Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (1): 104-122.doi: 10.3864/j.issn.0578-1752.2017.01.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Isolation, Identification, Phylogeny and Growth Promoting Characteristics of Endophytic Diazotrophs from Tuber and Root Crops

LI YanXing 1,2, GUO PingYi 1, SUN JianGuang 2   

  1. 1College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi; 2Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing 100081
  • Received:2016-05-28 Online:2017-01-01 Published:2017-01-01

Abstract: 【Objective】The objectives of this study are to isolate, identify and analyze phylogenetics of endophytic diazotrophs from tuber and root crops, test plant growth promoting (PGP) characteristics of the isolates, and to explore population property and host distributions of endophytic diazotrophs from tuber and root crops. 【Method】 Surface sterilization and low nitrogen medium were used to isolate endophytic diazotrophs. nifH detection based on PCR amplification to confirm isolates as nitrogen-fixing bacteria. 16S rRNA was amplified with PCR, blasted in EzTaxon after sequencing, and analyzed with Clustalx-MEGA to make phylogenetic tree. PGP characteristics were evaluated by testing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, indole acetic acid (IAA) production and antagonism to Fusarium spp. 【Result】 Total 219 endophytic bacterial isolates were obtained from 14 tuber and root samples including radish, carrot, potato, ginger, beet, lotus, yam, taro, cabbage, and sweet potato. All isolates were verified as nitrogen-fixing bacteria after nifH inspection and identified as 79 species of 24 genera based on 16S rRNA. The 79 species are Acinetobacter harbinensis, Arthrobacter arilaitensis, Ar. bergerei, Ar. nicotianae, Ar. nicotinovorans, Ar. nitroguajacolicus, Bacillus amyloliquefaciens, Ba. aryabhattai, Ba. circulans, Ba. fengqiuensis, Ba. firmus, Ba. flexus, Ba. halosaccharovorans, Ba. idriensis, Ba. licheniformis, Ba. litoralis, Ba. luciferensis, Ba. marisflavi, Ba. megaterium, Ba. methylotrophicus, Ba. oceanisediminis, Ba. safensis, Ba. simplex, Ba. sonorensis, Ba. stratosphericus, Ba. subterraneus, Ba. tequilensis, Ba. thaonhiensis, Ba. thioparans, Brevibacillus brevis, Br. formosus, Br. nitrificans, Br. frigoritolerans, Chryseobacterium indoltheticum, Ch. lactis, Citrobacter youngae, Delftia lacustris, Domibacillus indicus, Enterobacter asburiae, E. ludwigii, E. mori, E. xiangfangensis, Fictibacillus barbaricus, Fi. enclensis, Fi. nanhaiensis, Fi. phosphorivorans, Flavimonas oryzihabitans, Flavobacterium oncorhynchi, Microbacterium hydrocarbonoxydans, Microbacterium phyllosphaerae, Micrococcus endophyticus, Paenibacillus barengoltzii, Pae. cineris, Pae. glycanilyticus, Pae. lautus, Pae. tundrae, Pantoea agglomerans, Pan. anthophila, Pan. dispersa, Pan. rodasii, Pseudomonas azotoformans, Ps. beteli, Ps. brassicacearum, Ps. geniculata, Ps. hunanensis, Ps. koreensis, Ps. parafulva, Ps. seleniipraecipitans, Ps. simiae, Ps. syringae, Rahnella aquatilis, Rhizobium leguminosarum, Rh. massiliae, Rh. radiobacter, Sphingobacterium canadense, Sp. faecium, Staphylococcus sciuri, Stenotrophomonas rhizophila, Variovorax paradoxus. This result showed the biodiversity of endophytic diazotrophs from tuber and root crops. Of the 219 endophytic diazotrophs, 77 strains are identified as 23 species of Bacillus, and 29 strains are identified as 10 species of Pseudomonas. This makes up 106 strains of 33 species, in percentages of 48.40% and 41.77% of the 219 endophytic diazotrophs and 79 identified species. Indicating that Bacillus and Pseudomonas are dominant populations of endophytic diazotrophs from tuber and root crops. Conducted with 79 representatives of the 219 strains, PGP test showed that 8.86% strains showed ACC deaminase activity ranging from 0.026 to 13.76 µmol α-ketobutyrate·mg-1 protein·h-1, 64.56% strains showed IAA production ranging from 0.34 to 28.99 µg·mL-1, and 6.33%-13.92% strains showed antagonistic against phytopathogen Fusarium sporotrichioides ACCC37402, Fusarium xysporum MLS1 and Fusarium xysporum ACCC37438 with antifungal indexes of 41% to 63%. 【Conclusion】 Large number of endophytic diazotrophs habitat in the tuber and root of normally growing tuber and root crops. Endophytic diazotrophs from tuber and root crops phylogenetically belong 79 species of 24 genera showing wide distribution and huge biodiversity. Bacillus and Pseudomonas are dominant populations of endophytic diazotrophs from tuber and root crops. About 10%-60% endophytic diazotrophs have PGP property of producing ACC deaminase or IAA or antagonism. This might be the underlying reasons that endophytic diazotrophs are benefit to host plants.

Key words: tuber and root crops, endophytic diazotrophs, phylogeny, growth promoting characteristics

[1]    Saharan B S, Nehra V. Plant growth promoting rhizobacteria: a critical review. Life Science and Medicine Research, 2011, 2011: LSMR-21.
[2]    Stone J K, Bacon C W, White J F. An overview of endophytic microbes: endophytism defined//Microbial endophytes. New York: Marcel Dekker, 2000, Chapter 3: 29-33.
[3]    Kloeppe J W, Rodriguez-Kabana R, Zehnder A W, Murphy J F, Sikora E, Fernández C. Plant rootbacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australasian Plant Pathology, 1999, 28(1): 21-26.
[4]    Carvalho T L G, Ballesteros H G F, Thiebaut F, Ferreira P C G, Hemerly A S. Nice to meet you: genetic, epigenetic and metabolic controls of plant perception of beneficial associative and endophytic diazotrophic bacteria in non-leguminous plants. Plant Molecular Biology, 2016, 90(6): 561-574.
[5]    Barraquio W, Revilla L, Ladha J. Isolation of endophytic diazotrophic bacteria from wetland rice. Plant and Soil, 1997, 194(1/2): 15-24.
[6]    Estrada P, Mavingui P, Cournoyer B, Fontaine F, Balandreau J, Caballero-Mellado J. A N2-fixing endophytic Burkholderia sp. associated with maize plants cultivated in Mexico. Canidian Journal of Microbiology, 2002, 48(4): 285-294.
[7]    秦宝军, 罗琼, 高淼, 胡海燕, 徐晶, 周义清, 孙建光. 小麦内生固氮菌分离及其ACC脱氨酶测定. 中国农业科学, 2012, 45(6): 1066-1073.
Qin B J, Luo Q, Gao M, Hu H Y, Xu J, Zhou Y Q, Sun J G. Isolation of wheat endophytic diazotrophs and determination of 1-aminocyclopropane-1-carboxylate deaminase. Scientia Agricultura Sinica, 2012, 45(6): 1066-1073. (in Chinese)
[8]    Junior F, Reis V M, Urquiaga S, Döbereiner J. Influence of nitrogen fertilisation on the population of diazotrophic bacteria Herbaspirillum spp. and Acetobacter diazotrophicus in sugar cane (Saccharum spp.). Plant and Soil, 2000, 219(1): 153-159.
[9]    Romero F M, Marina M, Pieckenstain F L. The communities of tomato (Solanum lycopersicum L.) leaf endophytic bacteria, analyzed by 16S-ribosomal RNA gene pyrosequencing. FEMS Microbiology Letters,2014, 351(2): 187-194.
[10]   Kempe J, Sequeria L. Biological control of bacterial wilt  potatoes: attempts to induce resistance by treating tubers with bacteria. Plant Disease,1983, 67(5): 499-503.
[11]   李倍金, 罗明, 周俊, 孔德江, 张铁明. 几种禾草内生固氮菌的分离及固氮活性测定. 草业学报, 2008, 17(5): 37-42.
Li B J, Luo M, Zhou J, Kong D J, Zhang T M. Isolation of endophytic diazotrophic bacteria from several gramineae grasses and determination of their nitrogenase activity. Acta Prataculturae Sinica, 2008, 17(5): 37-42. (in Chinese)
[12]   孙建光, 张燕春, 徐晶, 胡海燕. 高效固氮芽孢杆菌筛选及其生物学特性. 中国农业科学, 2009, 42(6): 2043-2051.
Sun J G, zhang Y C, Xu J, Hu H Y. Isolation and biological characteristic investigation on efficient nitrogen-fixing bacilli. Scientia Agricultura Sinica,2009, 42(6): 2043-2051. (in Chinese)
[13]   孙建光, 罗琼, 高淼, 胡海燕, 徐晶, 周义清. 小麦、水稻、玉米、白菜、芹菜内生固氮菌及其系统发育. 中国农业科学, 2012, 45(7): 1303-1317.
Sun J G, Luo Q, Gao M, Hu H Y, Xu J, Zhou y Q. Isolation and phylogeny of nitrogen-fixing endophytic bacteria in wheat, rice, maize, Chinese cabbage and celery. Scientia Agricultura Sinica, 2012, 45(7): 1303-1317. (in Chinese)
[14]   孙建光, 徐晶, 胡海燕, 张燕春, 刘君, 王文博, 孙燕华. 中国十三省市土壤中非共生固氮微生物菌种资源研究. 植物营养与肥料学报, 2009, 15(6): 1450-1465.
Sun J G, Xu J, Hu H Y, Zhang Y C, Liu J, Wang W B, Sun Y H. Collection and investigation on asymbiotic nitrogen-fixing microbial resources from 13 provinces over China. Plant Nutrition and Fertilizer Science, 2009, 15(6): 1450-1465. (in Chinese)
[15]   Gao M, Zhou J, Wang E, Chen Q, Xu J, Sun J. Multiphasic characterization of a plant growth promoting bacterial strain, Burkholderia sp. 7016 and its effect on tomato growth in the field. Journal of Integrative Agriculture,2015, 14(9): 1855-1863.
[16]   孙建光, 胡海燕, 刘君, 陈倩, 高淼, 徐晶, 周义清. 农田环境中固氮菌的促生潜能与分布特点. 中国农业科学, 2012, 45(8): 1532-1544.
SUN J G, HU H Y, LIU J, CHEN Q, GAO M, XU J, ZHOU Y Q. Growth promotion potential and distribution features of nitrogen- fixing bacteria in field environments. Scientia Agricultura Sinica,2012, 45(8): 1532-1544. (in Chinese)
[17]   陈倩, 高淼, 胡海燕, 徐晶, 周义清, 孙建光. 一株拮抗病原真菌的固氮菌Paenibacillus sp. GD812. 中国农业科学, 2011, 44(16): 3343-3350.
Chen Q, Gao M, Hu H Y, Xu J, Zhou Y Q, Sun J G. A nitrogen-fixing bacterium Paenibacillus sp. GD812 antagonistic against plant pathogenic fungi. Scientia Agricultura Sinica, 2011, 44(16): 3343-3350. (in Chinese)
[18]   Banik A, Mukhopadhaya S K, Dangar T K. Characterization of N2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes. Planta, 2016, 243(3): 799-812.
[19]   Ji S H, Gururani S A, Chuna S C. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiological Research, 2014, 169(1): 83-98.
[20]   Verma S C, Ladha J K, Tripathi A K. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. Journal of Biotechnology, 2001, 91(2/3): 127-141.
[21]   Santoyoa G, Moreno-Hagelsieb G, Orozco-Mosquedac M, Glickc B R. Plant growth-promoting bacterial endophytes. Microbiological Research, 2016, 183: 92-99.
[22]   Rodrigues E, Rodrigues L, Oliveira A, Baldani V, Teixeira S, Urquiaga S, Reis V. Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Plant and Soil, 2008, 302(1): 249-261.
[23]   Baldani V D, Baldani J I, Döbereiner J. Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biology and Fertility of Soils, 2000, 30: 485-491.
[24]   Santos P, Bustillos-Cristales R, Caballero-Mellado J. Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Applied and Environmental Microbiology,2001, 67(6): 2790-2798.
[25]   Govindarajan M, Balandreau J, Kwon S W, Weon H Y, Lakshminarasimhan C. Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microbial Ecology, 2008, 55(1): 21-37.
[26]   Govindarajan M, Kwon S W, Weon H Y. Isolation, molecular characterization and growth-promoting activities of endophytic sugarcane diazotroph Klebsiella sp. GR9. World Journal of Microbiology and Biotechnology, 2007, 23(7): 997-1006.
[27]   Junior F, Reis V M, Urquiaga S, Döbereiner J. Influence of nitrogen fertilisation on the population of diazotrophic bacteria Herbaspirillum spp. and Acetobacter diazotrophicus in sugar cane (Saccharum spp.). Plant and Soil, 2000, 219(1): 153-159.
[28]   Muthukumarasamy, R, Cleenwerck I, Revathi G, Vadivelu M, Janssens D, Hoste B, Gum K, Park K,   Son C Y, Sa T, Caballero-Melladoe J. Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Systematic and Applied Microbiology, 2005, 28(3): 277-286.
[29]   Sandhiya G S, Sugitha T C, Balachandar D, Kumar K. Endophytic colonization and in planta nitrogen fixation by a diazotrophic Serratia sp. in rice. Indian Journal of Experimental Biology, 2005, 43(9): 802-807.
[30]   Böhm M, Hurek M, Reinhold-Hurek B. Twitching motility is essential for endophytic rice colonization by the N2-fixing endophyte Azoarcus sp. strain BH72. Molecular Plant-Microbe Interactions, 2007, 20(5): 526-533.
[31]   Etesami H, Alikhani H A, Hosseini H M. Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX , 2015, 2: 72-78.
[32]   Etesami H, Hosseini H M, Alikhani H A. Bacterial biosynthesis of 1-aminocyclopropane-1-caboxylate (ACC) deaminase, a useful trait to elongation and endophytic colonization of the roots of rice under constant flooded conditions. Physiology and Molecular Biology of Plants, 2014, 20(4): 425-434.
[33]   Ma Y, Rajkumar M, Zhang C, Freitas H. Beneficial role of bacterial endophytes in heavy metal phytoremediation. Journal of Environmental Management, 2016, 174: 14-25.
[1] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
[2] LIU HaiLu, WANG Xuan, LI HongMei, LI YanXia, XUE BoWen, MA JuKui. Molecular Identification of Pratylenchus Species in 10 Samples Collected from Wheat Field in Huanghuai Region of China [J]. Scientia Agricultura Sinica, 2018, 51(15): 2898-2912.
[3] RuiRui XU, Rui LI, XiaoFei WANG, YuJin HAO. Identification and Expression Analysis Under Abiotic Stresses of OFP Gene Family in Apple [J]. Scientia Agricultura Sinica, 2018, 51(10): 1948-1959.
[4] SHEN Lin-lin, ZOU Wen-chao, GAO Fang-luan, ZHAN Jia-sui. Strain Composition of Potato virus Y in Fujian Province Detected with the Concatenated Sequence Approach [J]. Scientia Agricultura Sinica, 2016, 49(20): 3918-3926.
[5] YUAN Mei, TAN Shi-juan, SUN Jian-guang. Isolation and Biological Properties of Endophytic Diazotrophs from Rice and Their Influences on Rice Seedling Cd Accumulation [J]. Scientia Agricultura Sinica, 2016, 49(19): 3754-3768.
[6] XU Yuan-yuan, LIN Jing, LI Xiao-gang, CHANG You-hong. Identification and Expression Analysis under Abiotic Stresses of the CBL Gene Family in Pear [J]. Scientia Agricultura Sinica, 2015, 48(4): 735-747.
[7] WANG Yu-chun, HAO Xin-yuan, HUANG Yu-ting, YUE Chuan, WANG Bo, CAO Hong-li, WANG Lu, WANG Xin-chao, YANG Ya-jun, XIAO Bin. Phylogenetic Study of Colletotrichum Species Associated with Camellia sinensis from the Major Tea Areas in China [J]. Scientia Agricultura Sinica, 2015, 48(24): 4924-4935.
[8] GAO Fang-luan, CHANG Fei, SHEN Jian-guo, XIE Lian-hui, ZHAN Jia-sui. Complete Genome Analysis of a PVYNTN-NW Recombinant Isolate from Yulin of China [J]. Scientia Agricultura Sinica, 2015, 48(2): 270-279.
[9] WANG Xuan, LE Xiu-Hu, SONG Zhi-Qiang, XIANG Gui-Lin, LIN Yu, LI Hong-Mei. Morphological and Molecular Identification of Cereal Cyst Nematodes on Wheat from Jiangsu Province of China [J]. Scientia Agricultura Sinica, 2013, 46(5): 934-942.
[10] WANG Xiao-Fei, LIU Xin, SU Ling, SUN Yong-Jiang, ZHANG Shi-Zhong, HAO Yu-Jin, YOU Chun-Xiang. Identification, Evolution and Expression Analysis of the LBD Gene Family in Tomato [J]. Scientia Agricultura Sinica, 2013, 46(12): 2501-2513.
[11] SUN Jian-Guang, LUO Qiong, GAO Miao, HU Hai-Yan, XU Jing, ZHOU Yi-Qing. Isolation and Phylogeny of Nitrogen-Fixing Endophytic Bacteria in Wheat, Rice, Maize, Chinese Cabbage and Celery [J]. Scientia Agricultura Sinica, 2012, 45(7): 1303-1317.
[12] QIN Bao-Jun, LUO Qiong, GAO Miao, HU Hai-Yan, XU Jing, ZHOU Yi-Qing, SUN Jian-Guang. Isolation of Wheat Endophytic Diazotrophs and Determination of 1-Aminocyclopropane-1-Carboxylate Deaminase [J]. Scientia Agricultura Sinica, 2012, 45(6): 1066-1073.
[13] CAO Jun-Zheng, WU Xia, LIN Sen. Identification of Fungus Lecanicillium psalliotae and Its Colonization in Different Life Stages of Meloidogyne incognita [J]. Scientia Agricultura Sinica, 2012, 45(12): 2404-2411.
[14] LI Le, XU Hong-Liang, YANG Xing-Lu, LI Ya-Xuan, HU Ying-Kao. Genome-Wide Identification, Classification and Expression Analysis of LEA Gene Family in Soybean [J]. Scientia Agricultura Sinica, 2011, 44(19): 3945-3954.
[15] GENG Rong-Qing, WANG Lan-Ping, JI De-Jun, CHANG Hong, LI Yong-Hong, CHANG Chun-Fang. Phylogenetic Relationships Among Domestic Chinese Bovinae Species Based on Mitochondrial Cytochrome b Gene Sequences [J]. Scientia Agricultura Sinica, 2011, 44(19): 4081-4087.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!