Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (12): 2301-2309.doi: 10.3864/j.issn.0578-1752.2016.12.006
• PLANT PROTECTION • Previous Articles Next Articles
CHEN Lin-lin, HOU Ying, DING Sheng-li, SHI Yan, LI Hong-lian
[1] Moolhuijzen P M, Manners J M, Wilcox S A, Bellgard M I, Gardiner D M. Genome sequences of six wheat-infecting Fusarium species isolates. Genome Announcements, 2013, 1(5): e00670-13.
[2] Li H L, Yuan H X, Fu B, Xing X P, Sun B J, Tang W H. First report of Fusarium pseudograminearum causing crown rot of wheat in Henan, China. Plant Disease, 2012, 96(7): 1065.
[3] 周海峰, 杨云, 牛亚娟, 袁虹霞, 李洪连. 小麦茎基腐病的发生动态与防治技术. 河南农业科学, 2014, 43(5): 114-117.
Zhou H F, Yang Y, Niu Y J, Yuan H X, Li H L. Occurrence and control methods of crown rot of wheat. Journal of Henan Agricultural Sciences, 2014, 43(5): 114-117. (in Chinese)
[4] Wexler M, Sargent F, Jack R L, Stanley N R, Bogsch E G, Robinson C, Berks B C, Palmer T. TatD is a cytoplasmic protein with DNase activity. No requirement for TatD family proteins in sec-independent protein export. The Journal of biological chemistry, 2000, 275(22): 16717-16722.
[5] Parrish J Z, Xue D. Functional genomic analysis of apoptotic DNA degradation in C. elegans. Molecular Cell, 2003, 11(4): 987-996.
[6] Qiu J, Yoon J H, Shen B. Search for apoptotic nucleases in yeast: role of Tat-D nuclease in apoptotic DNA degradation. The Journal of Biological Chemistry, 2005, 280(15): 15370-15379.
[7] Gannavaram S, Debrabant A. Involvement of TatD nuclease during programmed cell death in the protozoan parasite Trypanosoma brucei. Molecular Microbiology, 2012, 83(5): 926-935.
[8] Taylor R C, Cullen S P, Martin S J. Apoptosis: controlled demolition at the cellular level. Nature Reviews Molecular Cell Biology, 2008, 9(3): 231-241.
[9] Shlezinger N, Goldfinger N, Sharon A. Apoptotic-like programed cell death in fungi: the benefits in filamentous species. Frontiers in Oncology, 2012, 2: Article 97.
[10] Brust D, Hamann A, Osiewacz H D. Deletion of PaAif2 and PaAmid2, two genes encoding mitochondrial AIF-like oxidoreductases of Podospora anserina, leads to increased stress tolerance and lifespan extension. Current genetics, 2010, 56: 225-235.
[11] Georgiou C D, Patsoukis N, Papapostolou I, Zervoudakis G. Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress. Integrative and Comparative Biology, 2006, 46(6): 691-712.
[12] Hamann A, Brust D, Osiewacz H D. Deletion of putative apoptosis factors leads to lifespan extension in the fungal ageing model Podospora anserina. Molecular microbiology, 2007, 65(4): 948-958.
[13] Shlezinger N, Minz A, Gur Y, Hatam I, Dagdas Y F, Talbot N J, Sharon A. Anti-apoptotic machinery protects the necrotrophic fungus Botrytis cinerea from host-induced apoptotic-like cell death during plant infection. PLoS Pathogen, 2011, 7(8): e1002185.
[14] Galluzzi L, Aaronson S A, Abrams J, Alnemri E S, Andrews D W, Baehrecke E H, Bazan N G, Blagosklonny M V, Blomgren K, Borner C. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death and Differentiation, 2009, 16(8): 1093-1107.
[15] Sargent F, Bogsch E G, Stanley N R, Wexler M, Robinson C, Berks B C, Palmer T. Overlapping functions of components of a bacterial Sec-independent protein export pathway. The EMBO Journal, 1998, 17(13): 3640-3650.
[16] Berks B C, Sargent F, Palmer T. The Tat protein export pathway. Molecular Microbiology, 2000, 35(2): 260-274.
[17] Chen L, Shen D, Sun N, Xu J, Wang W, Dou D. Phytophthora sojae TatD nuclease positively regulates sporulation and negatively regulates pathogenesis. Molecular Plant-Microbe Interaction, 2014, 27(10): 1070-1080.
[18] 陈清清, 孙炳剑, 袁虹霞, 施艳, 李洪连. 小麦根腐病菌索氏平脐蠕孢SYBR Green I实时荧光定量PCR检测技术研究. 菌物学报, 2014, 33(3): 690-696.
Chen Q Q, Sun B J, Yuan H X, Shi Y, Li H L. Quantitative detection of Bipolaris sorokiniana in winter wheat based on SYBR Green I real-time PCR. Mycosystema, 2014, 33(3): 690-696. (in Chinese)
[19] Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997, 25(24): 4876-4882.
[20] 杨云, 贺小伦, 胡艳峰, 侯莹, 牛亚娟, 代君丽, 袁虹霞, 李洪连. 黄淮麦区主推小麦品种对假禾谷镰刀菌所致茎基腐病的抗性. 麦类作物学报, 2015, 35(3): 339-345.
Yang Y, He X L, Hu Y F, Hou Y, Niu Y J, Dai J L, Yuan H X, Li H L. Resistance of wheat cultivars in Huang-Huai Region of China to crown rot caused by Fusarium pseudograminearum. Journal of Triticeae Crops, 2015, 35(3): 339-345. (in Chinese)
[21] Narasimhan M L, Damsz B, Coca M A, Ibeas J I, Yun D J, Pardo J M, Hasegawa P M, Bressan R A. A plant defense response effector induces microbial apoptosis. Molecular Cell, 2001, 8(4): 921-930.
[22] del Pozo O, Lam E. Caspases and programmed cell death in the hypersensitive response of plants to pathogens. Current Biology, 1998, 8(24): R896.
[23] Lam E. Controlled cell death, plant survival and development. Nature Reviews Molecular Cell Biology, 2004, 5(4): 305-315.
[24] Barhoom S, Sharon A. Bcl-2 proteins link programmed cell death with growth and morphogenetic adaptations in the fungal plant pathogen Colletotrichum gloeosporioides. Fungal Genetics and Biology, 2007, 44(1): 32-43.
[25] BoseDasgupta S, Das B B, Sengupta S, Ganguly A, Roy A, Dey S, Tripathi G, Dinda B, Majumder H K. The caspase- independent algorithm of programmed cell death in Leishmania induced by baicalein: the role of LdEndoG, LdFEN-1 and LdTatD as a DNA ‘degradesome’. Cell Death and Differentiation, 2008, 15(10): 1629-1640.
[26] Ramsdale M. Programmed cell death in pathogenic fungi. Biochimica et Biophysica Acta, 2008, 1783(7): 1369-1380.
[27] Sharon A, Finkelstein A, Shlezinger N, Hatam I. Fungal apoptosis: function, genes and gene function. FEMS Microbiology Review, 2009, 33(5): 833-854.
[28] Sharon A, Shlezinger N. Fungi infecting plants and animals: killers, non-killers, and cell death. PLoS Pathogen, 2013, 9(8): e1003517. |
[1] | GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89. |
[2] | LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876. |
[3] | WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675. |
[4] | LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212. |
[5] | LI WenHui,HE YiJing,JIANG Yao,ZHAO HongYu,PENG Lei,LI Jia,RUI Rong,JU ShiQiang. Effects of FB1 on Apoptosis and Autophagy of Porcine Oocytes in vitro Maturation [J]. Scientia Agricultura Sinica, 2022, 55(6): 1241-1252. |
[6] | LI YuZe,ZHU JiaWei,LIN Wei,LAN MoYing,XIA LiMing,ZHANG YiLi,LUO Cong,HUANG Gui Xiang,HE XinHua. Cloning and Interaction Protein Screening of RHF2A Gene from Xiangshui Lemon [J]. Scientia Agricultura Sinica, 2022, 55(24): 4912-4926. |
[7] | MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663. |
[8] | YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449. |
[9] | QU Cheng,WANG Ran,LI FengQi,LUO Chen. Cloning and Expression Profiling of Gustatory Receptor Genes BtabGR1 and BtabGR2 in Bemisia tabaci [J]. Scientia Agricultura Sinica, 2022, 55(13): 2552-2561. |
[10] | ZHANG Li,ZHANG Nan,JIANG HuQiang,WU Fan,LI HongLiang. Molecular Cloning and Expression Pattern Analysis of NPC2 Gene Family of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(12): 2461-2471. |
[11] | ZHANG Lu,ZONG YaQi,XU WeiHua,HAN Lei,SUN ZhenYu,CHEN ZhaoHui,CHEN SongLi,ZHANG Kai,CHENG JieShan,TANG MeiLing,ZHANG HongXia,SONG ZhiZhong. Identification, Cloning, and Expression Characteristics Analysis of Fe-S Cluster Assembly Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(23): 5068-5082. |
[12] | FENG YunKui,WANG Jian,MA JinLiang,ZHANG LiuMing,LI YongJun. Effects of miR-31-5p on the Proliferation and Apoptosis of Hair Follicle Stem Cells in Goat [J]. Scientia Agricultura Sinica, 2021, 54(23): 5132-5143. |
[13] | TAN YongAn,JIANG YiPing,ZHAO Jing,XIAO LiuBin. Expression Profile of G Protein-Coupled Receptor Kinase 2 Gene (AlGRK2) and Its Function in the Development of Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(22): 4813-4825. |
[14] | WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260. |
[15] | MA MengNan,WANG HuiMing,WANG MiaoMiao,YAO Wang,ZHANG JinBi,PAN ZengXiang. Identification of circINHBB During Follicular Atresia and Its Effect on Granulosa Cell Apoptosis [J]. Scientia Agricultura Sinica, 2021, 54(18): 3998-4007. |
|