Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (12): 2404-2411.doi: 10.3864/j.issn.0578-1752.2012.12.008

• PLANT PROTECTION • Previous Articles     Next Articles

Identification of Fungus Lecanicillium psalliotae and Its Colonization in Different Life Stages of Meloidogyne incognita

 CAO  Jun-Zheng, WU  Xia, LIN  Sen   

  1. 青岛农业大学农学与植物保护学院/山东省植物病虫害综合防控重点实验室,山东青岛266109
  • Received:2011-09-29 Online:2012-06-15 Published:2012-01-13

Abstract: 【Objective】 The objective of this study is to investigate the control potential of egg-parasitic fungi Lecanicillium psalliotae against root-knot nematodes as an useful biological control agent.【Method】The fungus strain CGMCC5329 was isolated from eggs of Meloidogyne incognita infecting sponge gourd in Chengyang, Qingdao, Shandong Province. Based on morphological characters and molecular analysis of ITS-rDNA, the strain was identified as L. psalliotae. Colonization of L. psalliotae in different life stages of M. incognita was observed by microscope. 【Result】The fungus colonized in different life stages of M.incognita including eggs, juveniles and females, and demonstrated the great suppression in hatch of egg masses. The infection pegs and fungal networks on egg were observed on surface of infected eggs which showed a wrinkled and shrunken appearance. The embryonic development was arrested by the fungal invasion and high vacuolation was also observed. In some cases the conidiating hyphae were also seen outside the egg surface. The egg parasiting rate by fungi was 85.76% on 6th day. The inhibition in hatch of egg masses was 91.41% on 15th day.The 2nd stage juveniles were penetrated with networks of hyphae and the body were full of fungal hyphae. The juvenile parasitic rate by fungi was 79.23% on 5th day. The extensive network and infection pegs were formed on females parasited with fungi which resulted in body deformation, sometimes the contents extravasated.【Conclusion】 L.psalliotae CGMCC5329 not only colonizes the sedentary females and eggs, but also infects 2nd stage juveniles. It could be used as an useful biological control agent against root knot nematodes.

Key words: Lecanicillium psalliotae, Meloidogyne incognita, ITS sequence, phylogeny, pathogenicity

[1]Van Nguyen N, Kim Y J, Oh K T, Jung W J, Park R D. The role of chitinase from Lecanicilliun antillanum B-3 in parasitism to root-knot nematode Meloidogyne incognita eggs. Biocontrol Science and Technology, 2007, 17(10): 1047-1058.

[2]于鹏飞, 武  侠, 张成敏, 赵洪海, 才秀华. 产生几丁质酶的食线虫真菌绿粘帚霉Gliocladium virens CFCC80915对南方根结线虫卵孵化的影响. 植物病理学报, 2008, 38(5): 496-500.

Yu P F, Wu X, Zhang C M, Zhao H H, Cai X H. Effect of chitinase-producing nematophagous fungus Gliocladium virens CFCC80915 on egg hatching of Meloidogyne incognita. Acta Phytopathologica Sinica, 2008, 38(5): 496-500. (in Chinses)

[3]Esmenjaud D, Voisin R, Van Ghelder C, Bosselut N, Lafargue B, Di Vito M, Dirlewanger E, Poëssel J L, Kleinhentz M. Genetic dissection of resistance to root-knot nomatodes Meloidogyne spp. in plum, peach, almond and apricot from various segregating interspecific Prunus progenies. Tree Genetics and Genomes, 2009, 5: 279-289.

[4]Dube B, Smart G C. Biological control of Meloidogyne incognita by Paecilomyces lilacinus and Pasteuria Penetrans. Journal of Nematology, 1987, 19(2): 222-227.

[5]张成敏, 武  侠, 才秀华. 厚垣普奇尼亚菌Pochonia chlamydosporia 产生的几丁质酶对南方根结线虫卵孵化的影响. 中国农业科学, 2009, 42(10): 3509-3515.

Zhang C M, Wu X, Cai X H. Effect of chitinases produced        by Pochunia chlamydosporia on egg-hatching of Meloidogyne incognita. Scientia Agricultura Sinica, 2009, 42(10): 3509-3515. (in Chinese)

[6]Kery B R. An assessment of progress toward microbial control of plant parasitic nematode. Journal of Nematology, 1990, 22(4S): 621-631.

[7]Stirling G R. Biological Control of Plant Parasitic Nematodes: Progress, Problems and Prospects. Wallingford: CAB International, 1991: 106-108.

[8]Zare R, Gams W. A revision of Verticillium section Prostrata.IV. The genera Lecanicillium and Simplicium gen. nov. Nova Hedwigia, 2001, 73(1): 1-50.

[9]Viaene N M, Abawi G S. Fungi parasitic on juveniles and egg masses of Meloidogyne hapla in organic soils from New York. Supplement to the Journal of Nematology, 1998, 30(4S): 632-638.

[10]甘中伟, 杨金奎, 陶  南, 黄静文, 张克勤. 刀孢轮枝菌胞外几丁质酶的基因克隆及系统发育分析. 菌物学报, 2008, 27(3): 368-376.

Gan Z W, Yang J K, Tao N, Huang J W, Zhang K Q. Cloning of the chitinase gene Lpchi1 and phylogenetic analysis of Lecanicillium psalliotae. Mycosystema, 2008, 27(3): 368-376. (in Chinese)

[11]Yang J K, Huang X W, Tian B Y, Wang M, Niu Q H, Zhang K Q. Isolation and characterization of a serine protease from the nematophagous fungus, Lecanicillium psalliotae, displaying nematicidal activity. Biotechnology Letters, 2005, 27: 1123-1128.

[12]Saksirira W, Hoppe H H. Secretion of extracellular enzymes by Verticillium psalliotae Treschowand Verticillium lecanii (Zimm.) Viegas during growth on uredospores of the soybean rust fungus (Phakopsora pachyrhizi Syd.) in liquid cultures. Journal of Phytopathology, 1991, 131(1): 161-173.

[13]Nagaoka T, Nakata K, Kouno K, Ando T. Antifungal activity of oosporein from an antagonistic fungus against Phytohthora infestans. Verlag der Zeitschrift für Naturforschung, 2004, 59c: 302-304.

[14]Liao Y M, Xiong Y, Luo D P, Wang Z W, Yuan G Q, Zhou C M. A hyperparasitism of Puccinia sp. and identification of the mycoparasite. Chinese Journal of Biological Control, 2008, 24: 85-89.

[15]Atkins F C. A Verticillium disease of cultivated mushrooms new to Great Britain. Transactions of the British Mycological Society, 1947, 31(1/2): 126-127.

[16]Steenberg T, Humber R A. Entomopathogenic potential of Verticillium and Acremonium species (Deuteromycotina: Hyphomycetes). Journal of Invertebrate Pathology, 1999, 73: 309-314.

[17]Kurihara Y, Machida R, Fukui M, Okuda T, Harayama S. Entomopathogenic fungi isolated from laboratory-reared Baculentulus densus (Acerentomidae, Protura). Edaphologia, 2006, 80: 25-28.

[18]Peciulyte D, Nedveckyte I, Dirginciute-Volodkiene V, Buda V. Pine defoliator Bupalus piniaria L. (Lepidoptera: Geometridae) and its entomopathogenic fungi. 1. Fungi isolation and testing on larvae. EKOLOGIJA, 2010, 56(1/2): 34-40.

[19]Kurihara Y, Sukarno N, Ilyas M, Yuniarti E, Mangunwardoyo W, Saraswati R, Park J Y, Inaba S, Widyastuti Y, Ando K. Entomopathogenic fungi isolated from suspended-soil-inhabiting arthropods in East Kalimantan, Indonesia. Mycoscience, 2008, 49: 241-249.

[20]Gan Z W, Yang J K, Tao N, Liang L M, Mi Q L, Li J, Zhang K Q. Cloning of the gene Lecanicillium psalliotae chitinase Lpchi1 and identification of its potential role in the biocontrol of root-knot nematode Meloidogyne incognita. Applied Microbiology and Biotechnology, 2007, 76: 1309-1317.

[21]Kim D H, Martyn R D, Magill C W. Restriction fragment length polymorphism groups and physical map of mitochondrial DNA from Fusarium oxysporum f. sp. niveum. Molecular Plant Pathology, 1992, 82(3): 346-353.

[22]Morales V M, Jasalavich C A, Pelcher L E, Peteie G A, Taylor J L. Phylogenetic relationship among several Leptosphaeria species based on their ribosomal DNA sequence. Mycological Research, 1995, 99(5): 593-603.

[23]Cabbone I, Kohn L M. Ribosomal DNA sequence divergence within internal transcribed spacer 1 of the Sclerotiniaceae. Mycologia, 1993, 85(3): 415-427.

[24]Eapen S J, Beena B, Ramana K V. Tropical soil microflora of spice-based cropping systems as potential antagonists of root-  knot nematodes. Journal of Invertebrate Pathology, 2005, 88(2): 218-225.

[25]叶利芹, 吴小芹, 叶建仁. 竹叶锈病重寄生现象及重寄生菌鉴定. 菌物学报, 2011, 30(3): 414-420.

Ye L Q, Wu X Q, Ye J R. Hyperparasitism of bamboo leaf rust and identification of the mycoparasite. Mycosystema, 2011, 30(3): 414-420. (in Chinese)

[26]Wharton D. Nemotode egg-shells. Parasitology, 1980, 81: 447-463.

[27]Lopez-Llorca L V, Robertson W M. Immumocytochemical localization of a 32-kDa protease from the nematophagous fungus Verticillium suchlasporium in infected nematode eggs. Experimental Mycology, 1992, 16: 261-267.

[28]Segers R, Butt T M, Kerry B R, Peberdy J F. The nematophagous fungus Verticilliun chlamydosporium produces a chymoelastase-like protease which hydrolyses host nematode proteins in situ. Microbiology, 1994, 140: 2715-2723.

[29]Zhao M L, Mo M H, Zhang K Q. Characterization of a neutral serine protease and its full-length cDNA from the nematode-trapping fungus Arthrobotrys oligospora. Mycologia, 2004, 96(1): 16-22.

[30]Sukarno N, Kurihara Y, Ilyas M, Mangunwardoyo W, Yuniarti E, Sjamsuridzal W, Park J Y, Saraswati R, Inaba S, Widyastuti Y, Ando K, Harayama S. Lecanicillium and Verticillium species from Indonesia and Japan including three new species. Mycoscience, 2009, 50: 369-379.
[1] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[2] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[3] ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513.
[4] LI ZhengGang,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,HE ZiFu. Molecular Characteristics and Pathogenicity Analysis of Youcai Mosaic Virus Guangdong Isolate Infecting Radish [J]. Scientia Agricultura Sinica, 2022, 55(14): 2752-2761.
[5] ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903.
[6] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[7] ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109.
[8] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
[9] ZHAO JingYa,XIA HuiQing,PENG MengYa,FAN Zhuo,YIN Yue,XU SaiBo,ZHANG Nan,CHEN WenBo,CHEN LinLin. Identification and Functional Analysis of Transcription Factors FpAPSES in Fusarium pseudograminearum [J]. Scientia Agricultura Sinica, 2021, 54(16): 3428-3439.
[10] ZHENG XinShi,SHANG PengXiang,LI JingYuan,DING XinLun,WU ZuJian,ZHANG Jie. Effects of Proteins Encoded by “C4 ORFs” of Cotton Leaf Curl Multan Virus on Viral Pathogenicity [J]. Scientia Agricultura Sinica, 2021, 54(10): 2095-2104.
[11] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
[12] LI ZhengGang,NONG Yuan,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Molecular Characteristic and Pathogenicity Analyses of Cucumber green mottle mosaic virus (CGMMV) Infecting Bottle Gourd in Lianzhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(5): 955-964.
[13] LI YueYue,ZHOU WenPeng,LU SiQian,CHEN DeRong,DAI JianHong,GUO QiaoYou,LIU Yong,LI Fan,TAN GuanLin. Occurrence and Biological Characteristics of Tomato mottle mosaic virus on Solanaceae Crops in China [J]. Scientia Agricultura Sinica, 2020, 53(3): 539-550.
[14] WANG BaoBao,GUO Cheng,SUN SuLi,XIA YuSheng,ZHU ZhenDong,DUAN CanXing. The Genetic Diversity, Pathogenicity, and Toxigenic Chemotypes of Fusarium graminearum Species Complex Causing Maize Ear Rot [J]. Scientia Agricultura Sinica, 2020, 53(23): 4777-4790.
[15] SUN Qi,HE Fang,SHAO ShengNan,LIU Zheng,HUANG JiaFeng. Cloning and Functional Analysis of VdHP1 in Verticillium dahliae from Cotton [J]. Scientia Agricultura Sinica, 2020, 53(14): 2872-2884.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!