Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (18): 3877-3885.doi: 10.3864/j.issn.0578-1752.2011.18.019

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Analysis of Genetic Diversity in Twelve Honeybee Populations Based on AFLP Technique

ZHANG  Chun-Xiang, ZHANG  Xue-Feng, CHEN  Ting-Zhu, TENG  Yue-Zhong, LIU  Wen-Zhong, JIANG  Yu-Suo   

  1. 1. 山西农业大学动物科技学院
    2. 广东省昆虫研究所
    3. 山西省养蜂管理站
    4. 山西省晋中种蜂场
  • Received:2010-10-15 Revised:2010-12-12 Online:2011-09-15 Published:2011-02-22

Abstract: 【Objective】 The objective of this study is to evaluate the population genetic diversity and differentiation among Apis cerana, Apis dorsata and Apis mellifera in China. 【Method】 DNA gene pools were genotyped by AFLP with nineteen pairs of primer combinations in twelve honeybee populations, which are individually ten Apis cerana from ten provinces of China, one Apis dorsata and one Apis mellifera.【Result】 The genetic similarity coefficient among the different honeybee species was low. However, the coefficient among the different populations of Apis cerana was high. Compared with A. mellifera, the coefficient Apis cerana is 0.2335-0.2823, but with Apis dorsata, the coefficient is 0.2439-0.2871. Between the A. mellifera and Apis dorsata, the coefficient is 0.2650. Among the different populations of Apis ceranas, the coefficient is 0.3639-0.6134. According to the cluster map, the twelve populations can be distinctly divided into three branches, they are Apis mellifera , Apis dorsata and Apis cerana. However, among the different populations of Apis cerana, the honeybees from Jilin and Jiangxi provinces belong to a sub-branch, those from Hainan, Fujian, Guangdong and Yunnan belong to another sub-branch, those from Gansu, Shanxi, Beijing and Sichuan provinces belong to another sub-branch. 【Conclusion】 Genetic divergence was apparent among Apis mellifera, Apis dorsata and Apis cerana. The coefficient was higher among the different geographic Apis cerana in China. The Apis cerana in Jilin province was a unique group.

Key words: honeybees, gene pool, AFLP analysis, population genetic diversity

[1]Zabeau M, Vos P. Selective restriction fragment amplification: a general method for DNA fingerprinting. European patent application number: 92402629.7, 1993.publication number: 0534 858AI.336.

[2]Russell J R, Fuller J D, Macaulay M, Hatz B G, Jahoor A, Powell W, Waugh R. Direct comparison of levels of genetic variation among barely accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theortical Applied Genetics, 1997, 95: 714-722.

[3]Blears M J, Grandis SA De, Trevors J T. Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. Journal of Industrial Microbiology and Biotechnology, 1998, 21: 99-114.

[4]Katiyar S K, Chandel G, Tan Y, Zhang Y, Huang B, Nugaliyadde L, Fernando K, Bentur J S, Inthavong S, Constantino S, Bennett J. Biodiversity of Asian rice gall midge (Orseolia oryzae Wood Mason) from five countries examined by AFLP analysis. Genome, 2000, 43 (2): 322-332.

[5]Suazo A, Hall H G. Modification of the AFLP protocol applied to honey bee (Apis mellifera L.) DNA. BioTechniques, 1999, 26(4): 704-705, 708-709.

[6]Smith D R, Palmer M R, Otis G, Damus M. Mitochondrial DNA and AFLP markers support species status of Apis nigrocincta. Insectes Sociaus, 2003, 50: 185-190.

[7]姜玉锁, 刘文忠, 张春香, 乔利英, 朱文进, 张桂贤, 郭传甲. 中国境内不同地理型东方蜜蜂遗传多样性的AFLP分析. 昆虫学报, 2007, 50(2): 144-152.

Jiang Y S, Liu W Z, Zhang C X, Qiao L Y, Zhu W J, Zhang G X, Guo C J. AFLP analysis of genetic diversity of Apis cerana Fabricius distributed in different geographic areas in China. Acta Entamologica Sinica, 2007, 50(2): 144-152. (in Chinese)

[8]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 2007, 24(8): 1596-1599.

[9]Gaviria D A, Aguilar E, Serrano H J, Alegria A H. DNA fingerprinting using AFLP markers to search for markers associated with yield attributes in the silkworm, Bombyx mori. Journal of Insect Science, 2006, 6: 1-10.

[10]Blehert D S, Jefferson K L, Heisey D M, Samuel M D, Berlowski B M, Shadduck D J. Using amplified fragment length polymorphism analysis to differentiate isolates of Pasteurella multocida serotype 1. Journal of Wildlife Diseases, 2008, 44(2): 209-225.

[11]Badali H, de Hoog G S, Curfs-Breuker I, Klaassen C H, Meis J F. Use of amplified fragment length polymorphism to identify 42 Cladophialophora strains related to cerebral phaeohyphomycosis with in vitro antifungal susceptibility. Journal of Clinical Microbiology, 2010, 48(7): 2350-2356.

[12]Lall G K, Darby A C, Nystedt B, MacLeod ET, Bishop R P, Welburn S C. Amplified fragment length polymorphism (AFLP) analysis of closely related wild and captive tsetse fly (Glossina morsitans morsitans) populations. Parasites and Vectors, 2010, 6(3): 47.

[13]Nalam K, Ahmed A, Devi S M, Francalacci P, Baig M, Sechi L A, Hartskeerl R A, Ahmed N. Genetic affinities within a large global collection of pathogenic Leptospira: implications for strain identification and molecular epidemiology. PLoS One, 2010, 5(8): e12637.

[14]Lee S, Garzón C D, Moorman G W. Genetic structure and distribution of pythium aphanidermatum populations in Pennsylvania greenhouses based on analysis of AFLP and SSR markers. Mycologia, 2010, 102(4): 774-784.

[15]Dalirsefat S B, da Silva Meyer A, Mirhoseini S Z. Comparison of similarity coefficients used for cluster analysis with amplified fragment length polymorphism markers in the silkworm, Bombyx mori. Journal of Insect Science, 2009, 9: 1-8.

[16]Ruttner F. Biogeography and Taxonomy of Honeybees, Berlin: Springer-Verlag, 1988: 284.

[17]Damus M S, Otis G W. A morphometric analysis of Apis cerana F and Apis nigrocincta Smith population from Southeast Asia. Apidologie, 1997, 28: 309-323.

[18]龚一飞, 张其康. 蜜蜂分类与进化. 福州: 福建科技出版社, 2000: 69.

Gong Y F, Zhang Q K. Taxonomy and Evlution of Honeybees. Fuzhou: Fujian Science and Technology Press, 2000: 69. (in Chinese)

[19]杨冠煌. 中华蜜蜂. 北京: 中国农业科技出版社, 2001: 264.

Yang G H. Chinese Honeybee. Beijing: China Agricultural Science and Technology Press, 2001: 264. (in Chinese)

[20]姜玉锁, 赵慧婷, 姜俊兵, 曹果清, 张桂贤, 朱文进, 郭传甲. 中国境内不同地理型东方蜜蜂线粒体DNA tRNAleu~COⅡ基因多态性研究. 中国农业科学, 2007, 40(7): 1535-1542.

Jiang Y S, Zhao H T, Jiang J B, Cao G Q, Zhang G X, Zhu W J, Guo C J. Studies on mtDNA tRNAleu~COⅡgene polymorphisms of Apis cerana distributed in different geographic areas in China. Scientia Agricultura Sinica, 2007, 40(7): 1535-1542. (in Chinese)

[21]张连江, 樊  贤, 谭  垦, 和绍禹. 长白山东方蜜蜂形态特征研究. 云南农业大学学报, 2006, 21(4): 511-516.

Zhang L J, Fan X, Tan K, He S Y. Morphometric study of Apis cerana in Changbai mountain. Journal of Yunnan Agricultural University, 2006, 21(4): 511-516. (in Chinese)

[22]高鹏飞, 赵慧婷, 张春香, 姜玉锁. 基于线粒体Cyt b基因部分序列的中国东方蜜蜂不同地理种群的系统发育. 动物学报, 2008, 54(6): 1005-1013.

Gao P F, Zhao H T, Zhang C X, Jiang Y S. Phylogeny of different geographic populations Apis cerana in China based on mtDNA cytochrome b gene sequences. Acta Zoologica Sinica, 2008, 54(6): 1005-1013. (in Chinese)

[23]王瑞武. 蜜蜂线粒体DNA遗传变异与形态特征地理变异的研究[D]. 北京: 中国农业大学, 1999.

Wang R W. Studies on genetic variation of mtDNA and morphological variation of honeybees[D]. Bejing: Agricultural University, 1999. (in Chinese)

[24]赵慧婷, 高鹏飞, 姜玉锁, 杨桂英, 陈廷珠. 中国东方蜜蜂不同地理种群的RAPD分析. 动物分类学报, 2008, 33(1): 89-96.

Zhao H T, Gao P F, Jiang Y S, Yang G Y, Chen T Z. RAPD analysis among different populations of Apis cerana in China. Acta Zootaxonomica Sinica, 2008, 33(1): 89-96. (in Chinese)

[25]糜佳霖, 谭  垦. 中国东方蜜蜂分类研究结果和进展. 中国蜂业, 2007(7): 13-15.

Mi J L, Tan K. Research progress of Apis cerana taxonomy in China. Apiculture of China, 2007(7): 13-15. (in Chinese)
[1] HUANG MiaoMiao,CHEN WanQuan,CAO ShiQin,SUN ZhenYu,JIA QiuZhen,GAO Li,LIU Bo,LIU TaiGuo. Surveillance and Genetic Diversity Analysis of Puccinia striiformis f. sp. tritici in Gansu and Qinghai Provinces [J]. Scientia Agricultura Sinica, 2020, 53(18): 3693-3706.
[2] ZONG Xu-xiao,GUAN Jian-ping,WANG Hai-fei,MA Yu
. Population Structure and Genetic Diversity of Global Pea (Pisum sativum L.) Germplasm Resources
[J]. Scientia Agricultura Sinica, 2010, 43(2): 240-251 .
[3] LU Ning-hai,ZHENG Wen-ming,WANG Jian-feng,ZHAN Gang-ming,HUANG Li-li,KANG Zhen-sheng
. SSR Analysis of Population Genetic Diversity of Puccinia striiformis f.sp.tritici in Longnan Region of Gansu,China
[J]. Scientia Agricultura Sinica, 2009, 42(8): 2763-2770 .
[4] . Identification and Analysis of Genetic Diversity Structure Within Pisum Genus Based on Microsatellite Markers
[J]. Scientia Agricultura Sinica, 2009, 42(1): 36-46 .
[5] Xian-Bing XIE Wen-Jun PENG Zhi-Jiang ZENG. Nutritional Crossbreed of Honeybee and Breeding of Resistibility on Mite [J]. Scientia Agricultura Sinica, 2008, 41(5): 1530-1535 .
[6] . Analysis of the Proteome of the Larvae of the Higher Royal Jelly Producing Worker Bees (Apis mellifera L.) [J]. Scientia Agricultura Sinica, 2008, 41(3): 880-889 .
[7] . Profile Analysis of the Proteome of the Eggs of the Higher Royal Jelly Producing Bees (Apis mellifera L.) [J]. Scientia Agricultura Sinica, 2007, 40(6): 1276-1287 .
[8] . Differentiation of pathogenicity and AFLP analysis ofFusarium oxyporum f sp niveum [J]. Scientia Agricultura Sinica, 2007, 40(5): 925-931 .
[9] ,,,. AFLP Analysis of Genetic Diversity of 30 Tree Peony (Paeonia suffruticosa Andr.) Cultivars [J]. Scientia Agricultura Sinica, 2006, 39(8): 1709-1715 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!