Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (18): 3809-3817.doi: 10.3864/j.issn.0578-1752.2013.18.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Characteristic of Soil Available Trace Elements on Abandoned Cropland in the Loess Hilly Region

 ZHANG  Chao-12, LIU  Guo-Bin-12, XUE  Sha-12, XIAO  Lie-1   

  1. 1.State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi
    2.Institute of Soil and Water Conservation, Chinese Academy of Sciences   and Ministry of Water Resources, Yangling 712100, Shaanxi
  • Received:2012-10-29 Online:2013-09-15 Published:2013-08-22

Abstract: 【Objective】 The research was made to provide a scientific guidance for the sustainable development of ecological restoration and the evaluation of soil quality by studying the effect of abandoned cropland on soil trace elements in the hilly-gully region of the Loess Plateau. 【Method】 The present study investigated the changes of four available trace elements at different slope aspects during succession on abandoned cropland in the loess hilly region. 【Result】 The results showed that during the vegetation succession on abandoned cropland, the content of organic C, total N, available Mn, available Fe, available Zn in this shady slope presented a significant regular variation due to the high soil moisture favorable vegetation conditions, showing no significant difference at the early stage of succession while increased with the increasing years at the later stage. Available Cu exhibited a decrease trend with years. Organic C, total N, and four available trace elements in the sunny slope fluctuated with the increasing years. The density of four trace elements differed significantly at different succession stages. Compared with the shady slope, available Fe and Zn density in the sunny slope was higher in the first 10 years while was lower 10 years later, available Cu density was slightly lower in the first 5 years and was higher thereafter. 【Conclusion】Although the content of four soil trace elements in the cropland increased after abandoned for 20 years, it is still in the extremely lower level, thus natural recovery to improve the status of trace elements in this region probably need more time.

Key words: slope cropland , succession , available trace elements

[1]张晓霞, 李占斌, 李鹏. 黄土高原草地土壤微量元素分布特征研究. 水土保持学报, 2010, 24(5): 45-48.

Zhang X X, Li Z B, Li P. Study on distribution characteristics soil trace elements of grass land in the Loess Plateau. Journal of Soil and Water Conservation, 2010, 24(5): 45-48. (in Chinese)

[2]潘瑞炽, 董愚得. 植物生理学. 3版. 北京: 高等教育出版社, 1995: 32-40.

Pan R C, Dong Y D. Plant Physiology. 3rd ed. Beijing: The Higher Education Press, 1995: 32-40. (in Chinese)

[3]缪自基. 微量元素的环境化学与生物影响. 北京: 中国环境科学出版社, 1992.

Miao Z J. Environment Chemistry and Biological Effects of Microelements. Beijing: China Environment Science Press, 1992. (in Chinese)

[4]刘清, 王子健, 汤鸿霄. 重金属形态与生物毒性及生物有效性关系的研究进展. 环境科学, 1996,17(1): 89-92.

Liu Q, Wang Z J, Tang H X. Research progress in heavy metal speciation and toxicity and bioavailability of heavy metals. Environment Science, 1996, 17(1): 89-92. (in Chinese)

[5]White J G, Zasoski R J. Mapping soil micronutrients. Field Crops Research, 1999, 60(1): 11-26.

[6]沈善敏. 中国土壤肥力. 北京: 中国农业出版社, 1998: 370-449.

Shen S M. Soil Fertility in China. Beijing: China Agriculture Press, 1998: 370-449. (in Chinese)

[7]刑光熹, 朱建国. 土壤微量元素和稀土元素化学. 北京: 科学出版社, 2003: 1-72.

Xing G X, Zhu J G. Soil Trace Element and Rare Earth Element Chemicals. Beijing: Science Press, 2003: 1-72. (in Chinese)

[8]Nielson D R, Bouma J. Soil spatial variability. Netherlands: Wageningen Agricultural University Library Pudoc-DLO,1984: 166-193.

[9]Rengel Z. Cycling of micronutrients in terrestrial eco-system// Marschner P, Rengel Z. Nutrient Cycling in Terrestrial Ecosystem. Berlin: Springer-Verlag, 2007: 93-121.

[10]Ballard T M. Impacts of forest management on northern forest soils. Forest Ecology and Management, 2000, 133: 37-42.

[11]李跃林, 彭少麟, 李志辉. 桉树人工林地土壤酶活性与微量元素含量的关系. 应用生态学报, 2003, 14(3): 345-348.

Li Y L, Peng S L, Li Z H. Relationship between soil enzyme activities and trace element contents in Eucalyptus plantation soil. Chinese Journal of Applied Ecology, 2003, 14(3): 345-348. (in Chinese)

[12]漆良华, 张旭东, 彭镇华, 范少辉, 周金星. 不同植被恢复模式下中亚热带黄壤坡地土壤微量元素效应. 应用生态学报, 2008, 19(4): 735-740.     

Qi L H, Zhang X D, Peng Z H, Fan S H, Zhou J X. Soil microelements under different vegetation restoration patterns in yellow soil slope region of mid-subtropics. Chinese Journal of Applied Ecology, 2008, 19(4): 735- 740. (in Chinese)

[13]魏孝荣, 郝明德, 邵明安. 黄土高原旱地长期种植作物对土壤微量元素形态和有效性的影响. 生态学报, 2005, 25(12): 3196-3203.

Wei X R, Hao M D, Shao M A. Effects of long-term cropping on the forms and the availability of micronutrients in dryland soils on the Loess Plateau. Acta Ecologica Sinica, 2005, 25(12): 3196-3203. (in Chinese)

[14]Cattani I, Fragoulis G, Boccelli R, Capri E. Copper bioavailability in the rhizosphere of maize (Zea mays L.) grown in two Italian soils. Chemosphere, 2006, 64(11): 19720-1979.

[15]李鹏, 李占斌, 张晓霞, 杜田. 复垦土地土壤有效微量元素分布特征研究. 水土保持学报, 2011, 25(3): 126-130.

Li P, Li Z B, Zhang X X, Du T. Study on the distribution characteristics of soil available trace elements of restoration land. Journal of Soil and Water Conservation, 2011, 25(3): 126-130. (in Chinese)

[16]Chopin E, Marin B, Mkoungafoko R, Rigaux A, Hopgood M J, Delannoy E, Cancèsa B, Lauraina M. Factors affecting distribution and mobility of trace elements (Cu, Pb, Zn) in a perennial grapevine (Vitis vinifera L.) in the champagne region of France. Environment Pollution, 2008, 156(3): 1092-1098.

[17]An S S, Huang Y M, Zheng F L. Evaluation of soil microbial indices along a revegetation chronosequence in grassland soils on the Loess Plateau, Northwest China. Applied Soil Ecology, 2009, 41(3): 286-292.

[18]戴全厚, 薛萐, 刘国彬, 兰雪, 余娜, 杨智. 侵蚀环境撂荒地植被恢复与土壤质量的协同效应. 中国农业科学, 2008, 41(5): 1390 -1399.

Dai Q H, Xue S, Liu G B, Lan X, Yu N, Yang Z. The synergistic effect between vegetation recovery and soil quality on abandoned arable land in eroded hilly loess plateau. Scientia Agricultura Sinica, 2008, 41(5): 1390 -1399. (in Chinese)

[19]安韶山, 张扬, 郑粉莉. 黄土丘陵区土壤团聚体分形特征及其对植被恢复的响应. 中国水土保持科学, 2008, 6( 2) : 66-70.

An S S, Zhang Y, Zheng F L. Fractal dimension of the soil aggregate and its responds to plant rehabilitation in the hilly-gully region of Loess Plateau. Science of Soil and Water Conservation, 2008, 6(2): 66-70. (in Chinese)

[20]李金芬, 程积民, 刘伟, 古晓林. 黄土高原云雾山草地土壤有机碳、全氮分布特征. 草地学报, 2010, 18(5): 661-668.

Li J F, Chen J M, Liu W, Gu X L. Distribution of soil organic carbon and total nitrogen of grassland in Yunwu Mountain of Loess Plateau. Acta Agrestia Sinica, 2010, 18(5): 661-668. (in Chinese)

[21]薛萐, 刘国彬, 戴全厚, 张超, 余娜. 黄土丘陵区退耕撂荒地土壤微生物量演变过程. 中国农业科学, 2009, 42(3): 943-950.

Xue S, Liu G B, Dai Q H, Zhang C, Yu N. Dynamics of soil microbial biomass on the abandoned cropland in loess hilly area. Scientia Agricultura Sinica, 2009, 42(3): 943-950. (in Chinese)

[22]余存祖, 彭琳, 刘耀宏, 戴铭钧, 彭祥林. 黄土区土壤微量元素含量分布与微肥效应. 土壤学报, 1991, 28(3): 317-326.

Yu C Z, Peng L, Liu Y H, Dai M J, Peng X L. Content and distribution of trace elements and fertility efficiency in soils of loessal region. Acta Pedologica Sinica, 1991, 28(3): 317-326. (in Chinese)

[23]中国科学院南京土壤研究所. 土壤理化分析. 上海: 上海科技出版社, 1978: 34-88.

Institute of Soil Science, Chinese Academy of Sciences. Method for Measuring Physical Properties of Soil. Shanghai:  Shanghai Science and Technology Press, 1978: 34-88. (in Chinese)

[24]Liu Z P, Shao M A, Wang Y Q. Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region, China. Agriculture, Ecosystems and Environment, 2011, 142(3): 184-194.

[25]王德宣, 富德义. 吉林省西部地区土壤微量元素有效性评价. 土壤, 2002(2): 86-89.

Wang D X, Fu D Y. Evaluation of soil trace elements availability in Western Jilin province. Soils, 2002(2): 86-89. (in Chinese)

[26]刘洪来, 杨丰, 黄顶,  等. 农牧交错带草地开垦对土壤有效态微量元素的影响及评价. 农业工程学报, 2012, 28(7): 155-160.

Liu H L, Yang F, Huang D, Chen C. Effect and evaluation of soil trace elements after grassland converted into cropland in agro-pasturage ecotone of northern China. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(7): 155-160. (in Chinese)

[27]Romheld M, Zhang F S. Mobilization of mineral nutrients in the rhizosphere. Soil Science, 1990, 15(2): 158-163. 

[28]Zhu B B, Li Z B, Li P, et al. Soil erodibility, microbial biomass, and physical–chemical property changes during long-term natural vegetation restoration: a case study in the Loess Plateau, China. Ecological Research, 2010, 25(3): 531-541.

[29]Wang B, Liu G B, Xue S, Zhu B B. Changes in soil physico-chemical and microbiological properties during natural succession on abandoned farmland in the Loess Plateau. Environmental Earth Science, 2010, 62(5): 915-925.

[30]Zhang C, Liu G B, Xue S, Zhang C S. Rhizosphere soil microbial properties on abandoned croplands in the Loess Plateau, China during vegetation succession. European Journal of Soil Biology, 2012, 50: 127-136.

[31]周萍, 刘国彬, 侯喜禄. 黄土丘陵区不同恢复年限草地土壤微团粒分形特征. 草地学报, 2008, 16(4): 396-402.

Zhou P, Liu G B, Hou X L. Study on fractal features of soil microaggregates during different restoration stages in the Loess Hilly Region. Acta Agrestia Sinica, 2008, 16(4): 396-402. (in Chinese)

[32]朱冰冰, 李占斌, 李鹏, 薛萐. 黄丘区植被恢复过程中土壤团粒分形特征及抗蚀性演变. 西安理工大学学报, 2009, 25(4): 377-382.

Zhu B B, Li Z B, Li P, Xue S. Research on the fractal features of soil aggregate, and dynamic changes in anti-erodibility during the process of vegetation recovery on the loess hilly areas. Journal of Xi’an University of Technology, 2009, 25(4): 377-382. (in Chinese)

[33]Kopittke P M, Menzies N W. Effect of Mn de?ciency and legume inoculation on rhizosphere pH in highly alkaline soils. Plant and Soil, 2004, 262(1): 13-21.

[34]Wei X R, Hao M D, Shao M A, Gale W J. Changes in soil properties and the availability of soil micronutrients after 18 years of cropping and fertilization. Soil Tillage Research, 2006, 91(2): 120-130.

[35]Chen Y L, Han S J, Zou C J, Zhou Y M. The pH change in rhizosphere of Pinus koraiensis seedlings as affected by different nitrogen sources and its effect on phosphorus availability. Journal of Forestry Research, 2001, 12(4): 247-249.

[36]刘铮, 朱其清, 唐丽华, 徐俊祥. 我国缺乏微量元素的土壤及其区域分布. 土壤学报, 1982, 19(3): 209-214.

Liu Z, Zhu Q Q, Tang L H, Xu J X. Geographical distribution of trace elements-deficient soils in China. Acta Pedologica Sinica, 1982, 19(3): 209-214. (in Chinese)

[37]周萍, 刘国彬, 侯喜禄. 黄土丘陵区不同坡向及坡位草本群落生物量及多样性研究. 中国水土保持科学, 2009, 7 (1) :67-73.

Zhou P, Liu G B, Hou X L. Biomass and species diversity of herb at different position and aspects of slope in the Hilly-gully Region of Loess Plateau. Science of Soil and Water Conservation, 2009, 7 (1): 67-73. (in Chinese)

[38]朱先进, 宇万太. 农田生态系统微量元素循环研究进展. 土壤通报, 2009, 40(4): 962-967.

Zhu X J, Yu W T. Review of the cycling of trace elements in agroecosystems. Chinese Journal of Soil Science, 2009, 40(4): 962-967. (in Chinese)
[1] GAO XingXiang,ZHANG YueLi,AN ChuanXin,LI Mei,LI Jian,FANG Feng,ZHANG ShuangYing. Investigation and Analysis of Weed Community Succession in Winter Wheat Field of Shandong Province [J]. Scientia Agricultura Sinica, 2021, 54(24): 5230-5239.
[2] WenJian YANG,HaoLiang PU,LiuQing WANG,QiuHui HU,Fei PEI. Quality Change and Bacteria Succession of Dried Carrot Stored at Different Water Activities [J]. Scientia Agricultura Sinica, 2019, 52(20): 3661-3671.
[3] . Effect of Returning Farmland to Forest (Pasture) and Changes of Precipitation on Soil Erosion in the Yanhe Basin
[J]. Scientia Agricultura Sinica, 2009, 42(2): 569-576 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!