Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (24): 4603-4612.doi: 10.3864/j.issn.0578-1752.2019.24.014

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Optimization of Solid State Fermentation for Rapeseed Meal with Mixed Strains

ZhengKe WU,GuoHua LIU(),Yang LI,AiJuan ZHENG,WenHuan CHANG,ZhiMin CHEN,HuiYi CAI   

  1. Feed Research Institute of Chinese Academy of Agricultural Sciences/National Engineering Research Center of Biological Feed/Key Laboratory of Feed Biotechnology of Agricultural Ministry, Beijing 100081
  • Received:2018-08-02 Accepted:2019-09-20 Online:2019-12-16 Published:2020-01-15
  • Contact: GuoHua LIU E-mail:liuguohua@caas.cn

Abstract:

【Objective】 The aim of this study was to optimize the solid state fermentation conditions for rapeseed meal with mixed strains and to improve the feeding value of rapeseed meal. It would provide a reference for the application of fermented rapeseed meal in animal husbandry in China.【Method】The rapeseed meal used in this study was conventional rapeseed meal. Three strains of Lactobacillus acidophilus, Bacillus subtilis and Saccharomyces cerevisiae were used, and the glucosinolates degradation rate (X%), total acid increase rate (Y%), polypeptide increase rate (Z%) were used as evaluation indexes. Method M was used as the comprehensive evaluation index (M=0.7*X+0.15*Y+0.15*Z). In the experiment one, the effects of different strains addition levels and the best mixed ratio of the three strains in fermented rapeseed meal were investigated through L9 (3 4) three-factors and three-levels orthogonal array design methods. Based on the result of experiment one, an L16 (4 5) four-factors and four-levels of orthogonal array design experiment was designed to explore the optimal conditions of mixed strains solid state fermentation of rapeseed meal, and the fermentation temperature, feed water ratio, time, and inoculation quantity were selected as experimental factors. 【Result】The results showed as follow: (1) L9 (3 4) orthogonal array design showed that the optimal mixed strains ratio of fermented rapeseed meal were Lactobacillus acidophilus : Bacillus subtilis : Saccharomyces cerevisiae = 1:3:2. Under these condition, the contents of glucosinolates was degraded by 23.5%, the total acid and polypeptide increase rate were 179.2% and 375.0%, respectively. (2) Based on the result of experiment one, the range analysis of experiment two showed that the optimal conditions of mixed strains solid state fermentation of rapeseed meal were as follows: fermentation temperature was 33 °C, feed water ratio was 1:1, time was 84h and inoculation quantity was 6%. The pilot test of this conditions showed that the contents of glucosinolates was degraded by 48.8%, the total acid increase rate was 499.7%, the polypeptide increase rate was 148.4%, and the total change rate M was 131.4%. The results were in line with our expectation. The lowest total change rate M was noted when the temperature was 31 °C, and the total change rate M in temperature 33 °C was higher than 35 °C and 37 °C, but the difference between groups was not significant (P > 0.05). The higher M was also noted when feed water ratio was 1:1.0 and fermentation time was 84h. No significant differences in M were observed between conditions in different levels of inoculation quantity. (3) The fermentation of rapeseed meal by mixed strains also increased the content of CP (37.05% vs. 40.90%) and decreased the concentration of crude fiber (17.47% vs. 16.72%). The amino acid composition of rapeseed meal and fermented rapeseed meal showed that fermentation increased the content of several amino acids in rapeseed meal, especially Asp, Thr, Ser, Glu, Pro, Ala, and Lys. The greatest change caused by fermentation was for glucosinolates, which decreased from 36.08 μmol·g -1 to 18.48 μmol·g -1. The fermentation of rapeseed meal increased the content of polypeptides (from 0.84% to 2.09%) and increased the content of total acid (from 1.01% to 6.05%) compared to unfermented rapeseed meal. The concentration of crude fat was similar in rapeseed meal and FRSM (4.31% and 4.39%).【Conclusion】The optimal fermentation conditions could effectively degrade the glucosinolates and increase the content of polypeptide and total acid in rapeseed meal, so the nutritional value of rapeseed meal was significantly improved.

Key words: rapeseed meal, mixed strains, solid state fermentation, orthogonal design

Table 1

Scheme of orthogonal experiment L9(34)"

水平
Level
因素Factors
嗜酸乳杆菌Lactobacillus acidophilus 枯草芽孢杆菌 Bacillus subtilis 酿酒酵母
Saccharomyces cerevisiae
1 5% 5% 5%
2 10% 10% 10%
3 15% 15% 15%

Table 2

Scheme of orthogonal experiment L16(45)"

水平
Level
因素Factors
温度
Temperature
(℃)
料水比
Feed water ratio
发酵时间
Time
(h)
接种量
Inoculation quantity (%)
1 31 1:0.8 60 3
2 33 1:1.0 72 6
3 35 1:1.2 84 9
4 37 1:1.4 96 12

Table 3

L9 (34) orthogonal experiment results of mixed strains inoculation quantity"

水平
Level
因子Factors 结果Result
嗜酸乳杆菌
Lactobacillus acidophilus
枯草芽孢杆菌
Bacillus subtilis
酿酒酵母
Saccharomyces cerevisiae
硫甙降解率X
Degradation rate of GS (%)
总酸增加率Y
Increase rate of total acid (%)
多肽增加率Z
Increase rate of polypeptide (%)
总变化率M
Total rate of change (%)
1 3 3 3 24.19 287.13 197.62 89.65
2 1 3 2 23.45 179.21 375.00 99.55
3 3 1 2 23.22 204.95 176.19 73.43
4 2 1 3 22.89 140.59 238.10 72.83
5 2 3 1 21.33 107.92 330.95 80.76
6 2 2 2 19.39 184.16 328.57 90.48
7 1 1 1 20.45 147.52 282.14 78.76
8 1 2 3 21.04 90.10 342.86 79.67
9 3 2 1 22.80 206.93 171.43 72.71
标准误SEM 1.83 18.32 21.37 2.25
PP value 0.68 0.03 0.04 0.06
K1 85.99 75.01 77.41
K2 81.36 80.96 87.82
K3 78.59 89.98 80.71
优水平Optimal levels A1 K3 N2
极差(RJ) 7.40 14.97 10.41
排序 Rank 枯草芽孢杆菌(Bacillus subtilis)>酿酒酵母(Saccharomyces cerevisiae)>嗜酸乳杆菌(Lactobacillus acidophilus

Table 4

Orthogonal experiment results of mixed strains fermentation test with multi factors"

编号
Number
因子Factors 结果Result (%)
温度
Temperature (℃)
料水比
Feed water
ratio
发酵时间
Time
(h)
接种量
Inoculation quantity (%)
硫甙降解率X
Degradation rate of GS
总酸增加率Y
Increase rate of total acid
多肽增加率Z
Increase rate of polypeptide
总变化率M
Total rate of change
1 1 1 1 1 31.15 220.64 184.85 82.63
2 1 2 2 2 31.55 318.98 148.96 92.28
3 1 3 3 3 36.16 363.23 117.67 97.45
4 1 4 4 4 41.82 214.42 122.50 79.81
5 2 1 2 3 29.75 483.75 148.16 115.61
6 2 2 1 4 53.58 508.91 134.70 134.04
7 2 3 4 1 53.92 471.88 114.88 125.76
8 2 4 3 2 56.49 541.77 79.19 132.69
9 3 1 3 4 48.21 451.77 154.93 124.76
10 3 2 4 3 48.77 488.55 131.40 127.13
11 3 3 1 2 46.37 468.02 118.30 120.40
12 3 4 2 1 47.26 452.96 56.60 109.51
13 4 1 4 2 41.69 432.11 120.58 112.08
14 4 2 3 1 42.06 529.86 148.41 131.19
15 4 3 2 4 43.23 494.08 114.10 121.49
16 4 4 1 3 41.66 447.40 62.62 105.66
标准误SEM 1.15 19.94 5.67 6.35
PP value 0.01 0.04 0.07 0.06
K1 88.04 108.77 110.68 112.27
K2 130.78 121.16 109.72 118.11
K3 120.45 116.27 125.27 111.46
K4 117.60 110.67 111.20 115.02
优水平 Optimal levels 2 2 3 2
极差 RJ 42.73 12.39 15.55 6.65
排序 Rank 温度 Temperature>时间 Time>料水比 Feed water ratio>接种量 Inoculation quantity

Table 5

Effects of different factor levels on total rate of change M"

水平
Level
结果Result
温度 Temperature(℃) 料水比 Feed water ratio 发酵时间 Time(h) 接种量 Inoculation quantity(%)
1 88.04 a 108.77 110.68 112.27
2 130.78b 121.16 109.72 118.11
3 120.45b 116.27 125.27 111.46
4 117.60 b 110.67 111.20 115.02
标准误SEM 4.35 4.35 4.35 4.35
PP value 0.02 0.67 0.79 0.99

Table 6

Effects of different factor levels on degradation rate of GS"

水平
Level
结果Result
温度
Temperature
(℃)
料水比
Feed water ratio
发酵时间
Time
(h)
接种量
Inoculation quantity (%)
1 35.17a 37.70 43.19 43.59
2 48.43b 43.99 37.94 44.02
3 47.65b 44.92 45.73 39.08
4 42.16ab 46.80 46.55 46.71
标准误SEM 2.04 2.04 2.04 2.04
PP value 0.06 0.46 0.47 0.66

Table 7

Effects of different factor levels on increase rate of total acid"

水平
Level
结果Result
温度
Temperature
(℃)
料水比
Feed water ratio
发酵时间
Time
(h)
接种量
Inoculation quantity (%)
1 279.31a 397.06 411.24 418.83
2 501.57b 461.57 437.44 440.22
3 465.32b 449.30 471.65 445.73
4 475.86b 414.13 401.74 417.29
标准误SEM 25.05 25.05 25.05 25.05
PP value 0.05 0.82 0.79 0.97

Table 8

Effects of different factor levels on increase rate of polypeptide"

水平
Level
结果Result
温度
Temperature
(℃)
料水比
Feed water ratio
发酵时间
Time
(h)
接种量
Inoculation quantity (%)
1 143.49 152.13a 125.11 126.18
2 119.23 140.86a 116.95 116.75
3 115.30 116.23ab 125.05 114.96
4 111.42 80.22b 122.34 131.55
标准误SEM 8.45 8.45 8.45 8.45
PP value 0.58 0.02 0.98 0.90

Table 9

Amino acids and nutritional composition change of fermented rapeseed meal (%, Dry basis)"

项目
Item
菜籽粕
Rapeseed meal
发酵菜籽粕
Fermented rapeseed meal
标准误
SEM
粗蛋白CP 38.36 40.67 1.09
总能GE (kcal·kg-1) 4923.51 5063.45 36.56
硫甙 μmol·g-1 36.08 18.48 0.22
粗纤维 Crude fiber 17.47 16.72 1.23
粗脂肪 Crude fat 4.31 4.39 0.15
多肽 Polypeptides 0.84 2.09 0.09
总酸Total acids 1.01 6.05 0.10
天冬氨酸Asp (%) 2.99 3.14 0.12
苏氨酸Thr (%) 1.83 1.99 0.08
丝氨酸Ser (%) 1.64 1.82 0.11
谷氨酸Glu (%) 7.06 7.77 0.23
脯氨酸 Pro (%) 2.69 3.26 0.26
甘氨酸 Gly (%) 2.20 2.38 0.13
丙氨酸 Ala (%) 1.92 2.21 0.15
缬氨酸 Val (%) 2.22 2.48 0.27
异亮氨酸 Ile (%) 1.81 1.92 0.06
亮氨酸 Leu (%) 3.12 3.33 0.11
酪氨酸 Tyr (%) 1.17 1.22 0.09
苯丙氨酸Phe (%) 1.68 1.80 0.10
组氨酸 His (%) 1.19 1.27 0.05
赖氨酸 Lys (%) 2.70 2.92 0.09
精氨酸 Arg (%) 2.46 2.54 0.11
胱氨酸 Cys (%) 1.07 1.13 0.03
蛋氨酸 Met (%) 0.93 0.98 0.04
[1] 蔡辉益, 张姝, 邓雪娟, 刘国华, 常文环, 闫海洁 . 生物饲料科技研究与应用. 动物营养学报, 2014,26(10):2911-2923.
CAI H Y, ZHANG S, DENG X J, LIU G H, CHANG W H, YAN H J . Research and application of biological feed technology. Animal Nutrition, 2014,26(10):2911-2923. (in Chinese)
[2] YANG X, CHEN H, GAO H L, LI Z H . Bioconversion of corn straw by coupling ensiling and solid-state fermentation. Bioresource Technology, 2001,78(3):277-280.
[3] EL-BATAL A L, KAREM H A . Phytase production and phytic acid reduction in rapeseed meal by Aspergillus niger during solid state fermentation. Food Research International, 2001,34(8):715-720.
[4] 杨玉娟, 姚怡莎, 秦玉昌, 邱静, 李军国, 李俊, 谷旭 . 豆粕与发酵豆粕中主要抗营养因子调查分析. 中国农业科学, 2016,49(3):573-580.
YANG Y J, YAO Y S, QIN Y C, QIU J, LI J G, LI J, GU X . Investigation and analysis of main AFN in soybean meal and fermented soybean meal. Scientia Agricultura Sinica, 2016,49(3):573-580. (in Chinese)
[5] ASHAYERIZADEH A, DASTAR B, SHAMS S M, SADEGHI M A, ZEREHDARAN S . Effects of feeding fermented rapeseed meal on growth performance, gastrointestinal microflora population, blood metabolites, meat quality, and lipid metabolism in broiler chickens. Livestock Science, 2018,216(18):183-190.
[6] ROZAN P, VILLAUME C, BAU H M, SCHWERTZ A, NICOLAS J P, MEJEAN L . Detoxication of rapeseed meal by Rhizopus oligosporus sp-T3: a first step towards rapeseed protein concentrate. International Journal of Food Science & Technology, 1996,31(1):85-90.
[7] DRAZBO A, OGNIK K, ZAWORSKA A, FERENC K, JANKOWSKI J . The effect of raw and fermented rapeseed cake on the metabolic parameters, immune status, and intestinal morphology of turkeys. Poultry Science, 2018,97(11):3910-3920.
[8] 朱少华, 曲露, 李小定, 刘平, 王萌, 刘硕 . 菜籽粕固态分步发酵的工艺研究. 中国油脂, 2014,39(7):37-41.
ZHU S H, QU L, LI X D, LIU P, WANG M, LIU S . Two-step solid fermentation process of rapeseed meal. China Oils and Fats, 2014,39(7):37-41. (in Chinese)
[9] 刘绚霞, 杨莉 .分光光度法测定油菜籽中硫代葡萄糖甙. 陕西农业科学, 2002(6):5-7.
LIU X X, YANG L .Determination of glucosinolate in rapeseed meal by spectrophotometry. Shanxi Journal of Agriculture science, 2002(6):5-7. (in Chinese)
[10] GB/T 22492. (2008). 大豆肽粉. 中华人民共和国国家标准.北京.
GB/T 22492. (2008). Soy peptides powder. .Beijing: Standardization Administration of the People's Republic of China (in Chinese)
[11] 安华明, 刘明, 杨曼, 樊卫国 . 刺梨有机酸组分及抗坏血酸含量分析. 中国农业科学, 2011,44(10):2094-2100.
AN H M, LIU M, YANG M, FAN W G . Analysis of main organic acid compositions in Rosa roxburghii Tratt. Scientia Agricultura Sinica, 2011,44(10):2094-2100. (in Chinese)
[12] 饲料添加剂品种目录(2013). 中华人民共和国农业部公报, 2014, (1):1-4.
Variety Catalogue of Feed Additives (2013). Gazette of the Ministry of Agriculture of the People’s Republic of China. 2014, (1):1-4. (in Chinese)
[13] 刘玉婷, 吴明阳, 靳艳玲, 沈维亮, 方扬, 赵海 . 鼠李糖乳杆菌利用甘薯废渣发酵产乳酸的研究. 中国农业科学, 2016,49(9):1767-1777.
LIU Y T, WU M Y, JIN Y L, SHEN W L, FANG Y, ZHAO H . Lactic acid fermentation by Lactobacillus rhamnosus from sweet potato residue. Scientia Agricultura Sinica, 2016,49(9):1767-1777.
[14] COUTO S R, SANROMAN M A , Application of solid-state fermentation to food industry. A review. Journal of Food Engineering, 2006,76(3):291-302.
[15] 王赫, 朱风华, 陈甫, 徐进栋, 边学伟, 张瑞星, 朱连勤 . 不同发酵时间对乳酸菌发酵饲料中主要营养物质、乳酸菌和乳酸含量的影响. 中国家禽, 2017,39(10):27-31.
WANG H, ZHU F H, CHEN F. XU J D, BIAN X W, ZHANG R X, ZHU L Q . Effects of different fermentation time on main nutrients, lactic acid bacteria and lactic acid in feed fermented with lactic acid bacteria. China Poultry, 2017,39(10):27-31. (in Chinese)
[16] KASPRZAK M M, HOUDIJK G M, OLUKOSI O A, APPLEYARD H, KIGHTLEY S P J, CARRE P, WISEMAN J . The influence of oil extraction process of different rapeseed varieties on the ileal digestibility of crude protein and amino acids in broiler chickens. Animal Feed Science & Technology, 2017,227:68-74.
[17] 孙林, 李吕木, 张邦辉, 许平辉, 付宏赟, 徐宝同 . 多菌种固态发酵去除菜籽粕中的植酸. 中国油脂, 2008,24(08):60-63.
SUN L, LI L M, ZHANG B H, XU P H, FU H Y, XU B T . Removal of phytic acid from rapeseed meal by solid state fermentation with multi-strains. China Oils and Fats, 2008,24(08):60-63. (in Chinese)
[18] 蒋玉琴, 李荣林, 张玳华, 邵明诚, 高家骅 . 复合菌脱毒菜籽饼粕及其应用:Ⅰ不同处理条件下复合菌体系发酵对菜籽粕硫甙的降解. 江苏农业学报, 1999,15(2):104-106.
JIANG Y Q, LI R L, ZHANG D H, SHAO M C, GAO J H . Detoxication of rapeseed meal with multi-microbial solution and its applicationⅠ. effect of fermentation of multi-microbial solution on the degradation of rapeseed meal glucosinolate under different conditions. Jiangsu Journal of Agricultural Science, 1999,15(2):104-106. (in Chinese)
[19] 肖萌, 王远亮 . 双低菜籽粕混菌固态发酵条件的优化. 西北农林科技大学学报, 2015,43(9):1-8.
XIAO M, WANG Y L . Fermentation of double lower rapeseed meal by mixed solid culturing. Journal of Northwest A&F University, 2015,43(9):1-8. (in Chinese)
[20] LI D, XI P, GONG L, FAN S J, HUANG C H . Determination of apparent ileal amino acid digestibility in rapeseed meal and cake processed at different temperatures using the direct and difference method with growing Pigs. Archives of Animal Nutrition, 2002,56(5):339-349.
[21] 高冬余, 李吕木, 许发芝, 张邦辉, 吴胜华 . 微生物固态厌氧发酵菜籽粕的研究. 食品与发酵工业, 2010,36(03):75-79.
GAO D Y, LI L M, XU F Z, ZHANG B H, WU S H . Study on solid -state anaerobic fermentation of rapeseed meal with microorganism. Food and Fermentation Industries, 2010,36(03):75-79. (in Chinese)
[22] 刘长松, 潘忠礼, 何荣海, 宋金彩 . 混菌固态发酵菜粕对肉仔鸡生长性能、血清生化指标及免疫功能的影响. 中国家禽, 2015,37(24):24-27.
LIU C S, PAN Z L, HE R H, SONG J C .Effects of mixed bacteria solid-state fermented rapeseed meal on growth performance, serum biochemical parameters and immune function of broilers. China Poultry, 2015. 2015,37(24):24-27. (in Chinese)
[23] 詹湉湉, 柯芙容, 陈庆达, 张少华, 许丽惠, 王全溪, 王长庚 . 发酵时间和料水比对豆粕发酵的影响. 福建农林大学学报(自然版), 2015,44(2):193-197.
ZHAN T T, KE F R, CHEN Q D, ZHANG S H, XU L H, WANG Q X, WANG C G . Effects of fermentation time and material-water ratio on soybean meal fermentation. Journal of Fujian Agriculture and Forestry University( Natural Science Edition), 2015,44(2):193-197. (in Chinese)
[24] GRUBB C D, ABEL S . Glucosinolate metabolism and its control. Trends in Plant Science, 2006,11(2):89-100.
[25] 王芳, 李学文, 廖亮, 黄瑜, 侯俊楠, 杨晶, 谢元, 唐如锴, 李丹 . 响应面法优化油菜籽粕中硫苷酶解工艺及其降解产物抑菌作用的初步研究. 食品工业科技, 2017,38(5):264-268.
WANG F, LI X W, LIAO L, HUANG Y, HOU J N, YANG J, XIE Y, TANG R K, LI D . Optimization of enzymatic hydrolysis condition of glucosinolates from rapeseed meal by response surface methodology and the preliminary research of its bacteriostasis. Science and Technology of Food Industry, 2017,38(5):264-268. (in Chinese)
[26] 付敏, 何军, 余冰, 郑萍, 黄志清, 毛湘冰, 虞洁, 陈代文 . 混菌固态发酵对菜籽饼营养价值及抗营养因子含量的影响. 动物营养学报, 2013,25(7):1579-1586.
FU M, HE J, YU B, ZHENG P, HUANG Z Q, MAO X B, YU J, CHEN D W . Effects of mixed microbial solid-State fermentation on nutrient values and anti-nutritional factor contents of rapeseed cake. Chinese Journal of Animal Nutrition, 2013,25(7):1579-1586. (in Chinese)
[27] MO W, W, WU X J, JIA G, ZHAO H, C, HEN X L, TANG J Y, WU C M, CAI J Y, TIAN G, WANG J, LIU G M . Roles of dietary supplementation with arginine or N-carbamylglutamate in modulating the inflammation, antioxidant property, and mRNA expression of antioxidant-relative signaling molecules in the spleen of rats under oxidative stress. Animal Nutrition, 2018(3):322-328.
[28] WASTON A, WAYMAN J, KELLY R, FEUGIER A, BIOGE V . Increased dietary intake of tyrosine upregulates melanin deposition in the hair of adult black-coated dogs. Animal Nutrition, 2018(4):422-428.
[29] ZHONG H, YIN Y, CHEN X . The effect of various proportions of Canola type rape-seed oil meal on amino acid digestibility and nutrient metabolism of layer chicken ration. Animal Husbandry & Veterinary Medicine, 1997,29(3):107-109.
[30] 张桂杰, 鲁宁, 谯仕彦 . 低蛋白质平衡氨基酸饲粮对生长猪生长性能、胴体品质及肠道健康的影响. 动物营养学报, 2012,24(12):2326-2334.
ZHANG G J, LU N, QIAO S Y . Effects of low protein diets balanced with amino acids on growth performance, carcass characteristic and intestinal health of growing pigs. Chinese Journal of Animal Nutrition, 2012,24(12):2326-2334. (in Chinese)
[1] HAO YiNing,WANG ZhiGao,HE Rong,JU XingRong,YUAN Jian. Quality Improvement of Rapeseed Meal Based on Static-State Fermented with Mixed Microorganisms [J]. Scientia Agricultura Sinica, 2020, 53(10): 2066-2077.
[2] LI Bei-xing, WANG Wei-chang, ZHANG Da-xia, WANG Kai, GUAN Lei, LIU Feng. Application of Orthogonal Design and Uniform Design in Physical Stability Promotion of Clothianidin Suspension Concentrate [J]. Scientia Agricultura Sinica, 2015, 48(2): 280-292.
[3] DING Yan-1, LI Li-Qian-1, CAO Rong-2, TANG Gen-Sheng-2, GU Zhen-Xin-1, HAN Yong-Bin-1. Effect of Enzymolysis Conditions on Glucosinolates in Rapeseed Meal and Identification of Their Degradation Products [J]. Scientia Agricultura Sinica, 2014, 47(2): 383-393.
[4] MA Yan, HU An-Yi, YANG Hao, CHANG Zhi-Zhou, XU Yue-Ding, ZHANG Jian-Ying. Effects of Biofumigation with Rapeseed Meal on Disease Control of Phytophthora Blight of Chilli Pepper [J]. Scientia Agricultura Sinica, 2013, 46(22): 4698-4706.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!