Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (10): 1940-1947.doi: 10.3864/j.issn.0578-1752.2018.10.013

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Sources of Cadmium Accumulated in Rice Grain

Hua YU1,3(), YuXian SHANGGUAN1,3, ShiHua TU1(), YuSheng QIN1,3, Kun CHEN1,3, DaoQuan CHEN2, QianCong LIU2   

  1. 1Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066
    2Guanghan Agro-Tech Extension Station, Guanghan 618300, Sichuan
    3Monitoring and Experimental Station of Plant Nutrition and Agro-Environment for Sloping Land in South Region, Ministry of Agriculture, Chengdu 610066
  • Received:2017-06-30 Accepted:2017-11-17 Online:2018-05-16 Published:2018-05-16

Abstract:

【Objective】 The objective of this study aimed to understand the sources of cadmium accumulated in the rice grain and to offer scientific support and best timing of agronomic measures to secure safety rice production. 【Method】 The study involved a pot hydroponic experiment with three Cd concentrations of 0, 0.2 and 0.5 mg·L-1 by transplanting uniform rice plants at fully heading stage from a field with Cd contamination. Besides, the rice in the same field were also observed. The rice samples from hydroponic culture were harvested at maturity and those from the field were sampled at full heading stage, milk stage, dough stage and maturity. Dry weight and tissue Cd contents were analyzed for all the samples. 【Result】 The results showed that Cd accumulated in the rice grain was mainly transferred from the root and culm where Cd was stored before full heading in the Cd 0 treatment of the hydroponic culture. When available Cd was low in the soil (i.e., the treatment with rice kept growing in the paddy field), Cd accumulated in the rice grain was from both plant tissues stored Cd before heading and soil Cd uptake by rice after heading. The leaf and chaff appeared as net sources for Cd transferred to the rice grain, while the culm and root behaved as both pools for Cd accumulation and sources to the grain. When the rice grew in relatively high Cd content media (i.e., Cd 0.2 and Cd 0.5 treatments), Cd accumulated in the rice grain was mainly from direct uptake of Cd by the plant and small portions from different rice organs. 【Conclusion】 The Cd accumulated in the grain is transferred from different rice organs before heading stage and from direct uptake from soil/medium; the higher the available Cd in soil/medium, the higher Cd accumulated in the grain; only when there is no available Cd in the soil/medium, the Cd stored in different rice organs becomes the sole source of grain Cd. The culm and root are the two major locations for Cd storage and output in the rice plant. Heading to maturity stages are crucial to control Cd accumulation in rice grain and thus, are key period to secure production of safety rice if proper measures are taken to reduce available Cd in the growth medium as well as its uptake by direct root uptake and transport to the grain.

Key words: rice grain, cadmium, origin, contamination

Table 1

Dry weight of different plant parts of rice at different sampling times"

处理
Treatment
糙米重
Brown rice wt (g/plant)
谷壳重
Chaff wt (g/plant)
茎秆重
Culm wt (g/plant)
叶重
Leaf wt (g/plant)
根重
Root wt (g/plant)
田间样 Field sample
齐穗期 Full heading stage - 8.93a 35.82a 15.41ab 6.35bcd
灌浆期 Milk stage 9.13c 8.53a 31.95b 13.80ab 6.29bcd
腊熟期 Dough stage 27.53b 8.90a 28.07c 13.52ab 5.19d
成熟期 Mature stage 35.98a 8.94a 27.81c 12.19b 5.53cd
水培样(成熟期) Hydroponics sample (Mature stage)
Cd 0 36.54a 8.11a 26.39cd 15.97a 8.70a
Cd 0.2 35.43a 7.93a 24.28d 15.16ab 7.95ab
Cd 0.5 34.08a 7.90a 24.85cd 14.18ab 7.36abc

Table 2

Cd concentrations and accumulation in rice grain as affected by different treatments after heading stage"

处理
Treatment
Cd浓度 Cd content Cd累积量 Cd accumulated
(mg·kg-1) (±%*) (μg/ plant) (±%)
田间样 Field sample
齐穗期 Full heading stage - - - -
灌浆期 Milk stage 0.1693c - 1.49b -
腊熟期 Dough stage 0.1323c -21.85 3.67b +145.92
成熟期 Mature stage 0.1233c -27.17 4.40b +194.28
水培样(成熟期) Hydroponics sample (Mature stage)
Cd 0 0.1488c - 5.44b -
Cd 0.2 1.1999b +706.38 42.89a +688.97
Cd 0.5 1.5925a +970.23 55.24a +916.11

Table 3

Cd distribution in the other plant parts of rice from fully heading to mature stage"

处理
Treatment
茎秆镉 Cd in culm 叶片镉 Cd in leaf 谷壳镉 Cd in chaff 根部镉 Cd in root
浓度
Content
(mg·kg-1)
累积量
Accumulation
(μg/plant)
浓度
Content
(mg·kg-1)
累积量
Accumulation
(μg/plant)
浓度
Content
(mg·kg-1)
累积量
Accumulation
(μg/plant)
浓度
Content
(mg·kg-1)
累积量
Accumulation
(μg/plant)
田间样Field sample
齐穗期 Full heading stage 0.2875c 10.32c 0.0912c 1.41c 0.0812c 0.73bc 3.2637b 21.05b
灌浆期Milk stage 0.5260c 16.83c 0.0834c 1.14c 0.0731c 0.60bcd 3.2951b 20.85b
腊熟期Dough stage 0.5686c 16.09c 0.0835c 1.13c 0.0425de 0.37cd 3.2845b 20.39b
成熟期Mature stage 0.6583c 18.45c 0.0791c 0.97c 0.0275e 0.25d 3.9529b 22.18b
水培样(成熟期) Hydroponics sample (Mature stage)
Cd 0 0.5040c 13.27c 0.3108c 4.95c 0.0584cd 0.48cd 0.8034b 6.88b
Cd 0.2 7.5569b 182.02b 1.8003b 27.23b 0.1103b 0.87b 25.6589a 203.16a
Cd 0.5 13.7115a 337.09a 4.3433a 61.56a 0.1756a 1.39a 28.9305a 211.05a

Table 4

Distribution of Cd in different rice organs at different sampling times"

处理
Treatment
Cd分配比例 Distribution of Cd(%)
糙米 Brown rice 谷壳 Chaff 茎秆 Culm 叶 Leaf 根 Root
田间样Field sample
齐穗期 Full heading stage - 2.19 30.79 4.19 62.83
灌浆期Milk stage 3.65 1.46 41.14 2.78 50.97
腊熟期Dough stage 9.51 0.97 41.63 2.92 44.98
成熟期Mature stage 9.51 0.54 39.90 2.09 47.97
水培样(成熟期) Hydroponics sample (Mature stage)
Cd 0 17.53 1.54 42.80 15.95 22.18
Cd 0.2 9.40 0.19 39.90 5.97 44.54
Cd 0.5 8.29 0.21 50.59 9.24 31.67
[1] RINALDI M, MICALI A, MARINI H, ADAMO E B, PUZZOLO D, PISANI A, TRICHILO V, ALTAVILLA D, SQUADRITO F, MINUTOLI L.Cadmium, organ toxicity and therapeutic approaches. A review on brain, kidney and testis damage.Current Medicinal Chemistry, 2017, 24(1): 1-15.
doi: 10.2174/0929867324666170801101448 pmid: 28762312
[2] KHAN M A, KHAN S, KHAN A, ALAM M.Soil contamination with cadmium, consequences and remediation using organic amendments.Science of the Total Environment, 2017, 6(9): 1591-1605.
doi: 10.1016/j.scitotenv.2017.06.030 pmid: 28609847
[3] HOBBELEN P H F, KOOLHAAS J E, VAN GESTEL C A M. Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectoden caliginosa in relation to total and available metal concentrations in field soil.Environmental Pollution, 2006, 144(2): 639-646.
doi: 10.1016/j.envpol.2006.01.019 pmid: 16530310
[4] KIRKHAM M B.Cadmium in plant on polluted soils: Effects of soil factors, hyperaccumulation, and amendments.Geoderma, 2006, 137(1/2): 19-32.
doi: 10.1016/j.geoderma.2006.08.024
[5] 李子芳, 刘惠芬, 熊肖霞, 刘卉生. 镉胁迫对小麦种子萌发幼苗生长及生理生化特性的影响. 农业环境科学学报, 2005, 24(增刊): 17-20.
doi: 10.3321/j.issn:1672-2043.2005.z1.005
LI Z F, LIU H F, XIONG X X, LIU H S.Effect of cadmium on seed germination, seedling development and physiological and biochemical characteristics of wheat.Journal of Agro-environmental Science, 2005, 24(Suppl.):17-20. (in Chinese)
doi: 10.3321/j.issn:1672-2043.2005.z1.005
[6] 杜晓, 申晓辉. 镉胁迫对珊瑚树和地中海荚蒾生理生化指标的影响. 生态学杂志, 2010, 29(5): 899-904.
DU X, SHEN X H.Effects of cadmium stress on physiological and biochemical indices of Viburnum odoratissimum and V. Tinus seedlings.Chinese Journal of Ecology, 2010, 29(5): 899-904. (in Chinese)
[7] TALANOVA V V, TITOV A F, BOEVA N P.Effect of increasing concentration of heavy metals on the growth of barley and wheat seedlings.Russian Journal of Plant Physiology, 2001, 48(1): 119-123.
doi: 10.1023/A:1009062901460
[8] WATERS RS, BRYDEN NA, PATTERSON KY, VEILLON C, ANDERSON RA.EDTA chelation effects on urinary losses of cadmium, calcium, chromium, cobalt, copper, magnesium, and zinc.Biological Trace Element Research, 2001, 83: 207-221.
doi: 10.1385/BTER:83:3:207 pmid: 11794513
[9] 崔岩山, 陈晓晨. 土壤中镉的生物可给性及其对人体的健康风险评估. 环境科学, 2010, 31(2): 403-407.
CUI Y S, CHEN X C.Bioaccessibility of soil cadmium and its health risk assessment.Environmental Science, 2010, 31(2): 403-407. (in Chinese)
[10] 詹杰, 胡德奇, 柳承希, 魏树和, 张静生. 镉对血管内皮细胞损伤及其致动脉硬化的毒理学机制. 生态毒理学报, 2012, 7(6): 633-638.
ZHAN J, HU D Q, LIU C X, WEI S H,ZHANG J S.Damage of cadmium to vascular endothelial cells and its toxicity mechanism in atherosclerosis.Asian Journal of Ecotoxicology, 2012, 7(6): 633-638. (in Chinese)
[11] FUJIMAKI S, SUZUI N, ISHIOKA NS, KAWACHI N, ITO S, CHINO M, NAKAMURA S.Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant.Plant Physiology, 2010, 152(4):1796-1806.
[12] KASHIWAGI T, SHINDOH K, HIROTSU N, ISHIMARU K.Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant in rice.BMC Plant Biology, 2009, 9: 8. doi: 10.1186/1471-2229-9-8.
doi: 10.1186/1471-2229-9-8 pmid: 19154618
[13] 田艳芬, 史锟. 镉对水稻等作物的毒害作用.垦殖与稻作, 2003(5): 26-28.
TIAN Y F, SHI K.Poisonous effects on rice and vegetables by cadmium.Reclaim and Rice Cultivation, 2003(5): 26-28. (in Chinese)
[14] LI H, LUO N, LI Y W, CAI Q Y, LI H Y, MO C H, WONG M H.Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures.Environmental Pollution, 2017, 224: 622-630.
doi: 10.1016/j.envpol.2017.01.087 pmid: 28242254
[15] XIAO L, GUAN D S, PEART M R, CHEN Y J, LI Q Q, DAI J.The influence of bioavailable heavy metals and microbial parameters of soil on the metal accumulation in rice grain.Chemosphere, 2017, 185: 868-878.
doi: 10.1016/j.chemosphere.2017.07.096 pmid: 28746996
[16] 张锡洲, 张洪江, 李廷轩. 水稻镉耐性差异及镉低积累种质资源的筛选. 中国生态农业学报, 2013, 21(11): 1434-1440.
doi: 10.3724/SP.J.1011.2013.30478
ZHANG X Z, ZHANG H J, Li T X.Differences in Cd-tolerance of rice and screening for Cd low-accumulation rice germplasm resources.Chinese Journal of Eco-Agriculture, 2013, 21(11): 1434-1440. (in Chinese)
doi: 10.3724/SP.J.1011.2013.30478
[17] 安志装, 王校常, 严蔚东. 镉硫交互处理对水稻吸收累积镉及其蛋白巯基含量的影响. 土壤学报, 2004, 41(5): 728-734.
doi: 10.11766/trxb200309100510
AN Z Z, WANG X C, YAN W D.Effect of sulfate and cadmium interaction on cadmium accumulation and content of nonprotein thiols in rice seedling.Acta Pedologica Sinica, 2004, 41(5): 728-734. (in Chinese)
doi: 10.11766/trxb200309100510
[18] 肖清铁, 戎红, 周丽英. 水稻叶片对镉胁迫响应的蛋白质差异表达. 应用生态学报, 2011, 22(4): 1013-1019.
XIAO Q T, RONG H, ZHOU L Y.Differential expression of proteins in Oryza sativa leaves in response to cadmium stress.Chinese Journal of Applied Ecology, 2011, 22(4): 1013-1019. (in Chinese)
[19] FONTANILI L, LANCILLI C, SUZUI N, DENDENA B,YIN Y G, FERRI A, ISHII S, KAWACHI N, LUCCHINI G, FUJIMAKI S, SACCHI G A, NOCITO F F.Kinetic analysis of zinc/cadmium reciprocal competitions suggests a possible Zn-insensitive pathway for root-to-shoot cadmium translocation in rice.Rice, 2016, 9(1): 16.
doi: 10.1186/s12284-016-0088-3 pmid: 4828370
[20] ZHANG Z C, YU Q, DU H Y, AI W L, YAO X, DAVID G, MENDOZA-C ÓZATL, QIU B S. Enhanced cadmium efflux and root-to-shoot translocation are conserved in the hyperaccumulator Sedum alfredii (Crassulaceae family).Febs Letters, 2016, 590(12): 1757.
[21] GAO L, CHANG J D, CHEN R J, LI H B, LU H F, TAO L X, XIONG J.Comparison on cellular mechanisms of iron and cadmium accumulation in rice: prospects for cultivating Fe-rich but Cd-free rice.Rice, 2016, 9(1): 39.
doi: 10.1186/s12284-016-0112-7 pmid: 27502932
[22] 蒋德安, 朱诚.植物生理学实验指导.. 成都: 成都科技大学出版社, 1999.
JIANG D A, ZHU C.Laboratory Procedure of Plant Physiology. Chengdu: Chengdu University of Science and Technology Press, 1999. (in Chinese)
[23] 鲍士旦.土壤农化分析. 北京: 中国农业出版社, 2000.
BAO S D.Soil and Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 2000. (in Chinese)
[24] KOBAYASHI N I, TANOI K, HIROSE A, NAKANISHI T M.Characterization of rapid intervascular transport of cadmium in rice stem by radioisotope imaging.Journal of Experimental Botany, 2013, 64(2): 507-517.
doi: 10.1093/jxb/ers344 pmid: 3542043
[25] MENDOZA-CÓZATL D G, JOBE T O, HAUSER F, SCHROEDER J I. Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic.Current Opinion in Plant Biology, 2011, 14(5): 554-562.
doi: 10.1016/j.pbi.2011.07.004 pmid: 3191310
[26] YONEYAMA T, ISHIKAWA S, FUJIMAKI S.Route and regulation of zinc, cadmium, and iron transport in rice plants (Oryza sativa L.) during vegetative growth and grain filling: metal transporters, metal speciation, grain Cd reduction and Zn and Fe biofortification. International Journal of Molecular Sciences, 2015, 16(8): 19111-19129.
doi: 10.3390/ijms160819111 pmid: 4581289
[27] FENG X M, HAN L, CHAO D Y, LIU Y, ZHANG Y J, WANG R G, GUO J K, FENG R W,XU Y M, DING Y Z, HUANG B Y, ZHANG G L.Ionomic and transcriptomic analysis provides new insight into the distribution and transport of cadmium and arsenic in rice.Journal of Hazardous Materials, 2017, 6: 246-256.
doi: 10.1016/j.jhazmat.2017.02.041 pmid: 28273574
[28] YAN Y F, DOUGHWAN C, DOSOON K, BYUNWOO L.Absorption, translocation, and remobilization of cadmium supplied at different growth stages of rice.Journal of Crop Science and Biotechnology, 2010, 13(2): 113-119.
doi: 10.1007/s12892-010-0045-4
[29] CHONAN N.STEM. In: Matsuo T, Hosikawa K(eds.) Science of the rice plant: morphology. Nobunkyo, 1993:187-221.
[30] 李正翔. 不同基因型水稻剑叶中镉向籽粒再分配差异性研究[D]. 北京: 中国农业科学院, 2014.
LI Z X.Effects of cultivar on cadmium redistributed from blade leaf to grains[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese)
[31] URAGUCHI S, MORI S, KURAMATA M, KAWASAKI A, ARAO T, ISHIKAWA S.Root-toshoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice.Journal of Experimental Botany, 2009, 60: 2677-2688. doi:10. 1093/jxb/erp119.
doi: 10.1093/jxb/erp119 pmid: 19401409
[32] TANAKA K, FUJIMAKI S, FUJIWARA T, YONEYAMA T, HAYASHI H.Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants (Oryza sativa L.). Soil Science and Plant Nutrition, 2007, 53: 72-77. doi: 10.1111/j. 1747-0765. 2007.00116.x.
doi: 10.1111/j.1747-0765.2007.00116.x
[33] DAVID G.MENDOZA-CÓZATL, TIMOTHY O. JOBE, FELIX HAUSER, AND JULIAN I. SCHROEDER.Current Opinion Plant Biology, 2011, 14(5): 554-562. doi:10.1016/j.pbi.2011.07.004.
[34] KATO M, ISHIKAWA S, INAGAKI K, CHIBA K, HAYASHI H, YANAGISAWA S, YONEYAMA T.Possible chemical forms of cadmium and varietal differences in cadmium concentrations in the phloem sap of rice plants (Oryza sativa L.).Soil Science and Plant Nutrition, 2010, 56: 839-847. doi:10.1111/j.1747-0765.2010.00514.x.
doi: 10.1111/j.1747-0765.2010.00514.x
[1] JIA GuanQing, DIAO XianMin. Current Status and Perspectives of Innovation Studies Related to Foxtail Millet Seed Industry in China [J]. Scientia Agricultura Sinica, 2022, 55(4): 653-665.
[2] JIANG XiaoTing,HUANG GaoXiang,XIONG XiaoYing,HUANG YunPei,DING ChangFeng,DING MingJun,WANG Peng. Effects of Seedlings Enriched with Zinc on Cadmium Accumulations and Related Transporter Genes Expressions in Different Rice Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(17): 3267-3277.
[3] ZHOU Liang,XIAO Feng,XIAO Huan,ZHANG YuSheng,AO HeJun. Effects of Lime on Cadmium Accumulation of Double-Season Rice in Paddy Fields with Different Cadmium Pollution Degrees [J]. Scientia Agricultura Sinica, 2021, 54(4): 780-791.
[4] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[5] WANG Qian,LI Zheng,ZHAO ShanShan,QIE MengJie,ZHANG JiuKai,WANG MingLin,GUO Jun,ZHAO Yan. Application of Stable Isotope Technology in the Origin Traceability of Sheep [J]. Scientia Agricultura Sinica, 2021, 54(2): 392-399.
[6] ZHANG QingAn,CHEN BoYu. Research Progress of Four Sulfur Compounds Related to Red Wine Flavor [J]. Scientia Agricultura Sinica, 2020, 53(5): 1029-1045.
[7] PENG Ou,LIU YuLing,TIE BaiQing,YE ChangCheng,ZHANG Miao,LI YuanXingLu,ZHOU JunChi,XU Meng,ZHANG Yan,LONG Yong. Effects of Conditioning Agents and Agronomic Measures on Cadmium Uptake by Rice in Polluted Rice Fields [J]. Scientia Agricultura Sinica, 2020, 53(3): 574-584.
[8] LI MingFeng,LIU XinWei,WANG HaiTong,ZHAO ZhuQing. Effects of Sulfur Fertilizer on Boron Uptake and Distribution of Rape in B-contaminated Soil [J]. Scientia Agricultura Sinica, 2019, 52(5): 874-881.
[9] ZHU YaJing, ZHOU YaLi, LIU SuShuang, WEI JiaPing, LIU XiaoLin, SHEN YingZi, ZHAO HaiHong, MA Hao. GmHMADP Involved in Seed Vigor Formation of Soybean Under High Temperature and Humidity Stress and its Study Responsive to Copper and Cadmium Stress [J]. Scientia Agricultura Sinica, 2018, 51(14): 2642-2654.
[10] WANG Ting, ZHOU Cui, GU YanWen, MA WenChao, LIU Yuan, WEI Hong. Hyperspectral Estimation of Cadmium Content in Tumorous Stem Mustard Based on the Wavelet-Fractal Analysis [J]. Scientia Agricultura Sinica, 2018, 51(1): 71-81.
[11] LIU HongYan, GUO BoLi, WEI Shuai, JIANG Tao, ZHANG SenShen, WEI YiMin. Characteristics of Stable Carbon and Nitrogen Isotopic Ratios in Wheat Milling Fractions [J]. Scientia Agricultura Sinica, 2017, 50(3): 556-563.
[12] SUN ZhenZhu, LI QiuYue, WANG XiaoKe, ZHAO WanTong, XUE Yang, FENG JinYing, LIU XiaoFeng, LIU MengYu, JIANG Dong. Comprehensive Evaluation and Phenotypic Diversity Analysis of Germplasm Resources in Mandarin [J]. Scientia Agricultura Sinica, 2017, 50(22): 4362-4372.
[13] NIE JiYun. Occurrence, Control and Determination of Patulin Contamination in Fruits and Fruit Products [J]. Scientia Agricultura Sinica, 2017, 50(18): 3591-3607.
[14] CHEN JiangMin, YANG YongJie, HUANG QiNa, HU PeiSong, TANG ShaoQing, WU LiQun, WANG JianLong, SHAO GuoSheng. Effects of Continuous Flooding on Cadmium Absorption and Its Regulation Mechanisms in Rice [J]. Scientia Agricultura Sinica, 2017, 50(17): 3300-3310.
[15] ZHANG Chang-quan, ZHAO Dong-sheng, LI Qian-feng, GU Ming-hong, LIU Qiao-quan. Progresses in Research on Cloning and Functional Analysis of Key Genes Involving in Rice Grain Quality [J]. Scientia Agricultura Sinica, 2016, 49(22): 4267-4283.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!