Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (9): 1913-1920.doi: 10.3864/j.issn.0578-1752.2020.09.017

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Study of Genotyping and Performance in Late-Feathering Qingyuan Partridge Cocks

Hua LI1,2,GuiJun FANG1,GuoHong HUA2,ShuWen TAN1,3,ZhengFen ZHANG2,YuYu HONG1,Hui YU1,2   

  1. 1 Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding/Foshan University, Foshan 528225, Guangdong;
    2 Guangdong Tinoo’s Foods Corporation Ltd., Qingyuan 511827, Guangdong
  • Received:2017-11-15 Accepted:2020-03-11 Online:2020-05-01 Published:2020-05-13

Abstract:

【Objective】In order to verify the genotyping accuracy of heterozygotic cocks, and to construct the resistant strain without ev21 gene, the relationship among genotypes, four late-feathering sub-phenotypes (named micro-type as L1, inverted type as L2, isometric type as L3, and ungrown type as L4) and the production performance were investigated in the late-feathering Qingyuan partridge cocks. The feasibility was demonstrated by the expression profile difference of two candidate genes, i.e., Prolactin Receptor (PRLR) and Sperm Flagellar Protein 2 (SPEF2), between the early- and late-feathering Qingyuan partridge cocks. 【Method】Genotypes were detected by PCR-RFLP in the late-feathering Qingyuan partridge cocks, and its accuracy was verified by progeny testing using a test cross. The production differences among genotyping groups were compared by variance analysis of percentage data and t-test. The expressions of two candidate genes were quantified by real-time quantitative PCR (RT-PCR) in both the early (R2) feathering and late (L2 and L4) feathering cocks. 【Result】Among the 568 late-feathering cocks, the proportion of the deletant group (ev21 - group) was 41.73%, and that of the ev21 + group was 58.27%, of which the homozygotes and the heterozygote accounted for 8.80% and 49.47%, respectively. By the test cross, the genotyping accuracy was 46.83% both in the homozygote group and the deletant group, indicating that the heterozygote was in fact homozygote. The descendant percentage of the isometric late-feathering type in ev21 + group was significantly higher than that in ev21 - group (P≤0.05). The feather maturity of the late-feathering cocks at 105-day-old in the ev21 - group was extremely significantly higher than that in ev21 +group (P≤0.01). At one-day-old chicks, the expression of PRLR gene between R2 versus (L2+L4) showed no any difference (P>0.05),but its expression between R2 versus L4 was significantly down-regulated (0.01<P≤0.05). While the expression of SPEF2 gene in late-feathering chickens was extremely significantly higher than that in early-feathering chickens (P≤0.01). By comparing with the R2 group, SPEF2 significantly differentially up-regulated in the L4 and L2 groups (P≤0.01). 【Conclusion】New genotyping method should be developed for improving the accuracy of the heterozygote in the late feathering cocks. Up to now, a test cross is essential for the chicken production. Construction of the ev21 -resistant strain is viable in late-feathering chicken breeding. Furthermore, studies need to be conducted to figure out the difference of isometric subtype ratio and feather maturity between the ev21 + group and the ev21 - group. Besides, SPEF2 and PRLR were candidate genes for subtypes affecting the difference of early-feathering and late-feathering chickens at 1-day-old.

Key words: Qingyuan partridge cocks, late-feathering, genotyping, performance

Fig. 1

PCR-RFLP results of late-feathering Qingyuan Partridge cocks M represents Marker DL2 000; 2 is homozygote, 5, 8 and 9 are heterozygotes, while 1, 3, 4, 6 and 7 are deletants"

Table 1

Genotyping cocks of the late-feathering line"

群体
Population
纯合子Homozygote 缺失体Deletant 杂合子Heterozygote 合计Total
No % No % No % No
纯系Pure line 23 10.09 100 43.86 105 46.05 228
祖代Progenitor 27 7.94 137 40.29 176 51.77 340
合计Total 50 8.80 237 41.73 281 49.47 568

Table 2

Comparison of phenotypes and genotypes in late-feathering cocks by test cross"

基因分型组
Genotyping group
数量 Count 出苗Seedlings 慢羽表型Phenotyes (%)
% 微长型L1 倒长型L2 等长型L3 未出型L4
纯合子Ⅰ HomozygoteⅠ 4 5.06 34 5.89 70.60 11.76 11.76
杂合子Ⅱ HeterozygoteⅡ 42 53.17 453 13.02 61.59 9.49 15.90
Ⅰ+Ⅱ (ev21+) 46 58.23 487 12.52 62.22 9.65b 15.61
缺失体(ev21-) Deletant 33 41.77 396 10.86 63.39 5.30a 20.45
合计Total 79 100 883 11.78 62.74 7.70 17.78

Table 3

Comparisons of the production performance of the late-feathering cocks at 105-day-old"

基因分型组
Genotyping group
体重
Weight (g)
冠高
Crown height (mm)
胫长
Shank length (mm)
胫围
Shank circumstance (cm)
通管值
Feather maturity
ev21+ n=123 1302.6±159.7 43.1±5.4 81.7±2.8 3.9±0.2 40.3±15.7c
缺失体Deletant n=94 1268.5±129.6 42.8±5.6 81.7±3.3 3.9±0.1 47.5±22.5a
合计Total n=217 1287.8±144.7 42.9±5.7 81.7±3.1 3.9±0.1 43.4±20.6

Fig. 2

Expression of PRLR and SPEF2 by RT-PCR A indicating the control group is (L2+L4); B indicating the control group is L4; Gene expression with the same letter indicate not significant difference(P>0.05); Gene expression with adjacent letters was significant difference (0.01<P≤0.05); Gene expression with interphase letters was highly significant difference (P≤0.01)"

[1] 黎怀星, 邱祥聘, 曾凡同, 谢后清 . 鸡不同品系及其后代的羽速羽型研究. 四川农业大学学报, 1988,3(6):241-246.
LI H X, QIU X P, ZENG F T, XIE H Q . Studies on feather types and feathering in several early-and late-feathering strains and their crossbreds. Agricultural Journal of Sichuan, 1988,3(6):241-246. (in Chinese)
[2] 王建华, 李花妮, 石凤英 . 鸡羽毛生长基因的研究进展. 家禽科学, 2012,8:44-46.
WANG J H, LI H N, SHI F Y . Research progress of chicken feather growth genes. Poultry Science, 2012,8:44-46. (in Chinese)
[3] 刘小辉, 赵彩娟, 李祥龙, 逯春香, 赵书雨 . 快慢羽基因对坝上长尾鸡早期体重与羽速生长的影响. 湖北畜牧兽医, 2014,35(11):11-13.
LIU X H, ZHAO C J, LI X L, LU C X, ZHAO S Y . Effect of the fearthering gene weight and ferrhering rate of bashing Long-tailed chickens. Hubei Journal of Animal and Veterinary Science, 2014,35(11):11-13. (in Chinese)
[4] 宋素芳, 康相涛, 孙桂荣, 王彦斌, 李明, 黄艳群 . 羽速基因对0~20周龄固始鸡生长发育的影响. 河北农业科学, 2003,8:62-64.
SONG S F, KANG X T, SUN G R, WANG Y B, LI M, HUANG Y Q . Effect of feather growth gene on the growth and development of 0~20 week-old Gushi chicken. Hebei Agricultural Science, 2003,8:62-64. (in Chinese)
[5] 娄义洲, 徐寒梅, 娄锋, 谢璞 . 武农Ⅰ系乌骨鸡快慢羽系羽毛生长速度与体重关系的研究. 云南畜牧兽医, 2001,4:3-4.
LOU Y Z, XU H M, LOU F, XIE P . Study on the relationship between feather growth rate and body weight of Wunong silky fowl. Yunnan Journal of Animal Science and Veterinary Medicine, 2001,4:3-4. (in Chinese)
[6] 尹华贵, 曾子建, 朱汉春, 潘广碧, 章元, 周克勇 . 泸州黄羽乌鸡羽速与体重关系的研究. 中国家禽, 2002,24(6):7-8.
YIN H G, ZENG Z J, ZHU H C, PAN G B, ZHANG Y, ZHOU K Y . The relationship between feathering speed and body weight in the black-meat chicken. China Poultry, 2002,24(6):7-8. (in Chinese)
[7] IRAQI F, SMITH E J . Determination of the zygosity of ev21-K in late-feathering male White Leghorns using the polymerase chain reaction. Poultry Science, 1994,73(7):939-946.
doi: 10.3382/ps.0730939 pmid: 7937481
[8] 李培周, 李华, 杜炳旺, 陈洁波, 陶林, 陈琦, 林丽超 . 贵妃鸡羽速基因分子检测及相关早熟性状分析. 中国家禽, 2013,3(5):5-8.
LI P Z, LI H, DU B W, CHEN J B, TAO L, CHEN Q, LIN L C . Molecular detection of fearthering locus and prematurity traits of princess chicken. The Chinese Poultry, 2013,3(5):5-8. (in Chinese)
[9] 白春艳, 陈强, 杨长锁, 潘玉春 . 鸡羽速基因与內源禽白血病病毒的关系及其在育种中的应用. 中国家禽, 2011(08):5-8.
BAI C Y, CHEN Q, YANG C S, PAN Y C . The relationship between chicken feather speed gene and endogenous avian leucosis virus and its application in breeding. China Poultry, 2011(08):5-8. (in Chinese)
[10] 李竞一, 李荣妮, 王晓亮, 王翔宇, 杨永林, 鲍海港, 赵春江, 凌遥 . 慢羽鸡ev21结合位点缺失个体的检测. 中国畜牧杂志, 2011,11(47):6-8.
LI J Y, LI R N, WANG X L, WANG X Y, YANG Y L, BAO H G, ZHAO C J, LING Y . Detection of ev21 binding site deletion in slow-feathering chicke. Chinese Journal of Animal Science, 2011,11(47):6-8.(in Chinese)
[11] 李培周, 朱晓萍, 邝智祥 . 清远麻鸡羽速基因的分子检测及其与体重和冠高相关性分析. 中国畜牧杂志, 2013,7(49):10-12.
LI P Z, ZHU X P, KUANG Z X . Molecular detection of the feather speed gene and its correlation with weight and crown height in Qingyuan chicken. Chinese Journal of Animal Science, 2013,7(49):10-12. (in Chinese)
[12] TAKENOUCHI A, TOSHISHIGE M, ITO N, TSUDZUKI M . Endogenous viral gene ev21 is not responsible for the expression of late feathering in chickens. Poultry Science. 2017,97:403-411.
doi: 10.3382/ps/pex345 pmid: 29253229
[13] 李珊珊, 李东华, 吕福琨, 董晶, 李艳青, 杜炳旺 . 慢羽系麒麟公鸡纯合个体分子检测方法的建立, 河南农业科学, 2016: 45(7):118-121.
LI S S, LI D H, LV F K, DONG J, LI Y Q, DU B W . Establishment of molecular detection method for homozygous individuals of slow-feathering unicorn cocks. Henan Agricultural Sciences, 2016,45(7):118-121. (in Chinese)
[14] ZHANG X, WANG H, ZHANG L, WANG Q, DU X, GE L, ZHOU R, LI L, LI X . Analysis of a genetic factors contributing to feathering phenotype in chickens. Poultry Science. 2018,97(10):3405-3413.
doi: 10.3382/ps/pey231 pmid: 29924355
[15] LUO C, SHEN X, RAO Y, XU H, TANG J, SUN L, NIE Q, ZHANG X . Differences of Z chromosome and genomic expression between early- and late-feathering chickens. Molecular Biology Reports, 2012,39(5):6283-6288.
doi: 10.1007/s11033-012-1449-7 pmid: 22297689
[16] ZHAO J C, YAO J, LI F, YANG Z, SUN Z, QU L, WANG K, SU K, ZHANG A, MONTGOMERY S A, GENG T, CUI H . Identification of candidate genes for chicken early- and late-feathering. Poultry Science, 2016,95(7):1498-1503.
doi: 10.3382/ps/pew131 pmid: 27081197
[17] 邝智祥, 李华, 张正芬, 陈洁忠, 何兰花 . 清远麻鸡白羽系部分生产性能的测定与分析. 中国家禽, 2015,37(18):51-52.
KUANG Z X, LI H, ZHANG Z F, CHEN J Z, HE L H . Determination and analysis of production performance of white feather line of Qingyuan chicken. The Chinese Poultry, 2015,37(18):51-52. (in Chinese)
[18] 朱庆, 杨志勤, 杨爱民 . 蛋鸡慢羽羽型的分布及其与生产性能的关系探讨. 四川农业大学学报, 1996,1(14):1-5.
ZHU Q, YANG Z Q, YANG A M . The distribution of slow-feathering types their relationship with performance in chicken layers. Journal of Sichuan Agricultural University, 1996,1(14):1-5. (in Chinese)
[19] ELFERINK M G, VALLEE A A, JUNGERIUS A P, CROOIJMANS R P, GROENEN M A . Partial duplication of the PRLR and SPEF2 genes at the late feathering locus in chicken. BMC Genomics, 2008,9:391.
doi: 10.1186/1471-2164-9-391 pmid: 18713476
[20] BU G, HUANG G, FU H, LI J, HUANG S, WANG Y . Characterization of the novel duplicated PRLR gene at the late-feathering K locus in Lohmann chickens. Journal of Molecular Endocrinology, 2013,51(2):261-276.
doi: 10.1530/JME-13-0068 pmid: 23940279
[21] DERKS MFL, HERRERO-MEDRANO JM, CROOIJMANS RPMA, VEREIJKEN A, LONG JA, MEGENS HJ, GROENEN MAM . Early and late feathering in turkey and chicken: same gene but different mutations. Genetic Selection Evolution, 2018 , 50(1):7.
[22] FANG G, JIA X, LI H, TAN S, NIE Q, YU H, YANG Y . Characterization of microRNA and mRNA expression profiles in skin tissue between early-feathering and late-feathering chickens. BMC Genomics, 2018,19(1):399.
doi: 10.1186/s12864-018-4773-z pmid: 29801437
[23] 谢后清, 周铁茅, 刘福蓉 . 成都白鸡快慢羽纯系的选育及羽型研究. 四川农学院学报, 1985,1(3):9-14.
XIE H Q, ZHOU T M, LIU F R . Study on breeding and feather type of Chengdu white chicken pure line with fast and slow feathering. Journal of Sichuan Agricultural University, 1985,1(3):9-14. (in Chinese)
[24] OKAMURA A, MASUMOTO A, TAKENOUCHI A, KUDO T, AIZAWA S, OGOSHI M, TAKAHASHI S, TSUDZUKI M, TAKEUCHI S . Changes in prolactin receptor homodimer availability may cause late feathering in chickens. General and Comparative Endocrinology, 2019,272:109-116.
doi: 10.1016/j.ygcen.2018.12.011 pmid: 30594591
[25] DAVIS-TURAK J C, ALLISON K, SHOKHIREV M N, PONOMARENKO P, TSIMRING L S, GLASS C K, JOHNSON T L, HOFFMANN A . Considering the kinetics of mRNA synthesis in the analysis of the genome and epigenome reveals determinants of co-transcriptional splicing. Nucleic Acids Research, 2015,43(2):699-707.
doi: 10.1093/nar/gku1338 pmid: 25541195
[26] LIN X, Gao Q X, ZHU L Y, ZHOU G X, NI S W, HAN H, YUE Z C . Long non-coding RNAs regulate Wnt signaling during feather regeneration. Development, 2018 (145):162388.
doi: 10.1242/dev.162388 pmid: 30327322
[27] 宁中华, 王忠, 彭丹芳, 侯卓成, 徐桂云 . 禽白血病和羽速基因对白壳蛋鸡生产性能的影响. 中国畜牧杂志, 2005,41(10):23-25.
NING Z H, WANG Z, PENG D F, HOU Z C, XU G Y . Effects of avian leucosis and feathering gene on performance of white layer. Chinese Journal of Animal Science, 2005,41(10):23-25. (in Chinese)
[28] SU L N, LI H, TAN S W, FANG G J, YU H, YANG Y L . Mechanisms of early- and late-feathering in Qingyuan partridge chickens. Biotechnology & Biotechnological Equipment, 2019,33(1):1172-1181.
[29] 陶林, 杜炳旺, 张丽 . 卷羽鸡毛囊发育规律及卷羽候选基因 KRT75 遗传特征分析. 中国农业科学, 2015,48(4):821-830.
doi: 10.3864/j.issn.0578-1752.2015.04.20
TAO L, DU B W, ZHANG L . The development of frizzled follicle and genetic characteristics of candidate gene KRT75 in frizzled feather chicken. Scientia Agricultura Sinica, 2015,48(4):821-830. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.04.20
[30] LIN C M, JIANG T X, WIDELITZ R B, CHUONG C M . Molecular signaling in feather morphogenesis. Current Opinion in Cell Biology, 2006,18(6):730-741.
doi: 10.1016/j.ceb.2006.10.009 pmid: 17049829
[31] BAO W, GREENWOLD M J, SAWYER R H . Expressed miRNAs target feather related mRNAs involved in cell signaling, cell adhesion and structure during chicken epidermal development. Gene, 2016,591(2):393-402.
doi: 10.1016/j.gene.2016.06.027 pmid: 27320726
[32] WIDELITZ R B, JIANG T X, CHEN C W J, STOTT N S, Jung H S, Chuong C M . Wnt-7a in feather morphogenesis: involvement of anterior-posterior asymmetry and proximal-distal elongation demonstrated with an in vitro reconstitution model. Development, 1999,126(12):2577-2587.
pmid: 10331970
[1] FANG HaoYuan, YANG Liang, WANG HongZhuang, CAO JinCheng, REN WanPing, WEI ShengJuan, YAN PeiShi. Effects of Cross-Ventilation System on Physiology and Production Performance of Beef Cattle in Summer [J]. Scientia Agricultura Sinica, 2022, 55(5): 1025-1036.
[2] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[3] LIU WangJing,TANG DeFu,AO ChangJin. Effect of Allium mongolicum Regel and Its Extracts on the Growth Performance, Carcass Characteristics, Meat Quality and Serum Biochemical Indices of Captive Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(17): 3461-3472.
[4] HAN ShouWei,SI JiSheng,YU WeiBao,KONG LingAn,ZHANG Bin,WANG FaHong,ZHANG HaiLin,ZHAO Xin,LI HuaWei,MENG Yu. Mechanisms Analysis on Yield Gap and Nitrogen Use Efficiency Gap of Winter Wheat in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(16): 3110-3122.
[5] CHEN ZhiMin,CHANG WenHuan,ZHENG AiJuan,CAI HuiYi,LIU GuoHua. Effect of Expanded Feather Powder on Growth Performance, Slaughter Performance and Serum Biochemical Index of Broiler [J]. Scientia Agricultura Sinica, 2022, 55(13): 2643-2653.
[6] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[7] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[8] Xue BAI,Teng HUI,ZhenYu WANG,YunGang CAO,DeQuan ZHANG. Determination of 5 Nitropolycyclic Aromatic Hydrocarbons in Roasted Meat Products by High Performance Liquid Chromatography- Fluorescence Detection [J]. Scientia Agricultura Sinica, 2021, 54(5): 1055-1062.
[9] WANG JinFei,YANG GuoYi,FAN ZiHan,LIU Qi,ZHANG PengCheng,REN YouShe,YANG ChunHe,ZHANG ChunXiang. Effects of Whole Plant Corn Silage Ratio in Diet on Growth Performance, Rumen Fermentation, Nutrient Digestibility and Serological Parameters of Dorper×Hu Crossbred Female Lambs [J]. Scientia Agricultura Sinica, 2021, 54(4): 831-844.
[10] ZONG YuZheng,ZHANG HanQing,LI Ping,ZHANG DongSheng,LIN Wen,XUE JianFu,GAO ZhiQiang,HAO XingYu. Effects of Elevated Atmospheric CO2 Concentration and Temperature on Photosynthetic Characteristics, Carbon and Nitrogen Metabolism in Flag Leaves and Yield of Winter Wheat in North China [J]. Scientia Agricultura Sinica, 2021, 54(23): 4984-4995.
[11] ZHANG Lan,WANG LiangZhi,HUANG YanLing,LIAO XiuDong,ZHANG LiYang,LÜ Lin,LUO XuGang. Effects of Dietary Supplemental Pattern of Trace Eloments on the Growth Performance, Carcass Traits and Meat Quality of Broilers [J]. Scientia Agricultura Sinica, 2021, 54(22): 4906-4916.
[12] LIU Jiao,CHEN ZhiMin,ZHENG AiJuan,LIU GuoHua,CAI HuiYi,CHANG WenHuan. Effects of Glucose Oxidase on Growth Performance, Immune Functions and Intestinal Health of Ducks Challenged by Escherichia coli [J]. Scientia Agricultura Sinica, 2021, 54(22): 4917-4930.
[13] WANG Chen,ZHANG HongWei,WANG HuCheng,SUN XiaoPing,LI FaDi,YANG BoHui. Energy and Protein Requirements of Alpine Merino Growing Sheep [J]. Scientia Agricultura Sinica, 2021, 54(16): 3537-3548.
[14] WANG YiBing,CHEN Fang,GOU ZhongYong,LI Long,LIN XiaJing,ZHANG Sheng,JIANG ShouQun. Requirement of Vitamin D3 on Fast-Growing Yellow-Feathered Breeder Hens [J]. Scientia Agricultura Sinica, 2021, 54(16): 3549-3560.
[15] HUANG WenQin,LÜ XiaoKang,ZHUANG YiMin,CUI Kai,WANG ShiQing,DIAO QiYu,ZHANG NaiFeng. The Effects of Early Weaning and NDF Levels of Finishing Diets on Growth Performance, Nutrient Digestion and Metabolism of Hu Lambs [J]. Scientia Agricultura Sinica, 2021, 54(10): 2217-2228.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!