Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (21): 4007-4019.doi: 10.3864/j.issn.0578-1752.2018.21.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

The Research Progress of Plant RNA Binding Proteins

ZaiBao ZHANG1,2(),WanJie LI1,JiuLi LI1,Chi ZHANG1,MengHui HU1,Lin CHENG1,HongYu YUAN1,2   

  1. 1College of Life Sciences, Xinyang Normal University, Xinyang 464000, Henan
    2Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang 464000, Henan
  • Received:2018-06-04 Accepted:2018-08-08 Online:2018-11-01 Published:2018-11-01
  • Contact: ZaiBao ZHANG E-mail:zaibaozhang79@163.com

Abstract:

In eukaryotes, RNA-binding proteins (RBPs) are an important class of post-transcriptional regulators that direct and regulate the RNA metabolism. RBPs together with RNA to form ribonucleoprotein complexes have been reported to play critical roles in many RNA processes, including translocation, modification, translation and degradation. RBPs are widely present in animals, plants and microorganisms, accounting for about 2%-8% of the proteins encoded by eukaryotic genes. In recent years, the researches on RNA-binding proteins have become a hot topic. RBPs have been reported to involved in many human diseases by mutation and genetic analysis. The large number of RBPs in plants has also been reported, and they played similar important functions in plant RNA metabolism. However, our understanding of the roles and mechanisms of action of plant RBPs is less well studied than in animals. In this review, we will discuss recent progresses of multiple RBP family members that play essential roles in RNA metabolism during plant growth, development and stress responses. Five classes of plant RBP families were discussed, including serine-arginine-rich RNA-binding proteins (SR proteins), glycine-rich RNA-binding proteins (GR-RBPs), pentatricopeptide repeat proteins (PPR proteins), DEAD-box RNA helicase (DEAD-box RHs) and RNA chaperones. The critical roles of these plant RBPs in RNA metabolism during plant growth, development, and stress responses were summarized. Functions as an alternative splicing factor during RNA metabolism, SR proteins play important roles in plant growth and stress response. GR-RBPs family members displayed functional diversity: Many of them regulate plant stress tolerance and various growth and development processes by mediating plant hormone signaling pathways and others mediate abiotic stress response acting as RNA chaperones. PPR proteins are the most widely studied and they mainly involved in RNA metabolism of mitochondria and chloroplasts. As important RNA splicing factors of cell nuclei and organelles, DEAD-box RHs play variety of functions in plant growth, development and abiotic stress response. RNA chaperones are non-specific RBP that maintain the normal function of RNA molecules by facilitate RNA folding via structural rearrangement of misfolded RNAs.

Key words: RNA binding proteins, RNA metabolism, plant growth and development, stress response

Table 1

Classification, structural characteristics and main functions of plant RBPs"

分类
Classification
结构特征
Structural characteristics
生理功能
Physiological function
SR蛋白
SR proteins
N端:含1个或2个RRM结构域;
C端:富含SR的结构域
N-terminal: Containing 1 or 2 RRM domain;
C-terminal: SR-rich domain
参与mRNA剪接、输出或翻译,调节生长发育及细胞增殖;响应高温和低温等非生物胁迫
Participating in mRNA splicing, export or translation, regulating plant growth, development and cell proliferation; Responding to abiotic stresses such as heat and cold stresses
GR-RBPs (Ⅳ of GRPs) N端:含RRM或CSD结构域;
C端:存在富含甘氨酸区域
N-terminal: Containing RRM or CSD domain;
C-terminal: Containing the regions of glycine rich
作为RNA分子伴侣,响应干旱、高盐和低温等胁迫;调节植物生物钟,介导开花等过程
As RNA molecular chaperone, responding to drought, salt and cold stresses; Regulating plant circadian clock, mediating plants flowering, etc.
RZs (IVb of GRPs) N端:含RRM结构域;
C端:富含甘氨酸区域且其间散布CCHC型锌指基序
N-terminal: Containing RRM domain;
C-terminal: The region rich in glycine and interspersed with CCHC-type zinc finger motifs
响应低温和干旱等胁迫;与SR等蛋白互作参与mRNA剪接,促进种子萌发、幼苗生长和开花等植物发育
Responding to cold and drought stresses; interacting with SR and other proteins to participate in mRNA splicing, promote seed germination, seedling growth and flowering, etc.
CSDPs (IVc of GRPs) N端:含一个CSD结构域;
C端:含一个富含甘氨酸区域且其间散布CCHC型锌指基序
N-terminal: Contains a CSD domain;
C-terminal: Containing a glycine-rich region interspersed with CCHC-type zinc finger motifs
正/负调控植物的胁迫耐受性、生长发育等
Positively/negatively regulating the plant stress tolerance, growth and development, etc.
PPR蛋白
PPR proteins
由大约35个氨基酸序列组成的串联重复基序
The tandem repeat motif consisting of approximately 35 amino acid sequences
主要参与线粒体和叶绿体的RNA代谢,调节光合作用、呼吸作用、胚胎发生等生理和生长发育过程;响应逆境胁迫
Mainly participating in the RNA metabolism of mitochondrial and chloroplast, regulating photosynthesis, respiration, embryogenesis and other physiological and growth processes; Responsing to adversity stress
DEAD-box RHs 包含Q、Ⅰ、Ⅱ(DEAD)、Ⅲ、Ⅳ、Ⅴ和Ⅵ结构域
Containing Q, Ⅰ, Ⅱ(DEAD), Ⅲ, Ⅳ, Ⅴ and Ⅵ domains
催化RNA分子二级结构解旋,参与RNA代谢,调节植物各种细胞代谢途径、生长发育;响应低温、干旱等非生物胁迫
Catalyzing the secondary structure of RNA molecules to unwind, participating in RNA metabolism, regulating various cellular metabolic pathways, growth and development; Responding to cold, drought and other abiotic stresses
RNA分子伴侣
RNA molecular chaperone
具有RNA伴侣蛋白活性的RBP,结构特征多样
The structural features of the RBPs with RNA chaperone activity are diverse
参与非生物胁迫下RNA的折叠反应,提高植物的胁迫耐受性;参与RNA代谢,调节叶绿体相关生物合成等过程
Participating in the folding reaction of RNA under abiotic stresses, thereby improving the stress tolerance of plants; participating in RNA metabolism, regulating the process of chloroplast-related biosynthesis, etc.

Table 2

Classification, species distribution and research status of plant RBPs"

分类
Classification
各物种中的数量
Number in each species
已报道的关键基因
Key genes that have been reported
参考文献
References
SR蛋白
SR proteins
拟南芥:19个
水稻:22个
大豆:25个
Arabidopsis: 19
Oryza sativa: 22
Glycine max: 25
SRp33, SCL26,
RSZp23, RSZ33/36/37,
RS40/41
[8-10]
GR-RBPs (IV of GRPs) AtGRP2/7/8;
OsGRP1/4/6
[14,18,21]
RZs (IVb of GRPs) 拟南芥:3个
水稻:3个
小麦:4个
Arabidopsis: 3
Oryza sativa: 3
Triticum aestivum: 4
AtRZ-1a/b/c;
OsRZ1/2/3;
TaRZ1/2/3/4
[23-26]
CSDPs (IVc of GRPs) 拟南芥:4个
水稻:2个
小麦:4个
Arabidopsis: 4
Oryza sativa: 2
Triticum aestivum: 4
AtCSP1/2/3/4;
OsCSP1/2;
WCSP1/2/3/4
[29-30,33-34]
PPR蛋白
PPR proteins
拟南芥:多于450个
水稻:约477个
Arabidopsis: more than 450
Oryza sativa: about 477
BLX, RPF5, SOAR1,;
AtSEL1,OsPPR676;
OsRF5,OsWSL
[37,40-41,45,48,51-52]
DEAD-box RHs 拟南芥:约58个
水稻:约50个
Arabidopsis: about 58
Oryza sativa: about 50
AtRH50, ZmRH3,
TOGR1, RID1
[62-63, 65-66]
RNA分子伴侣
RNA molecular chaperone
AtRH3, SRRP1;
CFM4
[80-81,83]
[1] MITCHELL S F, PARKER R . Principles and properties of eukaryotic mRNPs. Molecular Cell, 2014,54(4):547-558.
doi: 10.1016/j.molcel.2014.04.033 pmid: 24856220
[2] SINGH G, PRATT G, YEO G W, MOORE M J . The Clothes Make the mRNA: Past and present trends in mRNP fashion. Annual Review of Biochemistry, 2015,84:325-354.
doi: 10.1146/annurev-biochem-080111-092106 pmid: 25784054
[3] LORKOVIC Z J, BARTA A . Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Research, 2002,30(3):623-635.
doi: 10.1093/nar/30.3.623 pmid: 100298
[4] LEE K, KANG H . Emerging roles of RNA-binding proteins in plant growth, development, and stress responses. Molecules and Cells, 2016,39(3):179-185.
doi: 10.14348/molcells.2016.2359 pmid: 4794599
[5] GLISOVIC T, BACHORIK J L, YONG J, DREYFUSS G . RNA-binding proteins and post-transcriptional gene regulation. FEBS Letters, 2008,582(14):1977-1986.
doi: 10.1016/j.febslet.2008.03.004 pmid: 2858862
[6] XUE J Q, XIA T S, LIANG X Q, ZHOU W, CHENG L, SHI L, WANG Y, DING Q . RNA-binding protein RNPC1: acting as a tumor suppressor in breast cancer. BMC Cancer, 2014,14:322.
doi: 10.1186/1471-2407-14-322 pmid: 24884756
[7] SEPHTON C F, YU G . The function of RNA-binding proteins at the synapse: Implications for neurodegeneration. Cellular and Molecular Life Sciences, 2015,72(19):3621-3635.
doi: 10.1007/s00018-015-1943-x pmid: 4565867
[8] ISSHIKI M, TSUMOTO A, SHIMAMOTO K . The serine/ arginine-rich protein family in rice plays important roles in constitutive and alternative splicing of pre-mRNA. The Plant Cell, 2006,18(1):146-158.
doi: 10.1105/tpc.105.037069
[9] KALYNA M, SIMPSON C G, SYED N H, LEWANDOWSKA D, MARQUEZ Y, KUSENDA B, MARSHALL J, FULLER J, CARDLE L, MCNICOL J, DINH H Q, BARTA A, BROWN J W . Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucleic Acids Research, 2012,40(6):2454-2469.
doi: 10.1093/nar/gkr932 pmid: 3315328
[10] CHEN T, CUI P, CHEN H, ALI S, ZHANG S, XIONG L . A KH-domain RNA-binding protein interacts with FIERY2/CTD phosphatase-like 1 and splicing factors and is important for pre-mRNA splicing in Arabidopsis. PLoS Genetics, 2013,9(10):e1003875.
doi: 10.1371/journal.pgen.1003875 pmid: 24146632
[11] KALYNA M, LOPATO S, BARTA A . Ectopic expression of atRSZ33 reveals its function in splicing and causes pleiotropic changes in development. Molecular Biology of the Cell, 2003,14(9):3565-3577.
doi: 10.1091/mbc.E03-02-0109 pmid: 12972547
[12] PALUSA S G, ALI G S, REDDY A S . Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: Regulation by hormones and stresses. The Plant Journal : For Cell and Molecular Biology, 2007,49(6):1091-1107.
doi: 10.1111/j.1365-313X.2006.03020.x pmid: 17319848
[13] LEWINSKI M, HALLMANN A, STAIGER D . Genome-wide identification and phylogenetic analysis of plant RNA binding proteins comprising both RNA recognition motifs and contiguous glycine residues. Molecular Genetics and Genomics, 2016,291(2):763-773.
doi: 10.1007/s00438-015-1144-1 pmid: 26589419
[14] YANG D H, KWAK K J, KIM M K, PARK S J, YANG K Y, KANG H . Expression of Arabidopsis glycine-rich RNA-binding protein AtGRP2 or AtGRP7 improves grain yield of rice(Oryza sativa) under drought stress conditions. Plant Science, 2014,214:106-112.
doi: 10.1016/j.plantsci.2013.10.006 pmid: 24268168
[15] KIM J S, JUNG H J, LEE H J, KIM K A, GOH C H, WOO Y, OH S H, HAN Y S, KANG H . Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. The Plant Journal, 2008,55(3):455-466.
doi: 10.1111/j.1365-313X.2008.03518.x pmid: 18410480
[16] NICAISE V, JOE A, JEONG B R, KORNELI C, BOUTROT F, WESTEDT I, STAIGER D, ALFANO J R, ZIPFEL C . Pseudomonas HopU1 modulates plant immune receptor levels by blocking the interaction of their mRNAs with GRP7. The EMBO Journal, 2013,32(5):701-712.
doi: 10.1038/emboj.2013.15 pmid: 23395902
[17] FU Z Q, GUO M, JEONG B R, TIAN F, ELTHON T E, CERNY R L, STAIGER D, ALFANO J R . A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature, 2007,447(7142):284-288.
doi: 10.1038/nature05737
[18] SCHMAL C, REIMANN P, STAIGER D . A circadian clock-regulated toggle switch explains AtGRP7 and AtGRP8 oscillations in Arabidopsis thaliana. PLoS Computational Biology, 2013,9(3):e1002986.
doi: 10.1371/journal.pcbi.1002986 pmid: 3610657
[19] STREITNER C, DANISMAN S, WEHRLE F, SCHONING J C, ALFANO J R, STAIGER D . The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana. The Plant Journal, 2008,56(2):239-250.
doi: 10.1111/j.1365-313X.2008.03591.x pmid: 18573194
[20] KIM J Y, PARK S J, JANG B, JUNG C H, AHN S J, GOH C H, CHO K, HAN O, KANG H . Functional characterization of a glycine-rich RNA-binding protein 2 in Arabidopsis thaliana under abiotic stress conditions. The Plant Journal, 2007,50(3):439-451.
doi: 10.1111/j.1365-313X.2007.03057.x pmid: 17376161
[21] KIM J Y, KIM W Y, KWAK K J, OH S H, HAN Y S, KANG H . Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process. Journal of Experimental Botany, 2010,61(9):2317-2325.
[22] KIM Y O, KIM J S, KANG H . Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana. The Plant Journal, 2005,42(6):890-900.
doi: 10.1111/j.1365-313X.2005.02420.x pmid: 15941401
[23] KIM Y O, PAN S, JUNG C H, KANG H . A zinc finger-containing glycine-rich RNA-binding protein, atRZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis thaliana under salt or drought stress conditions. Plant & Cell Physiology, 2007,48(8):1170-1181.
doi: 10.1093/pcp/pcm087 pmid: 17602187
[24] WU Z, ZHU D, LIN X, MIAO J, GU L, DENG X, YANG Q, SUN K, ZHU D, CAO X, TSUGE T, DEAN C, AOYAMA T, GU H, QU L J . RNA binding proteins RZ-1B and RZ-1C play critical roles in regulating Pre-mRNA splicing and gene expression during development in Arabidopsis. The Plant Cell, 2016,28(1):55-73.
doi: 10.1105/tpc.15.00949 pmid: 26721863
[25] KIM J Y, KIM W Y, KWAK K J, OH S H, HAN Y S, KANG H . Zinc finger-containing glycine-rich RNA-binding protein in Oryza sativa has an RNA chaperone activity under cold stress conditions. Plant, Cell & Environment, 2010,33(5):759-768.
doi: 10.1111/j.1365-3040.2009.02101.x pmid: 20088860
[26] XU T, GU L, CHOI M J, KIM R J, SUH M C, KANG H . Comparative functional analysis of wheat (Triticum aestivum) zinc finger- containing glycine-rich RNA-binding proteins in response to abiotic stresses. PLoS ONE, 2014,9(5):e96877.
doi: 10.1371/journal.pone.0096877 pmid: 24800811
[27] GRAUMANN P L, MARAHIEL M A . A superfamily of proteins that contain the cold-shock domain. Trends in Biochemical Sciences, 1998,23(8):286-290.
doi: 10.1016/S0968-0004(98)01255-9 pmid: 9757828
[28] SASAKI K, KIM M H, KANNO Y, SEO M, KAMIYA Y, IMAI R . Arabidopsis cold shock domain protein 2 influences ABA accumulation in seed and negatively regulates germination. Biochemical and Biophysical Research Communications, 2015,456(1):380-384.
doi: 10.1016/j.bbrc.2014.11.092 pmid: 25475723
[29] PARK S J, KWAK K J, OH T R, KIM Y O, KANG H . Cold shock domain proteins affect seed germination and growth of Arabidopsis thaliana under abiotic stress conditions. Plant & Cell Physiology, 2009,50(4):869-878.
doi: 10.1093/pcp/pcp037 pmid: 19258348
[30] SASAKI K, KIM M H, IMAI R . Arabidopsis COLD SHOCK DOMAIN PROTEIN 2 is a negative regulator of cold acclimation. The New Phytologist, 2013,198(1):95-102.
doi: 10.1111/nph.12118 pmid: 23323758
[31] KIM M H, SATO S, SASAKI K, SABURI W, MATSUI H, IMAI R . COLD SHOCK DOMAIN PROTEIN 3 is involved in salt and drought stress tolerance in Arabidopsis. Federation of European Biochemical Societies Open Biology, 2013,3:438-442.
doi: 10.1016/j.fob.2013.10.003 pmid: 3829988
[32] YANG Y, KARLSON D T . Overexpression of AtCSP4 affects late stages of embryo development in Arabidopsis. Journal of Experimental Botany, 2011,62(6):2079-2091.
[33] RADKOVA M, VITAMVAS P, SASAKI K, IMAI R . Development- and cold-regulated accumulation of cold shock domain proteins in wheat. Plant Physiology and Biochemistry, 2014,77:44-48.
doi: 10.1016/j.plaphy.2014.01.004 pmid: 24534004
[34] CHAIKAM V, KARLSON D . Functional characterization of two cold shock domain proteins from Oryza sativa. Plant, Cell & Environment, 2008,31(7):995-1006.
doi: 10.1111/j.1365-3040.2008.01811.x pmid: 18397370
[35] MANNA S . An overview of pentatricopeptide repeat proteins and their applications. Biochimie, 2015,113:93-99.
doi: 10.1016/j.biochi.2015.04.004 pmid: 25882680
[36] XING H, FU X, YANG C, TANG X, GUO L, LI C, XU C, LUO K . Genome-wide investigation of pentatricopeptide repeat gene family in poplar and their expression analysis in response to biotic and abiotic stresses. Scientific Reports, 2018,8(1):2817.
doi: 10.1038/s41598-018-21269-1
[37] SUN Y, HUANG J, ZHONG S, GU H, HE S, QU L J . Novel DYW-type pentatricopeptide repeat (PPR) protein BLX controls mitochondrial RNA editing and splicing essential for early seed development of Arabidopsis. Journal of Genetics and Genomics, 2018,45(3):155-168.
doi: 10.1016/j.jgg.2018.01.006 pmid: 29580769
[38] XIE T, CHEN D, WU J, HUANG X, WANG Y, TANG K, LI J, SUN M, PENG X . Growing slowly 1 locus encodes a PLS-type PPR protein required for RNA editing and plant development in Arabidopsis. Journal of Experimental Botany, 2016,67(19):5687-5698.
doi: 10.1093/jxb/erw331
[39] WEISSENBERGER S, SOLL J, CARRIE C . The PPR protein SLOW GROWTH 4 is involved in editing of nad4 and affects the splicing of nad2 intron 1. Plant Molecular Biology, 2017,93(4/5):355-368.
doi: 10.1007/s11103-016-0566-4 pmid: 27942959
[40] HAULER A, JONIETZ C, STOLL B, STOLL K, BRAUN H P, BINDER S . RNA processing factor 5 is required for efficient 5' cleavage at a processing site conserved in RNAs of three different mitochondrial genes in Arabidopsis thaliana. The Plant Journal, 2013,74(4):593-604.
doi: 10.1111/tpj.12143 pmid: 23398165
[41] JIANG S C, MEI C, LIANG S, YU Y T, LU K, WU Z, WANG X F, ZHANG D P . Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought, salt and cold stresses. Plant Molecular Biology, 2015,88(4/5):369-385.
[42] MEI C, JIANG S C, LU Y F, WU F Q, YU Y T, LIANG S, FENG X J, PORTOLES COMERAS S, LU K, WU Z, WANG X F, ZHANG D P . Arabidopsis pentatricopeptide repeat protein SOAR1 plays a critical role in abscisic acid signalling. Journal of Experimental Botany, 2014,65(18):5317-5330.
doi: 10.1093/jxb/eru293 pmid: 4157714
[43] YUAN H, LIU D . Functional disruption of the pentatricopeptide protein SLG1 affects mitochondrial RNA editing, plant development, and responses to abiotic stresses in Arabidopsis. The Plant Journal, 2012,70(3):432-444.
doi: 10.1111/j.1365-313X.2011.04883.x pmid: 22248025
[44] LALUK K, ABUQAMAR S, MENGISTE T . The Arabidopsis mitochondria-localized pentatricopeptide repeat protein PGN functions in defense against necrotrophic fungi and abiotic stress tolerance. Plant Physiology, 2011,156(4):2053-2068.
doi: 10.1104/pp.111.177501 pmid: 21653783
[45] PYO Y J, KWON K C, KIM A, CHO M H . Seedling Lethal1, a pentatricopeptide repeat protein lacking an E/E+ or DYW domain in Arabidopsis, is involved in plastid gene expression and early chloroplast development. Plant Physiology, 2013,163(4):1844-1858.
doi: 10.1104/pp.113.227199 pmid: 24144791
[46] LU Y, LI C, WANG H, CHEN H, BERG H, XIA Y . AtPPR2, an Arabidopsis pentatricopeptide repeat protein, binds to plastid 23S rRNA and plays an important role in the first mitotic division during gametogenesis and in cell proliferation during embryogenesis. The Plant Journal, 2011,67(1):13-25.
doi: 10.1111/j.1365-313X.2011.04569.x pmid: 21435048
[47] ZOSCHKE R, QU Y, ZUBO Y O, BORNER T, SCHMITZ- LINNEWEBER C . Mutation of the pentatricopeptide repeat-SMR protein SVR7 impairs accumulation and translation of chloroplast ATP synthase subunits in Arabidopsis thaliana. Journal of Plant Research, 2013,126(3):403-414.
doi: 10.1007/s10265-012-0527-1 pmid: 23076438
[48] LIU Y J, LIU X, CHEN H, ZHENG P, WANG W, WANG L, ZHANG J, TU J . A plastid-localized pentatricopeptide repeat protein is required for both pollen development and plant growth in rice. Scientific Reports, 2017,7(1):11484.
doi: 10.1038/s41598-017-10727-x pmid: 5597598
[49] TANG J, ZHANG W, WEN K, CHEN G, SUN J, TIAN Y, TANG W, YU J, AN H, WU T, KONG F, TERZAGHI W, WANG C, WAN J . OsPPR6, a pentatricopeptide repeat protein involved in editing and splicing chloroplast RNA, is required for chloroplast biogenesis in rice. Plant Molecular Biology, 2017,95(4/5):345-357.
doi: 10.1007/s11103-017-0654-0 pmid: 28856519
[50] XIAO H, XU Y, NI C, ZHANG Q, ZHONG F, HUANG J, LIU W, PENG L, ZHU Y, HU J . A rice dual-localized pentatricopeptide repeat protein is involved in organellar RNA editing together with OsMORFs. Journal of Experimental Botany, 2018,69(12):2923-2936.
doi: 10.1093/jxb/ery108 pmid: 29562289
[51] HU J, WANG K, HUANG W, LIU G, GAO Y, WANG J, HUANG Q, JI Y, QIN X, WAN L, ZHU R, LI S, YANG D, ZHU Y . The rice pentatricopeptide repeat protein RF5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162. The Plant Cell, 2012,24(1):109-122.
doi: 10.1105/tpc.111.093211 pmid: 22247252
[52] TAN J, TAN Z, WU F, SHENG P, HENG Y, WANG X, REN Y, WANG J, GUO X, ZHANG X, CHENG Z, JIANG L, LIU X, WANG H, WAN J . A novel chloroplast-localized pentatricopeptide repeat protein involved in splicing affects chloroplast development and abiotic stress response in rice. Molecular Plant, 2014,7(8):1329-1349.
doi: 10.1093/mp/ssu054 pmid: 24821718
[53] WANG Y, REN Y, ZHOU K, LIU L, WANG J, XU Y, ZHANG H, ZHANG L, FENG Z, WANG L, MA W, WANG Y, GUO X, ZHANG X, LEI C, CHENG Z, WAN J . WHITE STRIPE LEAF4 encodes a novel p-type PPR protein required for chloroplast biogenesis during early leaf development. Frontiers in Plant Science, 2017,26(8):1116.
doi: 10.3389/fpls.2017.01116 pmid: 5483476
[54] GONG X, SU Q, LIN D, JIANG Q, XU J, ZHANG J, TENG S, DONG Y . The rice OsV4 encoding a novel pentatricopeptide repeat protein is required for chloroplast development during the early leaf stage under cold stress. Journal of Integrative Plant Biology, 2014,56(4):400-410.
doi: 10.1111/jipb.12138 pmid: 24289830
[55] CAI M, LI S, SUN F, SUN Q, ZHAO H, REN X, ZHAO Y, TAN B C, ZHANG Z, QIU F . Emp10 encodes a mitochondrial PPR protein that affects the cis-splicing of nad2 intron 1 and seed development in maize. The Plant Journal, 2017,91(1):132-144.
doi: 10.1111/tpj.13551 pmid: 28346745
[56] REN X, PAN Z, ZHAO H, ZHAO J, CAI M, LI J, ZHANG Z, QIU F . EMPTY PERICARP11 serves as a factor for splicing of mitochondrial nad1 intron and is required to ensure proper seed development in maize. Journal of Experimental Botany, 2017,68(16):4571-4581.
doi: 10.1093/jxb/erx212 pmid: 28981788
[57] QI W, TIAN Z, LU L, CHEN X, CHEN X, ZHANG W, SONG R . Editing of mitochondrial transcripts nad3 and cox2 by Dek10 is essential for mitochondrial function and maize plant development. Genetics, 2017,205(4):1489-1501.
doi: 10.1534/genetics.116.199331 pmid: 28213476
[58] CHEN X, FENG F, QI W, XU L, YAO D, WANG Q, SONG R . Dek35 encodes a PPR protein that affects cis-splicing of mitochondrial nad4 Intron 1 and seed development in maize. Molecular Plant, 2017,10(3):427-441.
doi: 10.1016/j.molp.2016.08.008 pmid: 27596292
[59] ZHANG Y F, SUZUKI M, SUN F, TAN B C . The mitochondrion- targeted PENTATRICOPEPTIDE REPEAT78 protein is required for nad5 mature mRNA stability and seed development in maize. Molecular Plant, 2017,10(10):1321-1333.
doi: 10.1016/j.molp.2017.09.009
[60] SOSSO D, MBELO S, VERNOUD V, GENDROT G, DEDIEU A, CHAMBRIER P, DAUZAT M, HEURTEVIN L, GUYON V, TAKENAKA M, ROGOWSKY P M . PPR2263, a DYW-Subgroup Pentatricopeptide repeat protein, is required for mitochondrial nad5 and cob transcript editing, mitochondrion biogenesis, and maize growth. The Plant Cell, 2012,24(2):676-691.
doi: 10.1105/tpc.111.091074
[61] KOHLER D, SCHMIDT-GATTUNG S, BINDER S . The DEAD-box protein PMH2 is required for efficient group II intron splicing in mitochondria of Arabidopsis thaliana. Plant Molecular Biology, 2010,72(4/5):459-467.
doi: 10.1007/s11103-009-9584-9 pmid: 19960362
[62] PAIERI F, TADINI L, MANAVSKI N, KLEINE T, FERRARI R, MORANDINI P, PESARESI P, MEURER J, LEISTER D . The DEAD-box RNA helicase RH50 is a 23S-4.5S rRNA maturation factor that functionally overlaps with the plastid signaling factor GUN1. Plant Physiology, 2018,176(1):634-648.
doi: 10.1104/pp.17.01545 pmid: 29138350
[63] ASAKURA Y, GALARNEAU E, WATKINS K P, BARKAN A, VAN WIJK K J . Chloroplast RH3 DEAD box RNA helicases in maize and Arabidopsis function in splicing of specific group II introns and affect chloroplast ribosome biogenesis. Plant Physiology, 2012,159(3):961-974.
doi: 10.1104/pp.112.197525 pmid: 22576849
[64] GUAN Q, WU J, ZHANG Y, JIANG C, LIU R, CHAI C, ZHU J . A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in Arabidopsis. The Plant Cell, 2013,25(1):342-356.
doi: 10.1105/tpc.112.108340 pmid: 23371945
[65] OHTANI M, DEMURA T, SUGIYAMA M . Arabidopsis root initiation defective1, a DEAH-box RNA helicase involved in pre-mRNA splicing, is essential for plant development. The Plant Cell, 2013,25(6):2056-2069.
doi: 10.1105/tpc.113.111922 pmid: 23771891
[66] WANG D, QIN B, LI X, TANG D, ZHANG Y, CHENG Z, XUE Y . Nucleolar DEAD-Box RNA helicase TOGR1 regulates thermotolerant growth as a Pre-rRNA chaperone in rice. PLoS Genetics, 2016,12(2):e1005844.
doi: 10.1371/journal.pgen.1005844 pmid: 26848586
[67] HSU Y F, CHEN Y C, HSIAO Y C, WANG B J, LIN S Y, CHENG W H, JAUH G Y, HARADA J J, WANG C S . AtRH57, a DEAD-box RNA helicase, is involved in feedback inhibition of glucose-mediated abscisic acid accumulation during seedling development and additively affects pre-ribosomal RNA processing with high glucose. The Plant Journal, 2014,77(1):119-135.
doi: 10.1111/tpj.12371 pmid: 4350433
[68] HUANG C K, HUANG L F, HUANG J J, WU S J, YEH C H, LU C A . A DEAD-box protein, AtRH36, is essential for female gametophyte development and is involved in rRNA biogenesis in Arabidopsis. Plant & Cell Physiology, 2010,51(5):694-706.
doi: 10.1093/pcp/pcq045 pmid: 20378763
[69] HUANG C K, YU S M, LU C A . A rice DEAD-box protein, OsRH36, can complement an Arabidopsis atrh36 mutant, but cannot functionally replace its yeast homolog Dbp8p. Plant Molecular Biology, 2010,74(1/2):119-128.
doi: 10.1007/s11103-010-9659-7 pmid: 20607362
[70] HUANG C K, SIE Y S, CHEN Y F, HUANG T S, LU C A . Two highly similar DEAD box proteins, OsRH2 and OsRH34, homologous to eukaryotic initiation factor 4AIII, play roles of the exon junction complex in regulating growth and development in rice. BMC Plant Biology, 2016,16:84.
doi: 10.1186/s12870-016-0769-5
[71] HUANG C K, SHEN Y L, HUANG L F, WU S J, YEH C H, LU C A . The DEAD-Box RNA helicase AtRH7/PRH75 participates in Pre-rRNA processing, plant development and cold tolerance in Arabidopsis. Plant & Cell Physiology, 2016,57(1):174-191.
doi: 10.1093/pcp/pcv188 pmid: 26637537
[72] KIM J S, KIM K A, OH T R, PARK C M, KANG H . Functional characterization of DEAD-box RNA helicases in Arabidopsis thaliana under abiotic stress conditions. Plant & Cell Physiology, 2008,49(10):1563-1571.
doi: 10.1093/pcp/pcn125 pmid: 18725370
[73] BAEK W, LIM C W, LEE S C . A DEAD-box RNA helicase, RH8, is critical for regulation of ABA signaling and the drought stress response via inhibition of PP2CA activity. Plant, Cell & Environment, 2018,41(7):1593-1604.
doi: 10.1111/pce.13200
[74] NAWAZ G, LEE K, PARK S J, KIM Y O, KANG H . A chloroplast-targeted cabbage DEAD-box RNA helicase BrRH22 confers abiotic stress tolerance to transgenic Arabidopsis plants by affecting translation of chloroplast transcripts. Plant Physiology and Biochemistry, 2018,127:336-342.
[75] WOODSON S A . Taming free energy landscapes with RNA chaperones. RNA Biology, 2010,7(6):677-686.
doi: 10.4161/rna.7.6.13615 pmid: 21045544
[76] KIM Y O, KANG H . The role of a zinc finger-containing glycine-rich RNA-binding protein during the cold adaptation process in Arabidopsis thaliana. Plant & Cell Physiology, 2006,47(6):793-798.
doi: 10.1093/pcp/pcj047 pmid: 16608866
[77] XU T, HAN J H, KANG H . Structural features important for the RNA chaperone activity of zinc finger-containing glycine-rich RNA- binding proteins from wheat (Triticum avestivum) and rice( Oryza sativa). Phytochemistry, 2013,94:28-35.
[78] KIM J S, PARK S J, KWAK K J, KIM Y O, KIM J Y, SONG J, JANG B, JUNG C H, KANG H . Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids Research, 2007,35(2):506-516.
[79] KWAK K J, PARK S J, HAN J H, KIM M K, OH S H, HAN Y S, KANG H . Structural determinants crucial to the RNA chaperone activity of glycine-rich RNA-binding proteins 4 and 7 in Arabidopsis thaliana during the cold adaptation process. Journal of Experimental Botany, 2011,62(11):4003-4011.
doi: 10.1177/146642400112100214 pmid: 3134357
[80] GU L, XU T, LEE K, LEE K H, KANG H . A chloroplast-localized DEAD-box RNA helicase AtRH3 is essential for intron splicing and plays an important role in the growth and stress response in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2014,82:309-318.
[81] GU L, JUNG H J, KIM B M, XU T, LEE K, KIM Y O, KANG H . A chloroplast-localized S1 domain-containing protein SRRP1 plays a role in Arabidopsis seedling growth in the presence of ABA. Journal of Plant Physiology, 2015,189:34-41.
doi: 10.1016/j.jplph.2015.10.003 pmid: 26513458
[82] HAN J H, LEE K, LEE K H, JUNG S, JEON Y, PAI H S, KANG H . A nuclear-encoded chloroplast-targeted S1 RNA-binding domain protein affects chloroplast rRNA processing and is crucial for the normal growth of Arabidopsis thaliana. The Plant Journaly, 2015,83(2):277-289.
doi: 10.1111/tpj.12889 pmid: 26031782
[83] LEE K, LEE H J, KIM D H, JEON Y, PAI H S, KANG H . A nuclear-encoded chloroplast protein harboring a single CRM domain plays an important role in the Arabidopsis growth and stress response. BMC Plant Biology, 2014,14:98.
doi: 10.1186/1471-2229-14-98 pmid: 4021458
[1] LÜ ShiKai, MA XiaoLong, ZHANG Min, DENG PingChuan, CHEN ChunHuan, ZHANG Hong, LIU XinLun, JI WanQuan. Post-transcriptional Regulation of TaNAC Genes by Alternative Splicing and MicroRNA in Common Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4709-4727.
[2] LÜ ChuYang,DENG PingChuan,ZHANG XiaoLi,SUN YuChao,LIANG WuSheng,HU DongWei. Transcriptomic Analysis of Sclerotia Formation Induced by Low Temperature in Villosiclava virens [J]. Scientia Agricultura Sinica, 2020, 53(22): 4571-4583.
[3] WANG JiaHui,GU KaiDi,WANG ChuKun,YOU ChunXiang,HU DaGang,HAO YuJin. Analysis of Apple Ethylene Response Factor MdERF72 to Abiotic Stresses [J]. Scientia Agricultura Sinica, 2019, 52(23): 4374-4385.
[4] GUO YangDong, ZHANG Lei, LI ShuangTao, CAO YunYun, QI ChuanDong, WANG JinFang. Progresses in Research on Molecular Biology of Abiotic Stress Responses in Vegetable Crops [J]. Scientia Agricultura Sinica, 2018, 51(6): 1167-1181.
[5] GONG Biao, SHI QingHua. Review of Melatonin in Horticultural Crops [J]. Scientia Agricultura Sinica, 2017, 50(12): 2326-2337.
[6] REN Hong-yan, WEI Qiang. Isolation and Functional Analysis of Phosphate-Responsive Gene OsRCI2-9 in Oryza sativa [J]. Scientia Agricultura Sinica, 2015, 48(5): 831-840.
[7] ZU Qian-li, YIN Li-juan, XU Zhao-shi, CHEN Ming, ZHOU Yong-bin, LI Lian-cheng, MA You-zhi, MIN Dong-hong, ZHANG Xiao-hong. Molecular Characteristics and Functional Identification of Foxtail Millet Transcription Factor WRKY36 [J]. Scientia Agricultura Sinica, 2015, 48(5): 851-860.
[8] XU Yuan-yuan, LIN Jing, LI Xiao-gang, CHANG You-hong. Identification and Expression Analysis under Abiotic Stresses of the CBL Gene Family in Pear [J]. Scientia Agricultura Sinica, 2015, 48(4): 735-747.
[9] HU Di-1, 2 , XU Zhao-Shi-2, CUI Xiao-Yu-2, CHEN Ming-2, LI Lian-Cheng-2, MA You-Zhi-2, ZHANG Xiao-Hong-1. Isolation and Functional Analysis of Salt-Responsive Gene TaSRP in Wheat [J]. Scientia Agricultura Sinica, 2014, 47(12): 2292-2299.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!