Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (8): 1795-1804.doi: 10.3864/j.issn.0578-1752.2021.08.018

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Hc-hrg-2 of Haemonchus Contortus Rescues the Growth of Heme Deficient Yeast Strain

ZHOU JingRu(),WU Fei,CHEN XueQiu,HUANG Yan,SHI HengZhi,DU AiFang(),YANG Yi()   

  1. College of Animal Science, Zhejiang University/Key Laboratory of Animal Preventive Medicine of Zhejiang Province, Hangzhou 310058
  • Received:2020-05-06 Accepted:2020-10-15 Online:2021-04-16 Published:2021-04-25
  • Contact: AiFang DU,Yi YANG E-mail:1134684756@qq.com;afdu@zju.edu.cn;yangyi0607@zju.edu.cn

Abstract:

【Objective】In previous study, we have identified a heme responsive gene Hc-hrg-2 in Haemonchus contortus (H. contortus), with a high transcriptional level in the presence of high concentration of heme. However its function in heme regulation is still lacking research. To verify that Hc-hrg-2 was involved in the intracellular heme transport, a hem1 gene knockout strain of Saccharomyces cerevisiae, which was heme deficient, was constructed by homologous recombination technique and then exogenously expressed Hc-hrg-2 of H. contortus to rescue the growth of the knockout strain. 【Method】The genomic DNA of S. cerevisiae BY4741 was used as a template to obtain the upstream and downstream homology sequences of hem1 (SGD: S000002640) gene. The plasmid pYES2-CT was used to obtain the screening marker URA3 sequence. Two overlapping PCR techniques were used to sequentially connect upstream homology sequence, URA3, and downstream homology sequence to form the knockout components which was purified and then transformed into BY4741 competent cells by lithium acetate transformation method, and the transformants were selected on SD /-URA plates supplemented with 250 μmol·L -1 5-aminolevulinic acid (ALA). PCR identification using multiple primer pairs was further performed to verify the correctness of Δhem1 strain. The Hc-hrg-2 sequence (GenBank: MK371241) of Zhejiang strain and its functional domain deleted sequence Hc-hrg-2(Δgst-n) and Hc-hrg-2(Δgst-c) were amplified from the plasmids and inserted into the yeast expression vector pESC-LEU through a seamless cloning kit. The expression vectors, which were identified and sequenced to be correct, were then transformed into Δhem1 competent cells and selected on SD/-URA/-LEU (containing 250 μmol·L -1 ALA) plates. PCR identification was performed to verify the positive exogenous expression strain. By comparing the growth of Δhem1 strain and its exogenous expression strains in SD/-URA/-LEU liquid medium with or without 250 μmol·L -1 ALA, the phenotype of the knockout strain were further verified and the effects of expression vectors on phenotype were excluded. The exogenous expression strains were induced by 2% w/v galactose and then sonicated to identify the protein expression by Western Blot. The induced strains were resuspended to an OD600 of 0.2 and 4 μL of 5-fold serial dilutions of each induced strain was spotted onto 2% w/v galactose plates supplemented with either 250 μmol·L-1 ALA or different concentrations of heme for 2 to 3 days at 28 ℃ to compare the growth of the strains. 【Result】The hem1 gene knockout strain was successfully obtained. Compared with wild strain, Δhem1 cannot synthesis heme in vivo and requires ALA (250 μmol·L -1) or heme (≥10 μmol·L-1) for growth. The phenotypes of the exogenous expression strains were consistent with that of the knockout strain. Western Blot results indicated that 2% w/v galactose could successfully induce the expression of Hc-hrg-2 and its functional domain deleted gene in the knockout strain. Hc-hrg-2 expression allowed S. cerevisiae to import heme from the environment, and rescued the growth of Δhem1 strain. Notably, the deletion of two signature domains of Hc-hrg-2, a thioredoxinlike (GST-N) and a glutathione S-transferase C-terminal domain-like (GST-C), could reduce the effect of rescue. 【Conclusion】Hc-hrg-2 could facilitate heme uptake in cells and its functional domains, GST-N and GST-C, played an important role in this process. This study laid a solid foundation for further exploring heme transport mechanism of H. contortus.

Key words: Haemonchus contortus, heme, Hc-hrg-2, Saccharomyces cerevisiae, Δhem1 strain, exogenously expression, rescue

Fig. 1

Principles for primer design A and B are located outside the 5 'and 3' flanking regions (FR) of the hem1 ; C, D, E, and F are on the ORF; G, H, I, and J are on the selection marker URA3"

Table 1

Primer sequences used in this study"

引物名称 Primer name 上下游引物(5'-3')Primer
5' FR-F CACGGTTTCCTTTGCCAATT
5' FR-R TATGCTATACGAAGTTATACTGAAAAAAAAACCTAAGTACTGTTATG
3' FR-F TACATTATACGAAGTTATAACAACCAATATATGCATGGGCTGA
3' FR-R CTAAAGAATGTCCAAATATCGCCGG
URA3-F ATAACTTCGTATAGCATACATTATACGAAGTTATTTCAATTCATCATTTTTT
URA3-R ATAACTTCGTATAATGTATGCTATACGAAGTTATTTAGTTTTGCTGGCCGCA
A CATAGGAAAACGGTTAAAAGGCCCTGCTTCTACC
B GCTATTATGGAGGAACCCTGTTCAAACCGG
C ATGCAACGCTCCATTTTTGC
D TTACTGCTTGATACCACTAGAAACCTC
E GCTGCTGCATGTGTTGATGACGCTG
F CTTGAACCCTAATGTTAGAGACCCC
G GAGAAGATGCGGCCAGCAAAACTAA
H CTAAAGAATGTCCAAATATCGCCGGC
I TCTGTGCTCCTTCCTTCGTTCTTCC
J GAGAAGATGCGGCCAGCAAAACTAA
Hc-hrg-2-F aattcaaccctcactaaagg ATGATTCTCTTGGTTTCTGTTGCTG
Hc-hrg-2-R tcatccttgtaatccatcgaTTCTTCAGCAAACTCTTTTCCAAAAACCGTA
Ce-hrg-4-F aattcaaccctcactaaaggATGACTGCTGAAAATCGAGGATTCT
Ce-hrg-4-R tcatccttgtaatccatcgaACTTTTAATGACTTCAACATCGTCATC
pESC-F TGTCAACAACGTATCTACCA
pESC-R GGCTCTTTACATTTCCACAA

Fig. 2

The construction of hem1 knockout component M1: DL250 DNA marker; M2: DL10000 DNA marker; 1 - 3: PCR products of upstream homology sequence, URA3, and downstream homology sequence; 4: Final product of two overlapping PCRs of knockout components"

Fig. 3

Screening of Δhem1 knockout strain"

Fig. 4

PCR identification of Δhem1 knockout strain M1: DL10000 DNA marker; M2: DL250 DNA marker; 1-7: PCR amplification products when A-B, C-D, A-E, F-B, G-H, A-I, J-B are used as primers"

Fig. 5

PCR identification of Δhem1 exogenous expression strain M: DL250 DNA marker; 1: pESC-LEU-Ce-hrg-4; 2: pESC-LEU-Hc-hrg-2; 3: pESC-LEU-Hc-hrg-2(Δgst-n); 4: pESC-LEU-Hc-hrg-2 (Δgst-c); 5: pESC-LEU"

Fig. 6

Phenotypic verification of Δhem1 knockout strain and its exogenous expression strain"

Fig. 7

Western Blot identification of target proteins M: Protein marker; Asterisks indicate the target bands"

Fig. 8

Growth of Δhem1 knockout strain and its exogenous expression strains on plates with different heme concentrations"

[1] GASSER R B, SCHWARZ E M, KORHONEN P K, YOUNG N D. Understanding Haemonchus contortus Better Through Genomics and Transcriptomics. Advances in Parasitology, 2016,93:519-567.
doi: 10.1016/bs.apar.2016.02.015 pmid: 27238012
[2] 郭筱璐, 杨怡, 施宇, 黄艳, 时恒枝, 张玲, 周静茹, 陈学秋, 杜爱芳. 国内羊胃肠道寄生虫流行病学调查及捻转血矛线虫系统进化分析. 中国兽医学报, 2018,38(7):1332-1337.
GUO X L, YANG Y, SHI Y, HUANG Y, SHI H Z, ZHANG L, ZHOU J R, CHEN X Q, DU A F. The epidemical survey of sheep gastrointestinal parasites in partial areas of china. Chinese Journal of Veterinary Science, 2018,38(7):1332-1337. (in Chinese)
[3] BESIER R B, KAHN L P, SARGISON N D, VAN WYK J A. The Pathophysiology, Ecology and Epidemiology of Haemonchus contortus Infection in Small Ruminants. Advances in Parasitology, 2016,93:95-143.
[4] 韦海典, 陈学秋, 黄艳, 时恒枝, 周静茹, 吴飞, 杜爱芳, 杨怡. 捻转血矛线虫Hc-FAR-4蛋白的表达特性及其与配体结合能力分析. 中国农业科学, 2019,52(17):3059-3068.
WEI H D, CHEN X Q, HUANG Y, SHI H Z, ZHOU J R, WU F, DU A F, YANG Y. The Expression Pattern and Ligand Binding Ability of Hc-FAR-4 Protein of Haemonchus contortus. Scientia Agricultura Sinica, 2019,52(17):3059-3068. (in Chinese)
[5] WANG C Q, LI F F, ZHANG Z Z, YANG X, AHMAD A A, LI X R, DU A F, HU M. Recent research progress in China on Haemonchus contortus. Frontiers in microbiology, 2017,8:1509-1509.
[6] 郑秀平, 丁豪杰, 郭筱璐, 杨怡, 黄艳, 陈学秋, 周前进, 杜爱芳. 捻转血矛线虫Hc-daf-22基因的原核表达及重组蛋白酶活性测定. 中国农业科学, 2017,50(8):1535-1542.
ZHENG X P, DING H J, GUO X L, YANG Y, HUANG Y, CHEN X Q, ZHOU Q J, DU A F. Characteristics of Hc-daf-22 gene from Haemonchus contortus: crokaryotic expression and its enzymatic activity. Scientia Agricultura Sinica, 2017,50(8):1535-1542. (in Chinese)
[7] BORDES L, DUMONT N, LESPINE A, SOUIL E, SUTRA J F, PREVOT F, GRISEZ C, ROMANOS L, DAILLEDOUZE A, JACQUIET P. First report of multiple resistance to eprinomectin and benzimidazole in Haemonchus contortus on a dairy goat farm in France. Parasitology International, 2020,76:1383-5769.
[8] KOTZE A C, PRICHARD R K. Anthelmintic Resistance in Haemonchus contortus: History, Mechanisms and Diagnosis. Advances in Parasitology, 2016,93:397-428.
[9] 严若峰, 徐立新, 孙延鸣, 赵光伟, 李祥瑞. 捻转血矛线虫DNA疫苗的构建及山羊免疫保护性试验. 中国农业科学, 2007,40(12):2869-2875 .
YAN R F, XU L X, SUN Y M, ZHAO G W, LI X R. Construction of DNA Vaccines for Haemonchus contortus and the Protective Effects in Goats. Scientia Agricultura Sinica, 2007,40(12):2869-2875. (in Chinese)
[10] PONKA P, SHEFTEL A D, ENGLISH A M, SCOTT BOHLE D, GARCIA-SANTOS D. Do Mammalian Cells Really Need to Export and Import Heme? Trends in Biochemical Sciences, 2017,42(5):395-406.
[11] PERNER J, GASSER R B, OLIVEIRA P L, KOPACEK P. Haem biology in metazoan parasites - 'The bright side of haem'. Trends Parasitology, 2019,35(3):213-225.
[12] SINCLAIR J, HAMZA I. Lessons from bloodless worms: heme homeostasis in C. Elegans. Biometals, 2015,28(3):481-489.
[13] BOUCHERY T, FILBEY K, SHEPHERD A, CHANDLER J, PATEL D, SCHMIDT A, CAMBERIS M, PEIGNIER A, SMITH A A T, JOHNSTON K, PAINTER G, PEARSON M, GIACOMIN P, LOUKAS A, BOTTAZZI M E, HOTEZ P, LEGROS G. A novel blood-feeding detoxification pathway in Nippostrongylus brasiliensis L3 reveals a potential checkpoint for arresting hookworm development. PLoS Pathogens, 2018,14(3):e1006931.
doi: 10.1371/journal.ppat.1006931 pmid: 29566094
[14] LUCK A N, YUAN X J, VORONIN D, SLATKO B E, HAMZA I, FOSTER J M. Heme acquisition in the parasitic filarial nematode Brugia malayi. The FASEB Journal, 2016,30(10):3501-3514.
[15] WANG T, MA G, ANG C S, KORHONEN P K, KOEHLER A V, YOUNG N D, NIE S, WILLIAMSON N A, GASSER R B. High throughput LC-MS/MS-based proteomic analysis of excretory- secretory products from short-term in vitro culture of Haemonchus Contortus. Journal of Proteomics, 2019,204:103375.
pmid: 31071474
[16] SHU Q T, AMBER G, GEOFFREY N G, MALCOLM K J. Heme and blood-feeding parasites: friends or foes? Parasites & Vectors, 2010,3:108.
pmid: 21087517
[17] ZHOU J R, BU D R, ZHAO X F, WU F, CHEN X Q, SHI H Z, YAO C Q, DU A F, YANG Y. Hc-hrg-2, a glutathione transferase gene, regulates heme homeostasis in the blood-feeding parasitic nematode Haemonchus contortus. Parasites & Vectors, 2020,13(1):40.
doi: 10.1186/s13071-020-3911-z pmid: 31996262
[18] RENBERG R L, YUAN X, SAMUEL T K, MIGUEL D C, HAMZA I, ANDREWS N W, FLANNERY A R. The Heme Transport Capacity of LHR1 Determines the extent of virulence in Leishmania amazonensis. PLoS Neglected Tropical Diseases, 2015,9(5):e0003804.
[19] TOH S Q, GOBERT G N, MALAGON MARTINEZ D, JONES M K. Haem uptake is essential for egg production in the haematophagous blood fluke of humans, Schistosoma mansoni. The FEBS Journal, 2015,282(18):3632-3646.
doi: 10.1111/febs.13368 pmid: 26153121
[20] MERLI M L, PAGURA L, HERNANDEZ J, BARISON M J, PRAL E M, SILBER A M, CRICCO J A. The Trypanosoma cruzi protein TcHTE is critical for heme uptake. PLoS Neglected Tropical Diseases, 2016,10(1):e0004359.
[21] KOROLNEK T, ZHANG J, BEARDSLEY S, SCHEFFER G L, HAMZA I. Control of metazoan heme homeostasis by a conserved multidrug resistance protein. Cell Metabolism, 2014,19(6):1008-1019.
doi: 10.1016/j.cmet.2014.03.030 pmid: 24836561
[22] GIETZ R D, WOODS R A. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods in Enzymology, 2002,350:87-96.
[23] YUAN X, PROTCHENKO O, PHILPOTT C C, HAMZA I. Topologically conserved residues direct heme transport in HRG-1-related proteins. The Journal of Biological Chemistry, 2012,287(7):4914-4924.
pmid: 22174408
[24] RAJAGOPAL A, RAO A U, AMIGO J, TIAN M, UPADHYAY S K, HALL C, UHM S, MATHEW M K, FLEMING M D, PAW B H, KRAUSE M, HAMZA I. Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins. Nature, 2008,453(7198):1127-1131.
doi: 10.1038/nature06934 pmid: 18418376
[25] 孟雁, 孔繁瑶. 捻转血矛线虫离体培养的研究. 畜牧兽医学报, 1993, (1):74-80.
MENG Y, KONG F Y. Study on in vitro culture of Haemonchus contortus. Acta Veterinaria et Zootechnica Sinica, 1993, (1):74-80. (in Chinese)
[26] HUANG Y, ZHENG X P, ZHANG H L, DING H J, GUO X L, YANG Y, CHEN X Q, ZHOU Q J, DU A F. Site-directed mutagenesis study revealed three important residues in Hc-DAF-22, a key enzyme regulating diapause of Haemonchus contortus. Frontiers in Microbiology, 2017,8:2176.
pmid: 29167662
[27] 黄晓翠, 时恒枝, 陈学秋, 黄艳, 周静茹, 吴飞, 杨怡, 杜爱芳. 捻转血矛线虫Hc-TTR-51蛋白的定位及功能. 中国兽医学报, 2019,39(12):2342-2349.
HUANG X C, SHI H Z, CHEN X Q, HUANG Y, ZHOU J R, WU F, YANG Y, DU A F. Localization and preliminary function of Hc-TTR-51 in Haemonchus Contortus. Chinese Journal of Veterinary Science, 2019,39(12):2342-2349. (in Chinese)
[28] DI W, GASSER R B, HE L, LI F, LIU X, ZHOU C, ZHOU Y, FANG R, ZHAO J, HU M. A serine/threonine-specific protein kinase of Haemonchus contortus with a role in the development. The FASEB Journal, 2020,34(2):2075-2086.
doi: 10.1096/fj.201900888RR pmid: 31907982
[29] GOLLUB E G, LIU K P, DAYAN J, ADLERSBERG M, SPRINSON D B. Yeast mutants deficient in heme biosynthesis and a heme mutant additionally blocked in cyclization of 2,3-oxidosqualene. Journal of Biological Chemistry, 1977,252(9):2846-2854.
[30] CRISP R J, POLLINGTON A, GALEA C, JARON S, YAMAGUCHI- IWAI Y, KAPLAN J. Inhibition of heme biosynthesis prevents transcription of iron uptake genes in yeast. The Journal of Biological Chemistry, 2003,278(46):45499-45506.
[31] CHEN C, SAMUEL T K, KRAUSE M, DAILEY H A, HAMZA I. Heme utilization in the Caenorhabditis elegans hypodermal cells is facilitated by heme-responsive gene-2. The Journal of Biological Chemistry, 2012,287(12):9601-9612.
doi: 10.1074/jbc.M111.307694 pmid: 22303006
[1] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[2] XIE KaiDong,PENG Jun,YUAN DongYa,QIANG RuiRui,XIE ShanPeng,ZHOU Rui,XIA QiangMing,WU XiaoMeng,KE FuZhi,LIU GaoPing,GROSSER Jude W,GUO WenWu. Production of Citrus Triploids Based on Interploidy Crossing with Bendizao and Man Tangerines as Female Parents [J]. Scientia Agricultura Sinica, 2020, 53(23): 4961-4968.
[3] LI GuiRong,QUAN Ran,CHENG ShanShan,HOU XiaoJin,FAN XiuCai,HU HuiLing. The Influencing Factors of in-vitro Ovule Development in Seedless Grape and Its Physiological Changes [J]. Scientia Agricultura Sinica, 2020, 53(22): 4646-4657.
[4] ZHAN JiCheng,CAO MengZhu,YOU YiLin,HUANG WeiDong. Research Advance on the Application of Non-Saccharomyces in Winemaking [J]. Scientia Agricultura Sinica, 2020, 53(19): 4057-4069.
[5] JIA ShanShan,LUO QiangWei,LI ShaSha,WANG YueJin. Optimization of Embryo Rescue Technique and Production of Potential Seedless Grape Germplasm with Rosy Aroma [J]. Scientia Agricultura Sinica, 2020, 53(16): 3344-3355.
[6] ZHENG WeiCai,HAO XiaoYan,ZHANG HongXiang,XIANG BinWei,ZHANG WenJia,ZHANG ChunXiang,ZHANG JianXin. Effects of Saccharomyces Cerevisiae and Bacillus Licheniformis on Growth Performance and Rumen Fermentation in Sheep [J]. Scientia Agricultura Sinica, 2020, 53(16): 3385-3393.
[7] WEI HaiDian, CHEN XueQiu, HUANG Yan, SHI HengZhi, ZHOU JingRu, WU Fei, DU AiFang, YANG Yi. The Expression Pattern and Ligand Binding Ability of Hc-FAR-4 Protein of Haemonchus contortus [J]. Scientia Agricultura Sinica, 2019, 52(17): 3059-3068.
[8] YaNan ZHAO,QiangWei LUO,YueJin WANG. Breeding for Grape Germplasm Involved in Seedlessness with Cold-Resistant Using Embryo Rescue [J]. Scientia Agricultura Sinica, 2018, 51(21): 4119-4130.
[9] LIU Chang-you, FAN Bao-jie, CAO Zhi-min, SU Qiu-zhu, WANG Yan, ZHANG Zhi-xiao, CHENG Xu-zhen, TIAN Jing. Interspecific Hybridization Among Vigna Species [J]. Scientia Agricultura Sinica, 2015, 48(3): 426-435.
[10] XU Jin, FENG Jie. Advances in Research of Genetic Diversity and Pathogenome of Ralstonia solanacearum Species Complex [J]. Scientia Agricultura Sinica, 2013, 46(14): 2902-2909.
[11] GUO Long-Jun, LU Yue-Hua, HUANG Li-Ping, WEI Yan-Wu, LIU Chang-Ming. Construction of Infectious Clone for Different Genotype Strains of Porcine Circovirus Type 2 and Characterization of the Rescued Viruses in vitro [J]. Scientia Agricultura Sinica, 2011, 44(23): 4918-4925.
[12] ZOU Xing-qi,ZHAO Qi-zu,FAN Yun-feng,ZHU Yuan-yuan,WANG Qin,XU Lu,FAN Xue-zheng,NING Yi-bao
. Construction of the Full Length Infectious cDNA Clones of CSFV C Strain and Virus Rescue
[J]. Scientia Agricultura Sinica, 2011, 44(2): 409-416 .
[13] WANG Ai-ling,WANG Yue-jin,TANG Dong-mei,ZHANG Jian-xia,ZHANG Chao-hong
.

Research on Improvement of Seedling Rate in Embryo Rescue of Seedless Grapes

[J]. Scientia Agricultura Sinica, 2010, 43(20): 4238-4245 .
[14] TANG Dong-mei,WANG Yue-jin,ZHAO Rong-hua,PAN Xue-jun,CAI Jun-she,ZHANG Jian-xia,ZHANG Chao-hong,LUO Qiang-wei
. Factors Influencing Embryo Development in Embryo Rescue of Seedless Grapes#br# [J]. Scientia Agricultura Sinica, 2009, 42(7): 2449-2457 .
[15] . Rescue of Infectious Foot-and-Mouth Disease Virus in vivo from Full-Length cDNA Clone of Asia1 Type
[J]. Scientia Agricultura Sinica, 2009, 42(2): 688-693 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!