Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (17): 3264-3275.doi: 10.3864/j.issn.0578-1752.2016.17.002

;

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Diversity in Broomcorn Millet (Panicum miliaceum L.) from China and Abroad by Using SSR Markers

LIAN Shuai1,2, LU Ping2, QIAO Zhi-jun3, ZHANG Qi2, ZHANG Qian2, LIU Min-xuan2, WANG Rui-yun1   

  1. 1College of agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi
    2Institute of Crop Science, Chinese Academy of Agricultura
    l Sciences, Beijing 100081
    3Institute of Crop Genetic Resources, Shanxi Academy of Agricultural Sciences, Taiyuan 030031
  • Received:2016-03-31 Online:2016-09-01 Published:2016-09-01

Abstract: 【Objective】The objective of this study is to assess the genetic diversity of broomcorn millet accessions which collected from China and abroad.【Method】Five hundred pairs of SSR primers developed in the authors’ laboratory by high-throughput sequencing were used to identify polymorphisms in six representatives randomly selected from the total of accessions. A total of 63 primer pairs produced clear and reproducible polymorphic fragments among the six accessions and then were used to analyze the genetic diversity and relationship of 192 broomcorn millet landraces and wild accessions.【Result】A total of 161 alleles were detected with an average of 2.56 alleles per locus, and the mean Shannon-Weaver index (I), mean Nei and mean PIC were 0.6275, 0.3874 and 0.4855, respectively. The results indicated that there is a significant difference among the 10 populations of broomcorn millet resources in genetic diversity from diverse geographic origins. The variance range of effective alleles number is 1.2407 (South region) - 1.8846 (Inner Mongolia). In domestic populations, the rank of Shannon-Weaver index is Inner Mongolia Plateau>Tohoku>Loess Plateau>Northwest>southern regions, and the rank of foreign populations is the former Soviet Union>Europe>Mongolia>India>United States. The results of Nei’s genetic heterozygosity analysis showed that the minimum and maximum of observed (Ho) and expected heterozygosity (He) is 0.2372 from India and 0.3966 from Inner Mongolia as well as 0.3114 from the Unite State and 0.4622 from Inner Mongolia Plateau, respectively. The effective number of alleles (1.9285±0.5101), Shannon-Weaver index (0.6948±0.2852) and Nei gene diversity index (0.4373±0.1773) of the wild germplasm are much higher which in domestic and foreign accessions. For domestic population and alien population, the effective number of alleles (1.8145±0.4519) of domestic resources, Shannon-Weaver index (0.6657±0.2413), and Nei gene diversity index (0.412± 0.1574) of domestic accessions were higher than that in foreign resources (1.6862±0.4527, 0.5897±0.2469, 0.3652±0.1655). UPGMA cluster analysis showed that the 10 geographic populations could be clustered into three categories, the accessions from the Inner Mongolia Plateau, the Loess Plateau, northeast, northwest, Mongolia area were clustered as one group, the former Soviet Union, the United States, India, Europe together as one group, and southern region of China clustered as one independent group. The wild millet (34) which is from Qiqihaer is separated from others at 0.37, the wild millet from Gansu (19) was divided into an independent individual at 0.34, indicating that there are significant genetic variances between the two wild accessions and others. In general, genetic division of population is not significant for 192 domestic and foreign accessions, and there have material interpenetration among different groups.【Conclusion】The Inner Mongolian Plateau, northeast area and the Loess Plateau with the most abundant genetic diversity is the most complex area of genetic relationship, which further confirms that China is the origin center of Panicum miliaceum.

Key words:  Panicum miliaceum L, landraces, wild species, SSR markers, genetic diversity

[1]    Crawford G W. Agricultural origins in North China pushed back to the Pleistocene–Holocene boundary. Proceedings of the National Academy of Sciences of the USA, 2009, 10(6): 7271-7272.
[2]    王星玉, 王纶. 黍稷种质资源描述规范和黍稷标准. 北京: 中国农业出版社, 2006: 5-15.
Wang X Y, Wang L. Proso Millet Germplasm Resources Description and Panicum standard. Beijing: China Agriculture Press, 2006: 5-15. (in Chinese)
[3]    王星玉. 中国黍稷. 北京: 中国农业出版社, 1996: 2-6.
WANG X Y. China Panicum. Beijing: China Agriculture Press, 1996: 2-6. (in Chinese)
[4]    柴岩. 糜子. 北京: 中国农业出版社, 1999: 71-86.
Chai Y. Broomcorn Millet (Panicum miliaceum L.). Beijing: China Agriculture Press, 1999: 71-86. (in Chinese)
[5]    Li Y, Jia J Z, Wang Y R. Intraspecific and interspecific vari2 ation in Seta ria revealed by RAPD analysis. Genetic Resources And Crop Evolution, 1998, 45(3): 279-285.
[6]    Yang L X, Fu J H, Warburton M, Li X H, Zhang S H, Khairrallah M, Liu X Z, Peng Z B, Li L C. Comparison of genetic diversity among maize inbred lines based on RFLPs, SSRs, AFLPs and RAPDs. Journal of Genetics and Genomics, 2000, 27(8): 725-733.
[7]    Wu Y Y, Zhang T Z, Yin J M. Genetic diversity detected by dna markers and phenotypes in upland cotton. Journal of Genetics and Genomics, 2001, 28(11): 1040-1050.
[8]    Qian W, Ge S, Hong D Y. Assessment of genetic variation of Oryza granulata detected by RAPDs and ISSRs. Journal of Integrative Plant Biology, 2000, 42(7): 741-750.
[9]    Weber J L. Informativeness of human (dC-dA)n (dG-dT)n polymorphism. Genomics, 1990, 7(1): 524-530.
[10]   Zhang X L, Tang K X. Plant Biotechnology. Beijing: Science Press, 2004: 401-500.
[11]   d′Ennequ M L T, Panaud O, Toupance B. Assesment of genetic relationships between Setaria italica and its wild relative S.virid is using AFL Pmarkers. Theoretical and Applied Genetics, 2000, 100(7): 1061-1066.
[12]   吴大鹏, 房嫌嫌, 崔闰根, 陈进红, 祝水金. 国内外陆地棉品种资源的亲缘关系和遗传多态性研究. 棉花学报, 2011, 23(4): 291-299.
Wu D P, Fang X X, Cui Y G, Chen J H, Zhu S J. Genetic relationship and diversity of the upland cotton germplasms from different cotton producing countries using SSR markers. Cotton Science, 2011, 23(4): 291-299. (in Chinese)
[13]   徐先良, 赖勇, 王鹏喜, 范贵强, 汪军成, 王晋, 孟亚雄, 李葆春, 马小乐, 王化俊. 大麦亲本材料农艺性状鉴定及遗传多样性分析. 麦类作物学报, 2013, 33(4): 640-646.
Xu X L, Lai Y, Wang P X, Fan G Q, Wang J C, Wang J, Meng Y X, Li B C, Ma X L, Wang H Y. Identification of agronomic traits and genetic diversity analysis of barley parent materials. Journal of Triticeae Crops, 2013, 33(4): 640-646. (in Chinese)
[14]   王晋, 王世红, 赖勇, 孟亚雄, 李葆春, 马小乐, 尚勋武, 王化俊. 大麦SSR标记遗传多样性及群体遗传结构分析. 核农学报, 2014, 28(2): 177-185.
Wang J, Wang S H, Lai Y, Meng Y X, Li B C, Ma X L, Shang X W, Wang H J. Genetic diversity and population structure analysis by using SSR markers in barley. Journal of Nuclear Agricultural Sciences, 2014, 28(2): 177-185. (in Chinese)
[15]   M'Ribu H K, Hilu K W. Detection of interspecific and intraspecific variation in Panicum millets through random amplified polymorphic DNA. Theoretical and Applied Genetics, 1994, 88(3): 412-416.
[16]   Karam D, Westra P, Nissen S J, Ward S M, Figueiredo J E F. Genetic diversity among proso millet (Panicum miliaceum) biotypes assessed by AFLP technique/Diversidade genética entre biótipos de proso millet (Panicum miliaceum) revelada pela técnica de AFLP. Planta daninha, 2004, 22(2): 167-174.
[17]   Karam D, Westra P, Niessen S J. Assessment of silver-stained AFLP markers for studying DNA polymorphism in proso millet (Panicum miliaceum L.). Revista Brasileira de Botanica, 2006, 29(4): 609-615.
[18]   Lágler R, Gyulai G, Humphreys M, Szabó Z, Horváth L, Bittsánszky A, Kiss J, Holly L, Heszky L. Morphological and molecular analysis of common millet (P. miliaceum) cultivars compared to an aDNA sample from the 15th century (Hungary). Euphytica, 2005, 146: 77-85.
[19]   Hunt H V, Campana M G, Lawes M C, Park Y J, Bower M A, Howe C J, Jones M K. Genetic diversity and phylogeography of broomcorn millet (Panicum miliaceum L.) across Eurasia. Molecular Ecology, 2011, 20(7): 4756-4771.
[20]   Cho Y, Chung J W, Lee G A, Ma K H, Dixit A, Gwag J G, Park Y J. Development and characterization of twenty-five new polymorphic microsatellite markers in proso millet (Panicummiliaceum L.). Genes & Genomics, 2010, 3(2): 267-273.
[21]   连帅, 王瑞云, 马跃敏, 刘笑瑜, 季煦. 不同生态区糜子种质资源的遗传多样性分析. 山西农业大学学报(自然科学版), 2015, 35(3): 225-227.
Lian S, Wang R Y, Ma Y M, Liu X Y, Ji X. Genetic diversity of broomcorn millet (Panicum miliaceum L.) germplasms of different ecotype zone of China. Journal of Shanxi Agricultural University (Natural Science Edition), 2015, 35(3): 225-227. (in Chinese)
[22]   Li C X, Dong Y, Liu M X, Lu P, Li W Y, Wang Y N, Cui X Y, Zhou H, Xu Y. Ancient DNA analysis of Panicum miliaceum (broomcorn millet) from a Bronze Age cemetery in Xinjiang, China. Vegetation History and Archaeobotany, 2016, 25(5): 469-477.
[23]   Kumar S, Tamura K, Nei M. MEGA3:Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics, 2004, 5: 150-163.
[24]   胡兴雨, 陆平, 贺建波, 王纶, 王玉星, 张红生, 张宗文, 吴斌. 黍稷农艺性状的主成分分析与聚类分析. 植物遗传资源学报, 2008, 9(4): 492-496.
Hu X Y, Lu P, He J B, Wang L, Wang Y X, Zhang H S, Zhang Z W, Wu B. Principal components and cluster analysis of agronomic traits of Proso Millet (Panicum miliaceum). Journal of Plant Genetic Resources, 2008, 9(4): 492-496. (in Chinese)
[25]   Wang L, Wang X Y, Wen Q F. Research and utilization of proso millet germplasm resource in China. Journal of Plant Genetic Resources, 2005, 6(5): 471-474.
[26]   Liu M X, Qiao Z J, Zhang S, Wang Y Y, Lu P. Response of broomcorn millet (Panicummiliaceum L.) genotypes from semiarid regions of China to salt stress. The Crop Journal, 2014, 8(6): 57-66.
[27]   刘敏轩, 张宗文, 吴斌, 陆平. 黍稷种质资源芽、苗期耐中性混合盐胁迫评价与耐盐生理机制研究. 中国农业科学, 2012, 45(18): 3733-3743.
Liu M X, Zhang Z W, Wu B, Lu P. Evaluation of mixed salt-tolerance at germination stage and seedling stage and the related physiological characteristics of Panicum miliaceum L.. Scientia Agricultura Sinica, 2012, 45(18): 3733-3743. (in Chinese)
[28]   王纶, 温琪汾, 曹厉萍, 王玉星. 黍稷抗旱种质筛选及抗旱机理研

究. 山西农业科学, 2007, 35(4): 31-34.
Wang L, Wen Q F, Cao L P, Wang Y X. Drought-resistant germplasm screening and drought-resistance mechanism in proso millet. Journal of Shanxi Agricultural Sciences, 2007, 35(4): 31-34. (in Chinese)
[29]   刘晓欢, 王瑞云, 杜海娥, 李红英, 王爱萍, 王海岗, 张海平, 秦香, 张彬. 糜子品种间农艺性状的形态解剖差异. 山西农业大学学报(自然科学版), 2013, 33(4): 295-298.
Liu X H, Wang R Y, Du H E, Li H Y, Wang A P, Wang H G, Zhang H P, Qin X, Zhang B. The study on the morphological and anatomical structures of agronomic traits among different cultivars of common millet (Panicum miliaceum L.). Journal of Shanxi Agricultural University (Natural Science Edition), 2013, 33(4): 295-298. (in Chinese)
[30]   张盼盼, 冯佰利, 王鹏科, 高晓丽, 高金峰, 宋慧, 张晓东, 柴岩. PEG胁迫下糜子苗期抗旱指标鉴选研究. 中国农业大学学报, 2012, 1: 53-59.
Zhang P P, Feng B L, Wang P K, Gao X L, Gao J F, Song H, Zhang X D, CHai Y. Study on identification of drought-resistance indexes at seedling stage in broomcorn millet under PEG stress. Journal of China Agricultural University, 2012, 1: 53-59. (in Chinese)
[31]   Jia X P, Zhang Z B, Liu Y H, Zhang C W, Shi Y S, Song Y  C, Wang T Y, Li Y. Development and genetic mapping of SSR markers in foxtail millet [Setariaitalica(L.) P.Beauv.]. Theoretical and Applied Genetics, 2009, 11(8): 821-829.
[32]   Wu B, Lu P, Zhang Z W. Recombinant microsatellite amplification: a rapid method for developing simple sequence repeat markers. Molecular Breeding, 2009, 2(9): 53-59.
[33]   Yang T, Bao S Y, Ford R, Jia T J, Guan J P, He Y H, Sun X L, Jiang J Y, Hao J J, Zhang X Y, Zong X X. High-throughput novel microsatellite marker of faba bean via next generation sequencing. BMC Genomics, 2012, 1(3): 602-608.
[34]   Jiang J Y, Burlyaeva M, Hu J G, Coyne C J, Kumar S, Redden R, Sun X L, Wang F, Chang J W, Hao X P, Guan J P, Zong X X. Large-scale microsatellite development in grasspea (Lathyrussativus L.), an orphan legume of the arid areas. BMC Plant Biology, 2014, 14: 65-69.
[35]   Hunt H V, Badakshi F, Romanova O, Howe C J, Jones M K, Heslop-Harrison J S P. Reticulate evolution in Panicum (Poaceae): the origin of tetraploid broomcorn millet P.miliaceum. Journal of Experimental Botany, 2014, 30: 109-122.
[1] XI Ling, WANG YuQi, YANG Xiu, ZHU Wei, CHEN GuoYue, WANG Yi, QIN Peng, ZHOU YongHong, KANG HouYang. Evaluation of Resistance to Stripe Rust and Molecular Detection of Resistance Gene(s) in 243 Common Wheat Landraces from the Yunnan Province [J]. Scientia Agricultura Sinica, 2021, 54(4): 684-695.
[2] ZhiJun XU,Sheng ZHAO,Lei XU,XiaoWen HU,DongSheng AN,Yang LIU. Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea) [J]. Scientia Agricultura Sinica, 2020, 53(4): 695-706.
[3] YANG ZiBo, WANG AnBang, LENG SuFeng, GU ZhengZhong, ZHOU YangMei. Genetic Analysis of the Novel High-Yielding Wheat Cultivar Huaimai33 [J]. Scientia Agricultura Sinica, 2018, 51(17): 3237-3248.
[4] XUE YanTao, LU Ping, QIAO ZhiJun, LIU MinXuan, WANG RuiYun. Genetic Diversity and Genetic Relationship of Broomcorn Millet (Panicum miliaceum L.) Germplasm Based on SSR Markers [J]. Scientia Agricultura Sinica, 2018, 51(15): 2846-2859.
[5] LIU WenPing, Lü Wei, LI DongHua, REN GuoXiang, ZHANG YanXin, WEN Fei, HAN JunMei, ZHANG XiuRong. Drought Resistance of Sesame Germplasm Resources and Association Analysis at Adult Stage [J]. Scientia Agricultura Sinica, 2017, 50(4): 625-639.
[6] WEN Xin, DENG Shu, ZHANG ChunFen, HOU LiYuan, SHI JiangPeng, NIE YuanJun, XIAO Rong, QIN YongJun, CAO QiuFen. Regeneration of New Germplasms Using Anther Culture of Apple Cultivar ‘Gala’ [J]. Scientia Agricultura Sinica, 2017, 50(14): 2793-2806.
[7] YANG MinMin, LIU HongYan, ZHOU Ting, QU HongHao, YANG YuanXiao, WEI Xin, ZUO Yang, ZHAO YingZhong. Production and Identification of F1 Interspecific Hybrid Between Sesamum indicum and Wild Relative S. Indicatum [J]. Scientia Agricultura Sinica, 2017, 50(10): 1763-1771.
[8] CHEN Qiang, YAN Long, FENG Yan, DENG Ying-ying, HOU Wen-huan, LIU Qing, LIU Bing-qiang, YANG Chun-yan, ZHANG Meng-chen. Identify QTL Associated with Soybean 100-Seed Weight Using Recombinant Inbred Lines and Determine QTL Diversity Within Nature Population [J]. Scientia Agricultura Sinica, 2016, 49(9): 1646-1656.
[9] LIU Xiu-yun, LI Hui, LIU Zhi-guo, ZHAO Jin, LIU Meng-jun. Genetic Diversity and Structure of 255 Cultivars of Ziziphus jujuba Mill. [J]. Scientia Agricultura Sinica, 2016, 49(14): 2772-2791.
[10] HUANG Xun-he, CHEN Jie-bo, HE Dan-lin, ZHANG Xi-quan, ZHONG Fu-sheng. DNA Barcoding of Indigenous Chickens in China: A Reevaluation [J]. Scientia Agricultura Sinica, 2016, 49(13): 2622-2633.
[11] HU Zhen-bang, GAO Yun-lai, QI Zhao-ming, JIANG Hong-wei, LIU Chun-yan, XIN Da-wei, HU Guo-hua, PAN Xiao-cheng, CHEN Qing-shan. Software Development of -ID Analysis for Crop Molecular Identity Construction [J]. Scientia Agricultura Sinica, 2016, 49(12): 2255-2266.
[12] XING Jun, CHANG Hui-lin, WANG Jing-guo, LIU Hua-long, SUN Jian, ZHENG Hong-liang, ZHAO Hong-wei, ZOU De-tang. QTL Analysis of Na+ and K+ Concentrations in japonica Rice   Under Salt and Alkaline Stress [J]. Scientia Agricultura Sinica, 2015, 48(3): 604-612.
[13] LIU Juan, LIAO Kang, ZHAO Shi-rong, CAO Qian, SUN Qi, LIU Huan. The Core Collection Construction of Xinjiang Wild Apricot Based on ISSR Molecular Markers [J]. Scientia Agricultura Sinica, 2015, 48(10): 2017-2028.
[14] CHEN Qiang-1, 2 , YAN Long-1, YANG Chun-Yan-1, ZHANG Jia-Nan-1, SHI Xiao-Lei-1, DONG Fang-Yang-2, DENG Ying-Ying-1, 2 , HOU Wen-Huan-1, ZHANG Meng-Chen-1, 2 . SSR Markers Linked to High and Low Protein Content Strains Derived from 3 Backcross Combinations Under Jidou 12 Genetic Background [J]. Scientia Agricultura Sinica, 2014, 47(2): 230-239.
[15] JIE Kai-Dong-1, WANG Hui-Qin-1, WANG Xiao-Pei-1, LIANG Wu-Jun-1, XIE Zong-Zhou-1, YI Hua-Lin-1, DENG Xiu-Xin-1, Grosser Jude W2, GUO Wen-Wu-1. Extensive Citrus Triploid Breeding by Crossing Monoembryonic Diploid Females with Allotetraploid Male Parents [J]. Scientia Agricultura Sinica, 2013, 46(21): 4550-4557.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!