 2nd, 3rd, 4th, 5th, 6th, 7th, 8th calving
多性状 - BLUP - 动物模型
Muti-traits - BLUP - Animal model
8%(BPI,2014)
[1] MURRAY B. Finding the tools to achieve longevity in Canadian dairy cows. WCDS Advances in Dairy Technology, 2013, 25: 15-28.
[2] JAIRATH L K, HAYES J F, CUE R I. Multitrait restricted maximum likelihood estimates of genetic and phenotypic parameters of lifetime performance traits for Canadian Holsteins. Journal of Dairy Science, 1994, 77(1): 303-312. DOI: 10.3168/jds.S0022-0302(94)76955-1.
doi: 10.3168/jds.S0022-0302(94)76955-1 pmid: 8120199
[3] ESSL A. Longevity in dairy cattle breeding: a review. Livestock Production Science, 1998, 57(1): 79-89. DOI: 10.3168/jds.S0022- 0302(94)76955-1.
doi: 10.1016/S0301-6226(98)00160-2
[4] BROTHERSTONE S, VEERKAMPEERKAMP R F, Hill W G. Genetic parameters for a simple predictor of the lifespan of Holstein- Friesian dairy cattle and its relationship to production. Animal Science, 1997, 65(1): 31-37. DOI: 10.1017/S135772980001626X.
doi: 10.1017/S135772980001626X
[5] WEIGEL K A, PALMER R W, CARAVIELLO D Z. Investigation of factors affecting voluntary and involuntary culling in expanding dairy herds in Wisconsin using survival analysis. Journal of Dairy Science, 2003, 86(4): 1482-1486. DOI: 10.3168/jds.S0022-0302(03)73733-3.
pmid: 12741574
[6] SEWALEM A, KISTEMAKER G J, DUCROCQ V. Genetic analysis of herd life in Canadian dairy cattle on a lactation basis using a Weibull proportional hazards model. Journal of Dairy Science, 2005, 88(1): 368-375. DOI: 10.3168/jds.S0022-0302(05)72696-5.
doi: 10.3168/jds.S0022-0302(05)72696-5 pmid: 15591401
[7] CARAVIELLO D Z, WEIGEL K A, GIANOLA D. Comparison between a Weibull proportional hazards model and a linear model for predicting the genetic merit of US Jersey sires for daughter longevity. Journal of Dairy Science, 2004, 87(5): 1469-1476. DOI: 10.3168/ jds.S0022-0302(04)73298-1.
doi: 10.3168/jds.S0022-0302(04)73298-1 pmid: 15290996
[8] DUCROCQ V, QUAAS R L, POLLAK E J. Length of productive life of dairy cows. 2. variance component estimation and sire evaluation. Journal of Dairy Science, 1988, 71(11): 3071-3079. DOI: 10.3168/ jds.S0022-0302(88)79907-5.
doi: 10.3168/jds.S0022-0302(88)79907-5
[9] TSURUTA S, MISZTALisztal I, LAWLOR T J. Changing definition of productive life in US Holsteins: effect on genetic correlations. Journal of Dairy Science, 2005, 88(3): 1156-1165. DOI: 10.3168/ jds.S0022-0302(05)72782-X.
pmid: 15738249
[10] 李想, 鄢新义, 罗汉鹏, 刘林, 郭刚, 王新宇, 王雅春. 不同模型估计中国荷斯坦牛生产寿命遗传参数. 畜牧兽医学报, 2019, 50(06): 1162-1170. DOI: 10.11843/j.issn.0366-6964.2019.06.006.
LI X, YAN X Y, LUO H P, LIU L, GUO G, WANG X Y, WANG Y C. Genetic parameters for productive life of Chinese Holsteins by different models. Chinese Journal of Animal and Veterinary Sciences. 2019, 50(06): 1162-1170. DOI: 10.11843/j.issn.0366-6964.2019.06. 006. (in Chinese)
[11] SHORT T H, LAWLOR T J. Genetic parameters of conformation traits, milk yield, and herd life in Holsteins. Journal of Dairy Science, 1992, 75(7): 1987-1998. DOI: 10.3168/jds.S0022-0302(92)77958-2.
doi: 10.3168/jds.S0022-0302(92)77958-2 pmid: 1500592
[12] VISSCHER P M, GODDARD M E. Genetic parameters for milk yield, survival, workability, and type traits for Australian dairy cattle. Journal of Dairy Science, 1995, 78(1): 205-220. DOI: 10.3168/jds. S0022-0302(95)76630-9.
pmid: 7738256
[13] JAIRATH L, DEKKERS J C, SCHAEFFER L R. Genetic evaluation for herd life in Canada. Journal of Dairy Science, 1998, 81(2): 550-562. DOI: 10.3168/jds.S0022-0302(98)75607-3.
doi: 10.3168/jds.S0022-0302(98)75607-3 pmid: 9532510
[14] BOETTCHER P J, JAIRATH L K, DEKKERS J C. Comparison of methods for genetic evaluation of sires for survival of their daughters in the first three lactations. Journal of Dairy Science, 1999, 82(5): 1034. DOI: 10.3168/jds.S0022-0302(99)75324-5.
doi: 10.3168/jds.S0022-0302(99)75324-5 pmid: 10342243
[15] VEERKAMP R F, BROTHERSTONE S, ENGEL B. Analysis of censored survival data using random regression models. Animal Science, 2001, 72(1): 1-10. DOI: 10.1017/S1357729800055491.
doi: 10.1017/S1357729800055491
[16] PELT M L VAN, MEUWISSEN T H E, JONG G DE. Genetic analysis of longevity in Dutch dairy cattle using random regression. Journal of Dairy Science, 2015, 98(6): 4117-4130. DOI: 10.3168/jds. 2014-9090.
doi: 10.3168/jds.2014-9090 pmid: 25892695
[17] IMBAYARWO-CHIKOSI V E, DZAMA K, HALIMANI T E. Genetic prediction models and heritability estimates for functional longevity in dairy cattle. South African Journal of Animal Science, 2015, 45(2): 105-121. DOI: 10.4314/sajas.v45i2.1.
doi: 10.4314/sajas.v45i2.1
[18] SASAKI O. Estimation of genetic parameters for longevity traits in dairy cattle: A review with focus on the characteristics of analytical models. Animal Science Journal, 2013, 84(6): 449-460. DOI: 10.1111/asj.12066.
pmid: 23607602
[19] VOLLEMA A R, GROEN A F. A comparison of breeding value predictors for longevity using a linear model and survival analysis. Journal of Dairy Science, 1998, 81(12): 3315-3320. DOI: 10.3168/jds.S0022-0302(98)75897-7.
doi: 10.3168/jds.S0022-0302(98)75897-7 pmid: 9891278
[20] LUBBERS R, BROTHERSTONE S, DUCROCQ V P. A comparison of a linear and proportional hazards approach to analyse discrete longevity data in dairy cows. Animal Science, 2000, 70(2): 197-206. DOI: 10.1017/S1357729800054667.
doi: 10.1017/S1357729800054667
[21] VOLLEMA A R, GROEN A F. Genetic correlations between longevity and conformation traits in an upgrading dairy cattle population. Journal of Dairy Science, 1997, 80(11): 3006-3014. DOI: 10.3168/jds.S0022-0302(97)76267-2.
pmid: 9406094
[22] ZAVADILOA L, STIPKOVA M. Genetic correlations between longevity and conformation traits in the Czech Holstein population. Czech Journal of Animal Science, 2012, 57(3): 125-136. DOI: 10.17221/5566-CJAS.
doi: 10.17221/CJAS
[23] ZAVADILOA L, NEMCOVA E, STIPKOVA M. Relationships between longevity and conformation traits in Czech Fleckvieh cows. Czech Journal of Animal Science, 2009, 54(9): 385-394. DOI: 10. 17221/1685-CJAS.
doi: 10.17221/CJAS
[24] CRUICKSHANK J, WEIGEL K A, DENTINE M R. Indirect prediction of herd life in Guernsey dairy cattle. Journal of Dairy Science, 2002, 85(5): 1307-1313. DOI: 10.3168/jds.S0022-0302(02) 74195-7.
doi: 10.3168/jds.S0022-0302(02)74195-7 pmid: 12086068
[25] VUKASINOVIC N, MOLL J, KUNZI N. Genetic relationships among longevity, milk production, and type traits in Swiss Brown cattle. Livestock Production Science, 1995, 41(1): 11-18. DOI: 10.1016/0301-6226(94)00044-8.
doi: 10.1016/0301-6226(94)00044-8
[26] WEIGEL K A, LAWLOR J T J, VANRADEN P M. Use of linear type and production data to supplement early predicted transmitting abilities for productive life. Journal of Dairy Science, 1998, 81(7): 2040-2044. DOI: 10.3168/jds.S0022-0302(98)75778-9.
doi: 10.3168/jds.S0022-0302(98)75778-9 pmid: 9710774
[27] SETATI M M, NORRIS D, BANGA C B. Relationships between longevity and linear type traits in Holstein cattle population of Southern Africa. Tropical Animal Health and Production, 2004, 36(8): 807-814. DOI: 10.1023/B:TROP.0000045965.99974.9c.
doi: 10.1023/B:TROP.0000045965.99974.9c pmid: 15643816
[28] TSURUTA S, MISZTAL I, LAWLOR T J. Genetic correlations among production, body Size, udder, and productive life traits over time in Holsteins. Journal of Dairy Science, 2004, 87(5): 1457-1468. DOI: 10.3168/jds.S0022-0302(04)73297-X.
doi: 10.3168/jds.S0022-0302(04)73297-X pmid: 15290995
[29] PEREZ-CABAL M A, GARCIA C, GONZALEZ-RECIO O. Genetic and phenotypic relationships among locomotion type traits, profit, production, longevity, and fertility in Spanish dairy cows. Journal of Dairy Science, 2006, 89(5): 1776-1783. DOI: 10.3168/jds.S0022-0302 (06)72246-9.
doi: 10.3168/jds.S0022-0302(06)72246-9 pmid: 16606749
[30] HAILE-MARIAM M, BOWMAN P J, GODDARD M E. Genetic and environmental relationship among calving interval, survival, persistency of milk yield and somatic cell count in dairy cattle. Livestock Production Science, 2003, 80(3): 189-200. DOI: 10.1016/ S0301-6226(02)00188-4.
doi: 10.1016/S0301-6226(02)00188-4
[31] HOLTSMARK M, HERINGSTAD B, MADSEN P. Genetic relationship between culling, milk production, fertility, and health traits in Norwegian Red cows. Journal of Dairy Science, 2008, 91(10): 4006-4012. DOI: 10.3168/jds.2007-0816.
doi: 10.3168/jds.2007-0816 pmid: 18832226
[32] PFEIFFER C, FUERST C, DUCROCQ V. Short communication: Genetic relationships between functional longevity and direct health traits in Austrian Fleckvieh cattle. Journal of Dairy Science, 2015, 98(10): 7380-7383. DOI: 10.3168/jds.2015-9632.
doi: 10.3168/jds.2015-9632 pmid: 26277309
[33] ROGERS G W, BANOS G, NIELSEN U S. Genetic correlations among somatic cell scores, productive life, and type traits from the United States and udder health measures from Denmark and Sweden. Journal of Dairy Science, 1998, 81(5): 1445-1453. DOI: 10.3168/ jds.S0022-0302(98)75708-X.
doi: 10.3168/jds.s0022-0302(98)75708-x pmid: 9621248
[34] NEERHOF H J, MADSEN P, DUCROCQ V P. Relationships between mastitis and functional longevity in Danish Black and White dairy cattle estimated using survival analysis. Journal of Dairy Science, 2000, 83(5): 1064-1071. DOI: 10.3168/jds.S0022-0302(00) 74970-8.
doi: 10.3168/jds.S0022-0302(00)74970-8 pmid: 10821581
[35] BUENGER A, DUCROCQ V, SWALVE H H. Analysis of survival in dairy cows with supplementary data on type scores and housing systems from a region of northwest Germany. Journal of Dairy Science, 2001, 84(6): 1531-1541. DOI: 10.3168/jds.S0022-0302(01) 70187-7.
doi: 10.3168/jds.S0022-0302(01)70187-7 pmid: 11417714
[36] LARROQUE H, DUCROCQ V. Relationships between type and longevity in the Holstein breed. Genetics Selection Evolution, 2001, 33(1): 39-59. DOI: 10.1186/1297-9686-33-1-39.
doi: 10.1186/1297-9686-33-1-39
[37] SEWALEM A, KISTEMAKER G J, MIGLIOR F. Analysis of the relationship between type traits and functional survival in Canadian Holsteins using a Weibull proportional hazards model. Journal of Dairy Science, 2004, 87(11): 3938-3946. DOI: 10.3168/jds.S0022- 0302(04)73533-X.
doi: 10.3168/jds.S0022-0302(04)73533-X pmid: 15483178
[38] DADPASAND M, MIRAEI-ASHTIANI S R, MORADI SHAHREBABAK M. Impact of conformation traits on functional longevity of Holstein cattle of Iran assessed by a Weibull proportional hazards model. Livestock Science, 2008, 118(3): 204-211. DOI: 10.1016/j.livsci.2008. 01.024.
doi: 10.1016/j.livsci.2008.01.024
[39] SEWALEM A, KISTEMAKER G J, VAN DOORMAAL B J. Relationship between type traits and longevity in Canadian Jerseys and Ayrshires using a Weibull proportional hazards model. Journal of Dairy Science, 2005, 88(4): 1552-1560. DOI: 10.3168/jds.S0022- 0302(05)72824-1
doi: 10.3168/jds.S0022-0302(05)72824-1 pmid: 15778325
[40] SEWALEM A, MIGLIOR F, KISTEMAKER G J. Relationship between reproduction traits and functional longevity in Canadian dairy cattle. Journal of Dairy Science, 2008, 91(4): 1660-1668. DOI: 10.3168/jds.2007-0178.
doi: 10.3168/jds.2007-0178 pmid: 18349259
[41] SEWALEM A, MIGLIOR F, KISTEMAKER G J. Analysis of the relationship between somatic cell score and functional longevity in Canadian dairy cattle. Journal of Dairy Science, 2006, 89(9): 3609-3614. DOI: 10.3168/jds.S0022-0302(06)72400-6.
doi: 10.3168/jds.S0022-0302(06)72400-6 pmid: 16899696
[42] CARAVIELLO D Z, WEIGEL K A, Shook G E. Assessment of the impact of somatic cell count on functional longevity in Holstein and Jersey cattle using survival analysis methodology. Journal of Dairy Science, 2005, 88(2): 804-811. DOI: 10.3168/jds.S0022-0302(05) 72745-4.
doi: 10.3168/jds.S0022-0302(05)72745-4 pmid: 15653548
[43] SEWALEM A, MIGLIOR F, KISTEMAKER G J. Analysis of the relationship between workability traits and functional longevity in Canadian dairy breeds. Journal of Dairy Science, 2010, 93(9): 4359-4365. DOI: 10.3168/jds.2009-2969.
doi: 10.3168/jds.2009-2969 pmid: 20723709
[44] FUERST-WALTL B, REICHL A, FUERST C. Effect of maternal age on milk production traits, fertility, and longevity in cattle. Journal of Dairy Science, 2004, 87(7): 2293-2298. DOI: 10.3168/jds.S0022- 0302(04)70050-8.
doi: 10.3168/jds.S0022-0302(04)70050-8 pmid: 15328244
[45] MIGLIOR F, SEWALEM A, JAMROZIK J. Analysis of milk urea nitrogen and lactose and their effect on longevity in Canadian dairy cattle. Journal of Dairy Science, 2006, 89(12): 4886-4894. DOI: 10.3168/jds.S0022-0302(06)72537-1.
doi: 10.3168/jds.S0022-0302(06)72537-1 pmid: 17106119
[46] SEWALEM A, KISTEMAKER G J, MIGLIOR F. Analysis of inbreeding and its relationship with functional longevity in Canadian dairy cattle. Journal of Dairy Science, 2006, 89(6): 2210-2216. DOI: 10.3168/jds.S0022-0302(06)72291-3.
doi: 10.3168/jds.S0022-0302(06)72291-3 pmid: 16702287
[47] FONTANESI L, CALO D G, GALIMBERTI G. A candidate gene association study for nine economically important traits in Italian Holstein cattle. Animal Genetics, 2014, 45(4): 576-580. DOI: 10.1111/ age.12164.
doi: 10.1111/age.12164 pmid: 24796806
[48] SZYDA J, MOREK-KOPEC M, KOMISAREK J. Evaluating markers in selected genes for association with functional longevity of dairy cattle. BMC genetics, 2011, 12: 30. DOI: 10.1186/1471-2156-12-30.
doi: 10.1186/1471-2156-12-30 pmid: 21392379
[49] KOMISAREK J, DORYNEK Z. Effect of ABCG2, PPARGC1A, OLR1 and SCD1 gene polymorphism on estimated breeding values for functional and production traits in Polish Holstein-Friesian bulls. Journal of Applied Genetics, 2009, 50(2): 125-132. DOI: 10.1007/ BF03195663.
doi: 10.1007/BF03195663 pmid: 19433909
[50] KHATIB H, SCHUTZKUS V, CHANG Y M. Pattern of expression of the uterine milk protein gene and its association with productive life in dairy cattle. Journal of Dairy Science, 2007, 90(5): 2427-2433. DOI: 10.3168/jds.2006-722.
doi: 10.3168/jds.2006-722 pmid: 17430947
[51] GARCIA M D, MICHAL J J, GASKINS C T. Significant association of the calpastatin gene with fertility and longevity in dairy cattle. Animal Genetics, 2006, 37(3): 304-305. DOI: 10.1111/j.1365-2052. 2006.01443.x.
doi: 10.1111/j.1365-2052.2006.01443.x pmid: 16734705
[52] KHATIB H, HEIFETZ E, DEKKERS J C. Association of the protease inhibitor gene with production traits in Holstein dairy cattle. Journal of Dairy Science, 2005, 88(3): 1208-1213. DOI: 10.3168/jds.S0022- 0302(05)72787-9.
doi: 10.3168/jds.S0022-0302(05)72787-9 pmid: 15738254
[53] RUSSO V, FONTANESI L, DOLEZAL M, DOLEZAL M, LIPKIN E, SCOTTI E, ZAMBONELLI P, DALL’OLIO S, BIGI D, DAVOLI R, CANAVESI F, MEDUGORAC I, FOSTER M, SOLKNER J, SCHIAVINI F, BAGNATO A, SOLLER M . A whole genome scan for QTL affecting milk protein percentage in Italian Holstein cattle, applying selective milk DNA pooling and multiple marker mapping in a daughter design. Animal Genetics, 2012, 43(1): 72. DOI: 10.1111/ j.1365-2052.2012.02353.x.
doi: 10.1111/j.1365-2052.2011.02208.x pmid: 22221027
[54] HILL R, CANAL A, BONDIOLI K, MORELL R, GARCIA M D. Molecular markers located on the DGAT1, CAST, and LEPR genes and their associations with milk production and fertility traits in Holstein cattle. Genetics and Molecular Research, 2016, 15(1). DOI: 10.4238/gmr.15017794.
doi: 10.4238/gmr.15017198 pmid: 27051021
[55] GAUTIER M, CAPITAN A, FRITZ S, EGGEN A, BOICHARD D, DRUET T. Characterization of the DGAT1 K232A and variable number of tandem repeat polymorphisms in French dairy cattle. Journal of Dairy Science, 2007, 90(6): 2980-2988. DOI: 10.3168/jds. 2006-707.
doi: 10.3168/jds.2006-707 pmid: 17517739
[56] HUANG W, PENAGARICANO F, AHMAD K R, LUCEY J A, WEIGEL K A, KHATIB H. Association between milk protein gene variants and protein composition traits in dairy cattle. Journal of Dairy Science, 2012, 95(1): 440-449. DOI: 10.3168/jds.2011-4757.
doi: 10.3168/jds.2011-4757 pmid: 22192223
[57] CHEBEL R C, SUSCA F, SANTOS J E P. Leptin genotype is associated with lactation performance and health of Holstein cows. Journal of Dairy Science, 2008, 91(7): 2893-2900. DOI: 10.3168/ jds.2007-0891.
doi: 10.3168/jds.2007-0891 pmid: 18565947
[58] BRICKELL J S, POLLOTT G E, CLEMPSON A M, OTTER N, WATHES D C. Polymorphisms in the bovine leptin gene associated with perinatal mortality in Holstein-Friesian heifers. Journal of Dairy Science, 2010, 93(1): 340-347. DOI: 10.3168/jds.2009-2457.
doi: 10.3168/jds.2009-2457 pmid: 20059932
[59] COLE J B, WIGGANS G R, MA L. Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows. BMC Genomics, 2011, 12(1): 408.
doi: 10.1186/1471-2164-12-408
[60] NAYERI S, SARGOLZAEI M, ABO-ISMAIL M K. Genome-wide association study for lactation persistency, female fertility, longevity, and lifetime profit index traits in Holstein dairy cattle. Journal of Dairy Science, 2017, 100(2): 1246-1258. DOI: 10.3168/jds.2016- 11770.
doi: 10.3168/jds.2016-11770 pmid: 27889128
[61] STERI R, MOIOLI B, CATILLO G. Genome-wide association study for longevity in the Holstein cattle population. Animal, 2019, 13(7): 1350-1357. DOI: 10.1017/S1751731118003191.
doi: 10.1017/S1751731118003191 pmid: 30501681
[62] HAY E H, ROBERTS A. Genomic prediction and genome-wide association analysis of female longevity in a composite beef cattle breed. Journal of Animal Science, 2017, 95(4): 1467-1471. DOI: 10.2527/jas2016.1355.
pmid: 28464084
[63] SAOWAPHAK P, DUANGJINDA M, PLAENGKAEO S. Genetic correlation and genome-wide association study (GWAS) of the length of productive life, days open, and 305-days milk yield in crossbred Holstein dairy cattle. Genetics and Molecular Research, 2017, 16(2). DOI: 10.4238/gmr16029091.
doi: 10.4238/gmr16029696 pmid: 28653742
[64] ZHANG Q, GULDBRANDTSEN B, THOMASEN J R. Genome- wide association study for longevity with whole-genome sequencing in 3 cattle breeds. Journal of Dairy Science, 2016, 99(9): 7289-7298. DOI: 10.3168/jds.2015-10697.
doi: 10.3168/jds.2015-10697 pmid: 27289149
[65] MESZAROS G, EAGLEN S, WALDMANN P. A genome wide association study for longevity in cattle. Open Journal of Genetics, 2014, 4(1): 46-55. DOI: 10.4236/ojgen.2014.41007.
doi: 10.4236/ojgen.2014.41007
[66] MIGLIOR F, FLEMING A, MALCHIODI F. A 100-year review: identification and genetic selection of economically important traits in dairy cattle. Journal of Dairy Science, 2017, 100(12): 10251-10271. DOI: 10.3168/jds.2017-12968.
doi: 10.3168/jds.2017-12968 pmid: 29153164
[67] VUKASINOVIC N, SCHLEPPI Y, KUNZI N. Using conformation traits to improve reliability of genetic evaluation for herd life based on survival analysis. Journal of Dairy Science, 2002, 85(6): 1556-1562. DOI: 10.3168/jds.S0022-0302(02)74225-2.
doi: 10.3168/jds.S0022-0302(02)74225-2 pmid: 12146488
[68] SEWALEM A, MIGLIOR F, KISTEMAKER G J. Short communication: Modification of genetic evaluation of herd life from a three-trait to a five-trait model in Canadian dairy cattle. Journal of Dairy Science, 2007, 90(4): 2025-2028. DOI: 10.3168/jds.2006-719.
doi: 10.3168/jds.2006-719 pmid: 17369244
[69] VANRADEN P M. Efficient methods to compute genomic predictions. Journal of Dairy Science, 2008, 91(11): 4414-4423. DOI: 10.3168/ jds.2007-0980.
doi: 10.3168/jds.2007-0980 pmid: 18946147
[70] LIU Z, SEEFRIED F R, REINHARDT F. Impacts of both reference population size and inclusion of a residual polygenic effect on the accuracy of genomic prediction. Genetics Selection Evolution, 2011, 43: 19. DOI: 10.1186/1297-9686-43-19.
doi: 10.1186/1297-9686-43-19
[71] VANRADEN P M, VAN TASSELL C P, WIGGANS G R. Invited review: reliability of genomic predictions for North American Holstein bulls. Journal of Dairy Science, 2009, 92(1): 16-24. DOI: 10.3168/jds.2008-1514.
doi: 10.3168/jds.2008-1514 pmid: 19109259
[72] 鄢新义, 刘澳星, 董刚辉, 郭刚, 王新宇, 刘林, 张胜利, 王雅春. 北京地区中国荷斯坦牛长寿性及其影响因素分析. 中国畜牧杂志, 2016, 52(23): 1-6.
YAN X Y, LIU A X, DONG G H, GUO G, WANG X Y, LIU L, ZHANG S L, WANG Y C. Analysis of longevity and its influencing factors in Chinese Holstein population in Beijing. Chinese Journal of Animal Science. 2016, 52(23): 1-6.(in Chinese)
[73] 毛杰. 上海地区荷斯坦牛体型性状与产奶性状、SCS和寿命性状的遗传分析[D]. 南京: 南京农业大学, 2015.
MAO J. Genetic analysis between type traits, milk production traits, SCS and longevity traits of Holstein cattle in Shanghai[D]. Nanjing: Nanjing Agricultural University, 2015.(in Chinese)
[74] 储明星, 叶素成, 陈国宏. 微卫星标记与奶牛数量性状QTL定位. 遗传, 2003(3): 337-340.
doi: 10.1111/j.1601-5223.1999.00337.x pmid: 10509144
CHU M X, YE S C, CHEN G H. Mapping quantitative trait loci for quantitative traits in dairy cattle microsatellite markers. Hereditas. 2003(3): 337-340.(in Chinese)
doi: 10.1111/j.1601-5223.1999.00337.x pmid: 10509144
[75] 王梦琦, 倪炜, 张慧敏, 杨章平, 王西朴, 蒋彦森, 毛永江. 中国荷斯坦牛CXCR1基因编码区SNP多态与临床乳房炎和生产寿命的关联分析. 中国农业科学, 2017, 50(12): 2359-2370. DOI: 10.3864/j.issn.0578-1752.2017.12.016.
doi: 10.3864/j.issn.0578-1752.2017.12.016
WANG M Q, NI W, ZHANG H M, YANG Z P, WANG X P, JIANG Y S, MAO Y J. Association between SNPs in the CDS regions of CXCR1 gene and the clinical mastitis and lifetime for Chinese Holstein. Scientia Agricultura Sinica, 2017, 50(12): 2359-2370. DOI: 10.3864/j.issn.0578-1752.2017.12.016. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.12.016
[76] 王梦琦, 倪炜, 郭译蔚, 张慧敏, 杨章平, 毛永江. 中国荷斯坦牛SLC35A3-66基因SNP突变与奶牛疾病及泌乳性能的相关性分析. 中国兽医学报, 2017, 37(12): 2418-2424. DOI: 10.16303/j.cnki.1005- 4545.2017.12.30.
WANG M Q, NI W, GUO Y W, ZHANG H M, YANG Z P, MAO Y J. Correlation analysis between diseases and milking traits and SNP of SLC35A3-66 for Chinese Holstein cow. Chinese Journal of Veterinary Science, 2017, 37(12): 2418-2424. DOI: 10.16303/j.cnki.1005-4545. 2017.12.30. (in Chinese)
[77] 赵佳强. 中国荷斯坦奶牛生产寿命、体型线性性状分子标记的研究[D]. 武汉: 华中农业大学, 2013.
ZHAO J Q. Research on molecular markers and productive life, liner type traits of Holstein cattle in China[D]. Wuhan: Huazhong Agricultural University, 2013.(in Chinese)
[78] 陈星. 奶牛乳房炎相关天然免疫基因的筛选及其功能研究[D]. 武汉: 华中农业大学, 2016.
CHEN X. Dairy cow mastitis related innate immune genes screening and function study[D]. Wuhan: Huazhong Agricultural University, 2016.(in Chinese)
[79] LIU A, LUND M S, BOICHARDARD D, KARAMAN E, FRITZ S, AAMAND G P, NIELSEN U S, WANG Y, SU G. Improvement of genomic prediction by integrating additional single nucleotide polymorphisms selected from imputed whole genome sequencing data. Heredity, 2020, 124: 37-49. DOI: 10.1038/s41437-019-0246-7.
doi: 10.1038/s41437-019-0246-7 pmid: 31278370
[80] BRONDUM R F, SU G, JANSS L, SAHANA G, GULDBRANDTSEN B, BOICHARD D, Lund M S. Quantitative trait loci markers derived from whole genome sequence data increases the reliability of genomic prediction. Journal of Dairy Science, 2015, 98(6): 4107-4116. DOI: 10.3168/jds.2014-9005.
doi: 10.3168/jds.2014-9005 pmid: 25892697
[1] DONG MingMing,ZHAO FanFan,GE JianJun,ZHAO JunLiang,WANG Dan,XU Lei,ZHANG MengHua,ZHONG LiWei,HUANG XiXia,WANG YaChun. Heritability Estimation and Correlation Analysis of Longevity and Milk Yield of Holstein Cattle in Xinjiang Region [J]. Scientia Agricultura Sinica, 2022, 55(21): 4294-4303.
[2] LI HuiXia,TIAN Gang,WANG YuWen,LIU Xin,LIU Hong. Genetic Correlation Coefficients of Foxtail Millet Traits Between Parents and Hybrids [J]. Scientia Agricultura Sinica, 2020, 53(2): 239-246.
[3] DANG LiPing,ZHOU WenXin,LIU RuiFang,BAI Yun,WANG ZhePeng. Estimation of Genetic Parameters of Body Weight and Egg Number Traits of Lueyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2020, 53(17): 3620-3628.
[4] HE JingLan,ZHANG Ming,LIU RuiYing,WAN GuiJun,PAN WeiDong,CHEN FaJun. Effects of the Interference of Key Magnetic Response Genes on the Longevity of Brown Planthopper (Nilaparvata lugens) Under Near-Zero Magnetic Field [J]. Scientia Agricultura Sinica, 2019, 52(1): 45-55.
[5] CHEN Zhen-Zhen, LI Ming-Gui, GUO Ya-Nan, YIN Xiang-Chu, ZHANG Fan, XU Yong-Yu. Effects of Photoperiod and Temperature on the Post-Diapause Biology of Chrysoperla sinica (Tjeder) Adults in Different Overwintering Periods [J]. Scientia Agricultura Sinica, 2013, 46(8): 1610-1618.
[6] ZHANG Ying, DANG Guo-Rui, ZHANG Li-Sheng, WANG Meng-Qing, CHEN Hong-Yin. Effects of Host-Feeding on Egg Maturation and Longevity of Synovigenic Parasitoid Diglyphus isaea [J]. Scientia Agricultura Sinica, 2013, 46(6): 1166-1171.
[7] LIANG Guang-Hua, DENG Min, LIU Xian-Xia, GU Xin-Li, GAO Shu, XU Lei. A Study on the Impact of Reproductive Hormones in Serum by Using Fertility-Promoting Powder for Treating Infertility Caused by Persistent Corpus Luteum and Ovary Sandstill of Dairy Cattle [J]. Scientia Agricultura Sinica, 2012, 45(15): 3182-3188.
[8] XIONG Ben-Hai, LUO Qing-Yao, PANG Zhi-Hong, YANG Liang, YANG Lu. Precise Calculation System of Total Mixed Ration for Lactating Cow [J]. Scientia Agricultura Sinica, 2012, 45(14): 2948-2958.
[9] XIAO Jian-Hua, HU Yu-Long, FAN Fu-Xiang, MA Hai-Kun, WANG Hong-Bin. Contruction of a Decision Support System for Dairy Cattle Breeding [J]. Scientia Agricultura Sinica, 2012, 45(10): 2012-2021.
[10] XIONG Ben-hai,MA Yi,LUO Qing-yao,PANG Zhi-hong,DENG Wen
. Study on Lactation Curve Models of Chinese Holstein for the Third Parity
[J]. Scientia Agricultura Sinica, 2011, 44(2): 402-408 .
[11] LUO Qing-yao,XIONG Ben-hai,MA Yi,PANG Zhi-hong1,DENG Wen
. Study on Lactation Curve Models of Chinese Holstein for the Second Parity

[J]. Scientia Agricultura Sinica, 2010, 43(23): 4910-4916 .
[12] . Study of Digital Management System of Milking Process on Intensivism Dairy Cattle Farm [J]. Scientia Agricultura Sinica, 2008, 41(4): 1179-1185 .
[13] . Development and application of nested PCR assay for detection of dairy cattle-derived Cyclospora sp. [J]. Scientia Agricultura Sinica, 2007, 40(9): 2073-2078 .
[14] . PstI-RFLPs and BanI-RFLPs in AGPAT6 Intron2 and their Effects on Milk Performance of Dairy Cattle [J]. Scientia Agricultura Sinica, 2007, 40(7): 1498-1503 .
[15] . The Effect of Supplementation With Vegetable Oilseed On Bovine Milk-fatty acids [J]. Scientia Agricultura Sinica, 2007, 40(6): 1248-1253 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!