Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (5): 900-910.doi: 10.3864/j.issn.0578-1752.2015.05.08

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Key Research Priorities for Agricultural Land System Studies

TANG Hua-jun1, WU Wen-bin1,2, YU Qiang-yi1, XIA Tian2, YANG Peng1, LI Zheng-guo1   

  1. 1Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Agri-Informatics, Ministry of Agriculture, Beijing 100081
    2College of Urban & Environmental Sciences, Central China Normal University, Wuhan 430079
  • Received:2014-11-24 Online:2015-03-01 Published:2015-03-01

Abstract: Agricultural land use and its dynamics have attracted much attention from researchers due to their ecological and socio-economic implications for agricultural sustainability. Several international programs such as the Land-Use and Land-Cover Change (LUCC) and the Global Land Project (GLP) have promoted the emergence of Land System Sciences. Based on the latest progress in Land System Science, this review paper provides a definition of the Agricultural Land System (ALS) and conceptualizes a framework for the ALS studies relating to global change, food security, and sustainability studies. It is proposed that: 1) Multi-faceted patterns of ALS are the basis for subsequent analysis. It should consider not only the characteristics ALS at the land use and land cover level, e.g. the transitions between cropland and other land cover types, but also the characteristics of cropping system, crop allocation, intensification and productivity within cropland. Interdisciplinary approaches and data integration are necessary for understanding the complex characteristics of ALS. 2) Multi-model coupling through the interpretation and intercorrelation of ALS patterns and underlying drivers is an essential way to represent ALS dynamic changes, processes and its mechanisms, by which it is able to better understand the coupled human-environment interactions across different time, space and scales. 3) It is important to link the ALS with other parallel systems to understand their synergies and trade-offs, in order to build up a sustainable pathway for future agricultural land use. Those solutions for ALS studies would substantially promote the interdisciplinary integration and will contribute to the development of Land System Science and its relevant sciences.

Key words: land system science, agricultural land systems, pattern, process, synergy, trade-offs

[1]    Turner II B L, Skole D L, Sanderson S, Fischer G, Fresco L, Leemans R. Land-use and land-cover change: Science/Research plan, 31393[R]. Stockholm: IGBP Secretariat, 1995.
[2]    Global Land Project. Science plan and implementation strategy[R]. Stockholm: IGBP Secretariat, 2005.
[3]    Verburg P H, Erb K, Mertz O, Espindola G. Land system science: between global challenges and local realities. Current Opinion in Environmental Sustainability, 2013, 5(5): 433-437.
[4]    吴次芳. 土地科学学科建设若干基本问题的反思与探讨. 中国土地科学, 2014, 28(2): 22-28.
Wu C F. Reflections and discussions on several basic issues of the disciplinary construction of land science. China Land Science, 2014, 28(2): 22-28. (in Chinese)
[5]    Aspinall R. Editorial: Land use science. Journal of Land Use Science, 2006, 1(1): 1-4.
[6]    Turner II B L, Lambin E F, Reenberg A. The emergence of land change science for global environmental change and sustainability. Proceedings of the National Academy of Sciences of the USA, 2007, 104(52): 20666-20671.
[7]    Reenberg A. Land system science: handling complex series of natural and socio-economic processes. Journal of Land Use Science, 2009, 4(1): 1-4.
[8]    Rounsevell M D A, Pedroli B, Erb K, Gramberger M, Busck A G, Haberl H, Kristensen S, Kuemmerle T, Lavorel S, Lindner M, Lotze-Campen H, Metzger M J, Murray-Rust D, Popp A, Pérez-Soba M, Reenberg A, Vadineanu A, Verburg P H, Wolfslehner B. Challenges for land system science. Land Use Policy, 2012, 29(4): 899-910.
[9]    Turner II B L. Land system science: land systems, sustainability and land system architecture. 2nd GLP Open Science Meeting, Berlin, 2014.
[10]   唐华俊, 陈佑启, 邱建军, 陈仲新. 中国土地利用/土地覆盖变化研究. 北京: 中国农业科学技术出版社, 2004.
Tang H J, Chen Y Q, Qiu J J, Chen Z X. Land-Use and Land-Cover Change in China. Beijing: China Agricultural Science and Technology Press, 2004. (in Chinese)
[11]   Turner B L, Janetos A C, Verburg P H, Murray A T. Land system architecture: using land systems to adapt and mitigate global environmental change. Global Environmental Change, 2013, 23(2): 395-397.
[12]   Reenberg A. Global land science: from land use analysis to land system analysis. 2nd GLP Open Science Meeting, Berlin, 2014.
[13]   Wu W B, Verburg P, Tang H J. Climate change and the food production system: impacts and adaptation in China. Regional Environmental Change, 2014, 14(1): 1-5.
[14]   Meyfroidt P, Lambin E F, Erb K, Hertel T W. Globalization of land use: distant drivers of land change and geographic displacement of land use. Current Opinion in Environmental Sustainability, 2013, 5(5): 438-444.
[15]   Güneralp B, Seto K C, Ramachandran M. Evidence of urban land teleconnections and impacts on hinterlands. Current Opinion in Environmental Sustainability, 2013, 5(5): 445-451.
[16]   Crossman N D, Bryan B A, de Groot R S, Lin Y, Minang P A. Land science contributions to ecosystem services. Current Opinion in Environmental Sustainability, 2013, 5(5): 509-514.
[17]   Verburg P H, Mertz O, Erb K, Haberl H, Wu W. Land system change and food security: towards multi-scale land system solutions. Current Opinion in Environmental Sustainability, 2013, 5(5): 494-502.
[18]   Messina J P, Pan W K. Different ontologies: land change science and health research. Current Opinion in Environmental Sustainability, 2013, 5(5): 515-521.
[19]   Volk M, Ewert F. Scaling methods in integrated assessment of agricultural systems-state-of-the-art and future directions. Agriculture, Ecosystems and Environment, 2011, 142(1/2): 1-5.
[20]   唐华俊, 吴文斌, 杨鹏, 周清波, 陈仲新. 农作物空间格局遥感监测研究进展. 中国农业科学, 2010, 43(14): 2879-2888.
Tang H J, Wu W B, Yang P, Zhou Q B, Chen Z X. Recent progresses in monitoring crop spatial patterns by using remote sensing technologies. Scientia Agricultura Sinica, 2010, 43(14): 2879-2888. (in Chinese)
[21]   Ramankutty N, Evan A T, Monfreda C, Foley J A. Farming the planet 1. geographic distribution of global agricultural lands in the year 2000. Global Biogeochemical Cycles, 2008, 22: B1003.
[22]   Foley J A, Ramankutty N, Brauman K A, Cassidy E S, Gerber J S, Johnston M, Mueller N D, O Connell C, Ray D K, West P C, Balzer C, Bennett E M, Carpenter S R, Hill J, Monfreda C, Polasky S, Rockstrom J, Sheehan J, Siebert S, Tilman D, Zaks D P M. Solutions for a cultivated planet. Nature, 2011, 478(7369): 337-342.
[23]   Foley J A, DeFries R, Asner G P, Barford C, Bonan G, Carpenter S R, Chapin F S, Coe M T, Daily G C, Gibbs H K, Helkowski J H, Holloway T, Howard E A, Kucharik C J, Monfreda C, Patz J A, Prentice I C, Ramankutty N, Snyder P K. Global consequences of land use. Science, 2005, 309(5734): 570-574.
[24] Ellis E C, Kaplan J O, Fuller D Q, Vavrus S, Klein Goldewijk K, Verburg P H. Used planet: a global history. Proceedings of the National Academy of Sciences of the USA, 2013, 110(20): 7978-7985.
[25]   Barretto A G O P, Berndes G, Sparovek G, Wirsenius S. Agricultural intensification in Brazil and its effects on land-use patterns: an analysis of the 1975-2006 period. Global Change Biology, 2013, 19(6): 1804-1815.
[26]   吴文斌, 杨鹏, 唐华俊, Ongaro L, Shibasaki R. 土地利用对土壤性质影响的区域差异研究. 中国农业科学, 2007, 40(8): 1697-1702.
Wu W B, Yang P, Tang H J, Ongaro L, Shibasaki R. Regional variability of effects of land use system on soil properties. Scientia Agricultura Sinica, 2007, 40(8): 1697-1702. (in Chinese)
[27]   Pielke Sr. R A. Land use and climate change. Science, 2005, 310(5754): 1625-1626.
[28]   Pimm S L, Raven P. Biodiversity: Extinction by numbers. Nature, 2000, 403(6772): 843-845.
[29] Bezlepkina I, Reidsma P, Sieber S, Helming K. Integrated assessment of sustainability of agricultural systems and land use: methods, tools and applications. Agricultural Systems, 2011, 104(2): 105-109.
[30]   Boryan C, Yang Z, Mueller R, Craig M. Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto International, 2011, 26(5): 341-358.
[31]   闫慧敏, 刘纪远, 曹明奎. 近20年中国耕地复种指数的时空变化. 地理学报, 2005, 60(4): 559-566.
Yan H M, Liu J Y, Cao M K. Remotely sensed multiple cropping index variations in China during 1981-2000. Acta Geographica Sinica, 2005, 60(4): 559-566. (in Chinese)
[32]   Sakamoto T, Van Nguyen N, Ohno H, Ishitsuka N, Yokozawa M. Spatio-temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers. Remote Sensing of Environment, 2006, 100(1): 1-16.
[33]   唐鹏钦, 吴文斌, 姚艳敏, 杨鹏. 基于小波变换的华北平原耕地复种指数提取. 农业工程学报, 2011, 27(7): 220-225.
Tang P Q, Wu W B, Yao Y M, Yang P. New method for extracting multiple cropping index of North China Plainbased on wavelet transform. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(7): 220-225. (in Chinese)
[34]   Lunetta R S, Shao Y, Ediriwickrema J, Lyon J G. Monitoring agricultural cropping patterns across the Laurentian Great Lakes Basin using MODIS-NDVI data. International Journal of Applied Earth Observation and Geoinformation, 2010, 12(2): 81-88.
[35]   吴文斌, 杨鹏, 唐华俊, 周清波, Shibasaki R, 张莉, 唐鹏钦. 过去20年中国耕地生长季起始期的时空变化. 生态学报, 2009, 29(4): 1777-1786.
Wu W B, Yang P, Tang H J, Zhou Q B, Shibasaki R, Zhang L, Tang P Q. Spatio-temporal variations in the starting dates of growing season in China’s cropland over the past 20 years. Acta Ecologica Sinica, 2009, 29(4): 1777-1786. (in Chinese)
[36]   李正国, 唐华俊, 杨鹏, 周清波, 吴文斌, 邹金秋, 张莉, 张小飞. 东北三省耕地物候期对热量资源变化的响应. 地理学报, 2011, 66(7): 928-939.
Li Z G, Tang H J, Yang P, Zhou Q B, Wu W B, Zou J Q, Zhang L, Zhang X F. Responses of cropland phenophases to agricultural thermal resources change in Northeast China. Acta Geographica Sinica, 2011, 66(7): 928-939. (in Chinese)
[37]   Alcantara C, Kuemmerle T, Prishchepov A V, Radeloff V C. Mapping abandoned agriculture with multi-temporal MODIS satellite data. Remote Sensing of Environment, 2012, 124: 334-347.
[38]   Tan G X, Shibasaki R. Global estimation of crop productivity and the impacts of global warming by GIS and EPIC integration. Ecological Modelling, 2003, 168(3): 357-370.
[39]   Wu W B, Shibasaki R, Yang P, Tan G X, Matsumura K I, Sugimoto,  K. Global-scale modelling of future changes in sown areas of major crops. Ecological Modelling, 2007, 208(2/4): 378-390.
[40]   杨晓光, 刘志娟, 陈阜. 全球气候变暖对中国种植制度可能影响Ⅰ.气候变暖对中国种植制度北界和粮食产量可能影响的分析. 中国农业科学, 2010, 43(2): 329-336.
Yang X G, Liu Z J, Chen F. The possible effects of global warming on cropping systems in China Ⅰ. The possible effects of climate warming on northern limits of cropping systems and crop yields in China. Scientia Agricultura Sinica, 2010, 43(2): 329-336. (in Chinese)
[41]   Yu Q Y, Wu W B, Verburg P H, van Vliet J, Yang P, Zhou Q B, Tang H J. A survey-based exploration of land-system dynamics in an agricultural region of Northeast China. Agricultural Systems, 2013, 121: 106-116.
[42]   You L Z, Wood S, Wood-Sichra U. Generating plausible crop distribution maps for Sub-Saharan Africa using a spatially disaggregated data fusion and optimization approach. Agricultural Systems, 2009, 99(2/3): 126-140.
[43]   Frolking S, Qiu J J, Boles S, Xiao X M, Liu J Y, Zhuang Y H, Li C S, Qin X G. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Global Biogeochemical Cycles, 2002, 16(4): 1091.
[44]   Leff B, Ramankutty N, Foley J A. Geographic distribution of major crops across the world. Global Biogeochemical Cycles, 2004, 18(1): B1009.
[45]   Monfreda C, Ramankutty N, Foley J A. Farming the planet: 2. geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochemical Cycles, 2008, 22: B1022.
[46]   刘珍环, 李正国, 唐鹏钦, 李志鹏, 吴文斌, 杨鹏, 游良志, 唐华 俊. 近30年中国水稻种植区域与产量时空变化分析. 地理学报, 2013, 68(5): 680-693.
Liu Z H, Li Z G, Tang P Q, Li Z P, Wu W B, Yang P, You L Z, Tang H J. Spatial-temporal changes of rice area and production in China during 1980-2010. Acta Geographica Sinica, 2013, 68(5): 680-693. (in Chinese)
[47]   Portmann F T, Siebert S, Döll P. MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global Biogeochemical Cycles, 2010, 24(1): B1011.
[48]   Verburg P H, Neumann K, Nol L. Challenges in using land use and land cover data for global change studies. Global Change Biology, 2011, 17(2): 974-989.
[49]   van Vliet J, de Groot H L F, Rietveld P, Verburg P H. Manifestations and underlying drivers of agricultural land use change in Europe. Landscape and Urban Planning, 2015, 133: 24-36.
[50]   van Vliet N, Mertz O, Heinimann A, Langanke T, Pascual U, Schmook B, Adams C, Schmidt-Vogt D, Messerli P, Leisz S, Castella J, Jørgensen L, Birch-Thomsen T, Hett C, Bech-Bruun T, Ickowitz A, Vu K C, Yasuyuki K, Fox J, Padoch C, Dressler W, Ziegler A D. Trends, drivers and impacts of changes in swidden cultivation in tropical forest-agriculture frontiers: a global assessment. Global Environmental Change, 2012, 22(2): 418-429.
[51]   Munteanu C, Kuemmerle T, Boltiziar M, Butsic V, Gimmi U, Lúboš H, Kaim D, Király G, Konkoly-Gyuró É, Kozak J, Lieskovský J, Mojses M, Müller D, Ostafin K, Ostapowicz K, Shandra O, Štych P, Walker S, Radeloff V C. Forest and agricultural land change in the Carpathian region-a meta-analysis of long-term patterns and drivers of change. Land Use Policy, 2014, 38: 685-697.
[52]   Heistermann M, Muler C, Ronneberger K. Land in sight? Achievements, deficits and potentials of continental to global scale land-use modeling. Agriculture, Ecosystems and Environment, 2006, 114(2/4): 141-158.
[53]   唐华俊, 吴文斌, 杨鹏, 陈佑启, Verburg Peter H. 土地利用/土地覆被变化(LUCC)模型研究进展. 地理学报, 2009, 64(4): 456-468.
Tang H J, Wu W B, Yang P, Chen Y Q, Verburg P H. Recent Progresses of Land Use and Land Cover Change (LUCC) Models. Acta Geographica Sinica, 2009, 64(4): 456-468. (in Chinese)
[54]   Brown D G, Verburg P H, Pontius Jr R G, Lange M D. Opportunities to improve impact, integration, and evaluation of land change models. Current Opinion in Environmental Sustainability, 2013, 5(5): 452-457.
[55]   Irwin E G, Geoghegan J. Theory, data, methods: Developing spatially explicit economic models of land use change. Agriculture, Ecosystems and Environment, 2001, 85(1/3): 7-24.
[56]   余强毅, 吴文斌, 唐华俊, 杨鹏, 陈仲新, 陈佑启. 复杂系统理论与Agent模型在土地变化科学中的研究进展. 地理学报, 2011, 66(11): 1518-1530.
Yu Q Y, Wu W B, Tang H J, Yang P, Chen Z X, Chen Y Q. Complex system theory and agent-based modeling: progresses in land change science. Acta Geographica Sinica, 2011, 66(11): 1518-1530. (in Chinese)
[57]   余强毅, 吴文斌, 杨鹏, 唐华俊, 周清波, 陈仲新. Agent农业土地变化模型研究进展. 生态学报, 2013, 33(6): 1690-1700.
Yu Q Y, Wu W B, Yang P, Tang H J, Zhou Q B, Chen Z X. Progress of agent-based agricultural land change modeling: a review. Acta Ecologica Sinica, 2013, 33(6): 1690-1700. (in Chinese)
[58]   余强毅, 吴文斌, 陈羊阳, 杨鹏, 孟超英, 周清波, 唐华俊. 农作物空间格局变化模拟模型的MATLAB实现及应用. 农业工程学报, 2014, 30(12): 105-114.
Yu Q Y, Wu W B, Chen Y Y, Yang P, Meng C Y, Zhou Q B, Tang H J. Model application of an agent-based model for simulating crop pattern dynamics at regional scale based on MATLAB. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(12): 105-114. (in Chinese)
[59]   余强毅, 吴文斌, 唐华俊, 杨鹏, 李正国, 夏天, 刘珍环, 周清波. 基于农户行为的农作物空间格局变化模拟模型架构. 中国农业科学, 2013, 46(15): 3266-3276.
Yu Q Y, Wu W B, Tang H J, Yang P, Li Z G, Xia T, Liu Z H, Zhou Q B. An agent-based model for simulating crop pattern dynamics at a regional scale: model framework. Scientia Agricultura Sinica, 2013, 46(15): 3266-3276. (in Chinese)
[60]   Yu Q Y, Wu W B, Yang P, Li Z G, Xiong W, Tang H J. Proposing an interdisciplinary and cross-scale framework for global change and food security researches. Agriculture, Ecosystems and Environment, 2012, 156: 57-71.
[61]   Lotze-Campen H, Popp A, Beringer T, Müller C, Bondeau A, Rost S, Lucht W. Scenarios of global bioenergy production: The trade-offs between agricultural expansion, intensification and trade. Ecological Modelling, 2010, 221(18): 2188-2196.
[62]   Verburg P H, Overmars K. Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landscape Ecology, 2009, 24(9): 1167-1181.
[63]   Verburg P H. Simulating feedbacks in land use and land cover change models. Landscape Ecology, 2006, 21(8): 1171-1183.
[64]   Xiao Y, Mignolet C, Mari J, Benoît M. Modeling the spatial distribution of crop sequences at a large regional scale using land-cover survey data: A case from France. Computers and Electronics in Agriculture, 2014, 102(0): 51-63.
[65]   夏天, 吴文斌, 余强毅, 杨鹏, 周清波, 唐华俊. 农作物空间格局动态变化模拟模型(CROPS)构建. 中国农业资源与区划, 2014, 35(1): 44-51.
Xia T, Wu W B, Yu Q Y, Yang P, Zhou Q B, Tang H J. Simulating the spatial dynamics of cropping pattern: the CROPS model. Journal of China Agricultural Resources and Regional Planning, 2014, 35(1): 44-51. (in Chinese)
[66]   Stone B. Land use as climate change mitigation. Environmental Science & Technology, 2009, 43(24): 9052-9056.
[67]   Hertel T W, Ramankutty N, Baldos U L C. Global market integration increases likelihood that a future African Green Revolution could increase crop land use and CO2 emissions. Proceedings of the National Academy of Sciences of the USA, 2014, 111(38): 13799-13804.
[68]   Wise M, Calvin K, Thomson A, Clarke L, Bond-Lamberty B, Sands R, Smith S J, Janetos A, Edmonds J. Implications of limiting CO2 concentrations for land use and energy. Science, 2009, 324(5931): 1183-1186.
[69]   Piao S, Friedlingstein P, Ciais P, de Noblet-Ducoudré N, Labat D, Zaehle S. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proceedings of the National Academy of Sciences of the USA, 2007, 104(39): 15242-15247.
[70]   Rounsevell M D A, Reay D S. Land use and climate change in the UK. Land Use Policy, 2009, 26S: S160-S169.
[71]   Hoekstra A Y, Mekonnen M M. The water footprint of humanity. Proceedings of the National Academy of Sciences of the USA, 2012, 109(9): 3232-3237.
[72]   Sauer T, Havlík P, Schneider U A, Schmid E, Kindermann G, Obersteiner M. Agriculture and resource availability in a changing world: the role of irrigation. Water Resources Research, 2010, 46(6): W6503.
[73]   Metzger M J, Rounsevell M D A, Acosta-Michlik L, Leemans R, Schröter D. The vulnerability of ecosystem services to land use change. Agriculture, Ecosystems & Environment, 2006, 114(1): 69-85.
[74]   Häyhä T, Franzese P P. Ecosystem services assessment: a review under an ecological-economic and systems perspective. Ecological Modelling, 2014, 289: 124-132.
[75]   de Chazal J, Rounsevell M D A. Land-use and climate change within assessments of biodiversity change: a review. Global Environmental Change, 2009, 19(2): 306-315.
[76]   Bommarco R, Kleijn D, Potts S G. Ecological intensification: harnessing ecosystem services for food security. Trends in Ecology & Evolution, 2013, 28(4): 230-238.
[77]   Smith H F, Sullivan C A. Ecosystem services within agricultural landscapes-farmers’ perceptions. Ecological Economics, 2014, 98: 72-80.
[78]   Brouwer F, Tagliafierro C, Hutchinson G. Special issue: Ecosystem services and rural land management. Environmental Science & Policy, 2013, 32: 1-4.
[79]   余强毅, 吴文斌, 唐华俊, 陈佑启, 杨鹏. 基于粮食生产能力的APEC地区粮食安全评价. 中国农业科学, 2011, 44(13): 2838-2848.
Yu Q Y, Wu W B, Tang H J, Chen Y Q, Yang P. A food security assessment in APEC based on grain productivity. Scientia Agricultura Sinica, 2011, 44(13): 2838-2848. (in Chinese)
[80]   Fleskens L, Hubacek K. Modelling land management for ecosystem services. Regional Environmental Change, 2013, 13(3): 563-566.
[81]   Logsdon R A, Chaubey I. A quantitative approach to evaluating ecosystem services. Ecological Modelling, 2013, 257: 57-65.
[82]   Reyers B, Biggs R, Cumming G S, Elmqvist T, Hejnowicz A P, Polasky S. Getting the measure of ecosystem services: a social- ecological approach. Frontiers in Ecology and the Environment, 2013, 11(5): 268-273.
[83]   Ak?nc? H, Özalp A Y, Turgut B. Agricultural land use suitability analysis using GIS and AHP technique. Computers and Electronics in Agriculture, 2013, 97: 71-82.
[84]   石淑芹, 陈佑启, 姚艳敏, 李志斌, 何英彬. 中国区域性耕地变化与粮食生产的关系研究——以东北地区为例. 自然资源学报, 2008, 23(3): 361-368.
Shi S Q, Chen Y Q, Yao Y M, Li Z B, He Y B. Correlation analysis between regional cultivated land change and grain production capacity-a case study in Northeast China. Journal of Natural Resources, 2008, 23(3): 361-368. (in Chinese)
[85]   Smith P, Davies C A, Ogle S, Zanchi G, Bellarby J, Bird N, Boddey R M, McNamara N P, Powlson D, Cowie A, van Noordwijk M, Davis S C, Richter D D, Kryzanowski L, van Wijk M T, Stuart J, Kirton A, Eggar D, Newton-Cross G, Adhya T K, Braimoh A K. Towards an integrated global framework to assess the impacts of land use and management change on soil carbon: current capability and future vision. Global Change Biology, 2012, 18(7): 2089-2101.
[86]   Ye L, Xiong W, Li Z, Yang P, Wu W, Yang G, Fu Y, Zou J, Chen Z, Van Ranst E, Tang H. Climate change impact on China food security in 2050. Agronomy for Sustainable Development, 2013, 33(2): 363-374.
[87]   Liu J, Li S, Ouyang Z, Tam C, Chen X. Ecological and socioeconomic effects of China’s policies for ecosystem services. Proceedings of the National Academy of Sciences of the USA, 2008, 105(28): 9477-9482.
[88]   Haberl H, Erb K, Krausmann F. Human appropriation of net primary production: patterns, trends, and planetary boundaries. Annual Review of Environment and Resources, 2014, 39(1): 363-391.
[89]   Goldstein J H, Caldarone G, Duarte T K, Ennaanay D, Hannahs N, Mendoza G, Polasky S, Wolny S, Daily G C. Integrating ecosystem- service tradeoffs into land-use decisions. Proceedings of the National Academy of Sciences of the USA, 2012, 109(19): 7565-7570.
[90]   Power A G. Ecosystem services and agriculture: tradeoffs and synergies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365(1554): 2959-2971.
[91]   Seppelt R, Lautenbach S, Volk M. Identifying trade-offs between ecosystem services, land use, and biodiversity: a plea for combining scenario analysis and optimization on different spatial scales. Current Opinion in Environmental Sustainability, 2013, 5(5): 458-463.
[92] Wu W B, Yu Q Y, Peter V H, You L Z, Yang P, Tang H J. How could agricultural land systems contribute to raise food production under global change?. Journal of Integrative Agriculture, 2014, 13(7): 1432-1442.
[1] YANG GaiQing, WANG LinFeng, LI WenQing, ZHU HeShui, FU Tong, LIAN HongXia, ZHANG LiYang, TENG ZhanWei, ZHANG LiJie, REN Hong, XU XinYing, LIU XinHe, WEI YuXuan, GAO TengYun. Study on Milk Quality Based on Circadian Rhythm [J]. Scientia Agricultura Sinica, 2023, 56(2): 379-390.
[2] XIAO LuTing,LI XiuHong,LIU LiJun,YE FaYin,ZHAO GuoHua. Effects of Starch Granule Size on the Physical and Chemical Properties of Barley Starches [J]. Scientia Agricultura Sinica, 2022, 55(5): 1010-1024.
[3] GUO Yan, ZHANG ShuHang, LI Ying, ZHANG XinFang, WANG GuangPeng. Diversity Analysis of 36 Leaf Phenotypic Traits of Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(5): 991-1009.
[4] MA GaoXing,TAO TianYi,PEI Fei,FANG DongLu,ZHAO LiYan,HU QiuHui. Effects of Different Stir-Fry Conditions on the Flavor of Agaricus bisporus in Ready-to-Eat Dishes [J]. Scientia Agricultura Sinica, 2022, 55(3): 575-588.
[5] ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251.
[6] HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051.
[7] HU ZhiQiang,SONG XiaoYu,QIN Lin,LIU Hui. Study on Seasonal Grazing Management Optimal Model in Alpine Desert Steppe [J]. Scientia Agricultura Sinica, 2022, 55(19): 3862-3874.
[8] ZHANG YunXiu,JIANG Xu,WEI ChunXue,JIANG XueQian,LU DongYu,LONG RuiCai,YANG QingChuan,WANG Zhen,KANG JunMei. The Functional Analysis of High Mobility Group MsHMG-Y Involved in Flowering Regulation in Medicago sativa L. [J]. Scientia Agricultura Sinica, 2022, 55(16): 3082-3092.
[9] LÜ ZhiWei,DU Kang,ZHOU ZhiGuo,ZHAO WenQing,HU Wei,ZHAO JianMing,ZHU SuQin,WANG YouHua. Research on Senescence Process and Suitable Indicators of Maize Ear Leaves [J]. Scientia Agricultura Sinica, 2022, 55(12): 2311-2323.
[10] ZHONG YanPing,SHI LiSong,ZHOU Rong,GAO Yuan,HE YanQing,FANG Sheng,ZHANG XiuRong,WANG LinHai,WU ZiMing,ZHANG YanXin. Establishment of High Efficient Extraction and Detection Technology of Sesamin and Screening of High Sesamin Germplasm [J]. Scientia Agricultura Sinica, 2022, 55(11): 2109-2120.
[11] LI ShaoHua,WANG YunPeng,WANG RongCheng,YIN Ping,LI XiangDong,ZHENG FangQiang. Spatial Distribution Pattern and Sampling Technique of Conogethes punctiferalis Larvae in Maize Fields [J]. Scientia Agricultura Sinica, 2022, 55(10): 1961-1970.
[12] CHEN Ge,CAO LiDong,XU ChunLi,ZHAO PengYue,CAO Chong,LI FengMin,HUANG QiLiang. Performance Study of Prothioconazole Microcapsules Prepared by Solvent Evaporation Method [J]. Scientia Agricultura Sinica, 2021, 54(4): 754-767.
[13] TAO YouFeng,PU ShiLin,ZHOU Wei,DENG Fei,ZHONG XiaoYuan,QIN Qin,REN WanJun. Canopy Population Quality Characteristics of Mechanical Transplanting Hybrid Indica Rice with “Reducing Hills and Stabilizing Basic-Seedlings” in Low-Light Region of Southwest China [J]. Scientia Agricultura Sinica, 2021, 54(23): 4969-4983.
[14] ZHANG Lan,WANG LiangZhi,HUANG YanLing,LIAO XiuDong,ZHANG LiYang,LÜ Lin,LUO XuGang. Effects of Dietary Supplemental Pattern of Trace Eloments on the Growth Performance, Carcass Traits and Meat Quality of Broilers [J]. Scientia Agricultura Sinica, 2021, 54(22): 4906-4916.
[15] XU HuanHuan,LI Yi,GAO Wei,WANG YongQin,LIU LeCheng. Cloning and Identification of γ-Glutamyl Transpeptidase AcGGT Gene from Onion (Allium cepa) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4169-4178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!