Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (9): 1685-1695.doi: 10.3864/j.issn.0578-1752.2016.09.005

• PLANT PROTECTION • Previous Articles     Next Articles

Molecular Cloning Flanking Sequences of T-DNA Insertion from the Ustilaginoidea virens Mutant Strain B1241

BO Hui-wen1,2, YU Mi-na1, YU Jun-jie1, YIN Xiao-le1, DING Hui1,2, WANG Ya-hui1, LIU Yong-feng1   

  1. 1Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014
    2College of Life Science, Nanjing Agricultural University, Nanjing 210095
  • Received:2016-01-04 Online:2016-05-01 Published:2016-05-01

Abstract: 【Objective】The objective of this study is to explore the function of pathogenicity-relative gene basing on the phenotypes and T-DNA integration flanking sequence of a mutant strain B1241, and to provide a theory foundation for illustrating the pathogenic mechanism of Ustilaginoidea virens.【Method】 With the wild type strain P1 as the control, biological phenotypes of B1241 were analyzed. Artificial inoculation of mixtures of hyphae broken and conidia was made by injecting at the leaf sheath of the rice plant seven days before booting stage. Number of diseased grain per panicle was counted until false smut balls developed. After five generations of mutant strain B1241 inoculated on the PSA without hygromycin, the stability of T-DNA insertion was detected. Southern blot was used to identify the copy number of T-DNA in B1241. The flanking sequence of T-DNA was obtained by HiTail-PCR and the full length of the flanking gene was cloned by RACE-PCR. The gene expression was detected by quantitative RT-PCR.【Result】There was no significant difference in colony morphology and growth rate between B1241 and P1 culturing on MM, PSA and TB3. A field inoculation trials showed that the pathogenicity of B1241 was significantly declined compared with P1. After five generations of mutant strain B1241 inoculated on the PSA without hygromycin, gene GFP and HPH were still amplified, which indicated that T-DNA had been stably inserted into the genome of B1241. Genomic southern blot analysis confirmed that B1241 is a single T-DNA insertional event. Analysis of flanking sequence indicated that there were 28 bp sequences of U. virens loss in T-DNA insertion site and 37 base pairs were not found in T-DNA sequences and U. virens genome. Sequences analysis indicated that full length of flanking gene was 2 650 bp with a 14 bp of 5′ untranslated regions and a 319 bp of 3′ untranslated regions. The cloned flanking gene homologous with UV8b-7878 in strain UV-8b encodes a glycoside hydrolase family 18 protein which has a conserved domain D××D×D×E. The T-DNA insertion into the promoter region of Uvt-1241 led to lower transcription levels of gene Uvt-1241 in this mutant strain.【Conclusion】The mutant strain B1241 showed great changes on the conidia production and pathogenicity, probably due to inserted T-DNA in the promoter region of the gene. These results implied that gene Uvt-1241 might played an important role during the growth and pathogenic process of U. virens.

Key words: Ustilaginoidea virens, T-DNA, pathogenicity, glycoside hydrolase family 18 protein, gene clone

[1]    田鸿, 陶家凤. 水稻稻曲病菌厚垣孢子萌发特性及稻曲病菌毒素对水稻、玉米、小麦种子萌发的影响. 西南农业学报, 2000, 13(3): 113-116.
Tian H, Tao J F. The germinating characters of false smut chalmydospores and the influence of toxin produced by Ustilaginoidea virens on the growth of radicle and plumule of rice, tritici and madyis. Southwest China Journal of Agricultural Science, 2000, 13(3): 113-116. (in Chinese)
[2]    丁克坚, 檀根甲, 胡劲松, 周世春. 稻曲病危害对水稻产量损失的影响. 植物保护, 1997, 23(1): 3-6.
Ding K J, Tan G J, Hu J S, Zhou S C. Yield loss of rice damaged by rice false smut. Plant Protection, 1997, 23(1): 3-6. (in Chinese)
[3]    李小娟, 刘二明, 肖启明, 刘年喜, 王金辉, 谭小平, 郑和斌. 水稻对稻曲病抗性的分级及相应级别的产量损失. 湖南农业大学学报 (自然科学版), 2011, 37(3): 275-279.
Li X J, Liu E M, Xiao Q M, Liu N X, Wang J H, Tan X P, Zheng H B. Rating of rice resistance against Ustilaginoidea virens and relationship between resistance and yield loss. Journal of Hunan Agricultural University (Natural Sciences), 2011, 37(3): 275-279. (in Chinese)
[4]    Tanaka E, Kumagawa T, Tanaka C, Koga H. Simple transformation of the rice false smut fungus Villosiclava virens by electroporation of intact conidia. Mysoscience, 2011, 52(5): 344-348.
[5]    邹克琴, 胡东维, 王为民, 徐晓晖. 水稻稻曲病的研究进展. 浙江农业科学, 2012(5): 704-706.
Zou K Q, Hu D W, Wang W M, Xu X H. Research progress on rice Ustilaginoidea virens. Zhejiang Agricultural Sciences, 2012(5): 704-706. (in Chinese)
[6]    饶玉春, 丁正中, 陈析丰, 曾大力, 马伯军, 顾志敏. 稻曲病菌UvHog1基因的克隆及表达分析. 中国水稻科学, 2014, 28(1): 9-14.
Rao Y C, Ding Z Z, Chen X F, Zeng D L, Ma B J, Gu Z M. Cloning and expression analysis of UvHog1 gene in Ustilaginoidea virens. Chinese Journal of Rice Science, 2014, 28(1): 9-14. (in Chinese)
[7]    周永力, 谢学文, 王疏, 潘雅姣, 刘小舟, 杨皓, 徐建龙, 黎志康. 采用Nested-PCR从田间和水稻植株上检测稻曲病菌. 农业生物技术学报, 2006, 14(4): 542-545.
Zhou Y L, Xie X W, Wang S, Pan Y J, Liu X Z, Yang H, Xu J L, Li Z K. Detection of Ustilaginoidea virens from rice field and plants by Nested-PCR. Journal of Agricultural Biotechnology, 2006, 14(4): 542-545. (in Chinese)
[8]    刘连盟, 王玲, 黄雯雯, 刘恩勇, 黄世文. 水稻稻曲病菌G蛋白β亚基基因的克隆、表达与序列分析. 中国水稻科学, 2010, 24(4): 353-359.
Liu L M, Wang L, Huang W W, Liu E Y, Huang S W. Cloning, expression and sequence analysis of G protein β subunit gene of rice false smut pathogen Ustilaginoidea virens. Chinese Journal of Rice Science, 2010, 24(4): 353-359. (in Chinese)
[9]    王文斌, 张荣胜, 罗楚平,尹小乐, 刘永锋, 陆凡, 陈志谊. 中国主要稻区稻曲病菌的生物学特性及群体遗传多样性. 中国农业科学, 2014, 47(14): 2762-2773.
Wang W B, Zhang R S, Luo C P, Yin X L, Liu Y F, Lu F, Chen Z Y. Biological characteristics and genetic diversity of Ustilaginoidea virens from rice regions in China. Scientia Agricultura Sinica, 2014, 47(14): 2762-2773. (in Chinese)
[10]   尹小乐, 陈志谊, 刘永锋, 于俊杰, 李燕, 俞咪娜. 稻曲毒素A的相对含量分析及其与致病力的相关性. 中国农业科学, 2012, 45(22): 4720-4727.
Yin X L, Chen Z Y, Liu Y F, Yu J J, Li Y, Yu M N. Detection of the relative content of ustiloxin A in rice false smut balls and correlation analysis between pathogenicity and ustiloxin A production of Ustilaginoidea virens. Scientia Agricultura Sinica, 2012, 45(22): 4720-4727. (in Chinese)
[11]   Hu M L, Luo L X, Wang S, Liu Y F, Li J Q. Infection processes of Ustilaginoidea virens during artificial inoculation of rice panicles. European Journal of Plant Pathology, 2014, 139: 67-77.
[12]   胡东维, 王疏. 稻曲病菌侵染机制研究现状与展望. 中国农业科学, 2012, 45(22): 4604-4611.
Hu D W, Wang S. Progress and perspectives in infection mechanism of Ustilaginoidea virens. Scientia Agricultura Sinica, 2012, 45(22): 4604-4611. (in Chinese)
[13]   Ashizawa T, Takahashi M, Arai M, Arie T. Rice false smut pathogen, Ustilaginoidea virens, invades through small gap at the apex of a rice spikelet before heading. Journal of General Plant Pathology, 2012, 78: 255-259.
[14]   Han Y Q, Zhang K, Yang J, Zhang N, Fang A F, Zhang Y, Liu Y F, Chen Z Y, Hsiang T, Sun W X. Differential expression profiling of the early response to Ustilaginoidea virens between false smut resistant and susceptible rice varieties. BMC Genomics, 2015, 16: 955.
[15]   刘朋娟, 王政逸, 王秋华, 李德葆. 农杆菌介导的稻瘟病菌转化及致病缺陷突变体筛选. 中国水稻科学, 2006, 20(3): 231-237.
Liu P J, Wang Z Y, Wang Q H, Li D B. Agrobacterium tumefaciens-mediated transformation of Magnaporthe grisea and identification of pathogenicity defective mutant. Chinese Journal of Rice Science, 2006, 20(3): 231-237. (in Chinese)
[16]   张震, 杜新法, 柴荣耀, 毛学琴, 邱海萍, 王艳丽, 王教瑜, 孙国昌. 根癌农杆菌介导遗传转化稻曲病菌. 中国水稻科学, 2006, 20(4): 440-442.
Zhang Z, Du X F, Chai R Y, Mao X Q, Qiu H P, Wang Y L, Wang J Y, Sun G C. Agrobacterium tumefaciens-mediated transformation of the pathogen of Ustilaginoidea virens. Chinese Journal of Rice Science, 2006, 20(4): 440-442. (in Chinese)
[17]   张震, 杜新法, 柴荣耀, 王教瑜, 邱海萍, 毛雪琴, 孙国昌. 稻曲病菌PMK1类同源基因克隆及在稻瘟病菌遗传互补中的功能验证. 微生物学报, 2008, 48(11): 1473-1478.
Zhang Z, Du X F, Chai R Y, Wang J Y, Qiu H P, Mao X Q, Sun G C. Cloning of a homologous gene of Magnaporthe grisea PMK1 type MAPK from Ustilaginoidea virens and functional identification by complement in Magnaporthe grisea corresponding mutant. Acta Microbiologica Sinica, 2008, 48(11): 1473-1478. (in Chinese)
[18]   俞咪娜, 胡建坤, 黄磊, 于俊杰, 尹小乐, 聂亚锋, 陈志谊, 刘永锋. 稻曲病菌T-DNA插入突变体5062的插入位点分析. 中国农业科学, 2013, 46(9): 1790-1798.
Yu M N, Hu J K, Huang L, Yu J J, Yin X L, Nie Y F, Chen Z Y, Liu Y F. Molecular characterization of T-DNA integration of the Ustilaginoidea virens mutant 5062. Scientia Agricultura Sinica, 2013, 46(9): 1790-1798. (in Chinese)
[19]   于俊杰, 聂亚锋, 俞咪娜, 尹小乐, 胡建坤, 黄磊, 陈志谊, 刘永锋. 稻曲病菌分生孢子高产突变体A2588的T-DNA插入位点侧翼基因分析. 中国农业科学, 2013, 46(24): 5132-5141. 
Yu J J, Nie Y F, Yu M N, Yin X L, Hu J K, Huang L, Chen Z Y, Liu Y F. Characterization of T-DNA insertion flanking genes of enhanced-conidiation Ustilaginoidea virens mutant A2588. Scientia Agricultura Sinica, 2013, 46(24): 5132-5141. (in Chinese)
[20]   黄磊, 俞咪娜, 胡建坤, 于俊杰, 尹小乐, 聂亚锋, 陈志谊, 刘永锋. 稻曲病菌突变体B-726生物学性状分析及其T-DNA插入位点侧翼序列的克隆. 中国农业科学, 2013, 46(16): 3344-3353.
Huang L, Yu M N, Hu J K, Yu J J, Yin X L, Nie Y F, Chen Z Y, Liu Y F. Analysis of biological phenotypes and molecular cloning of T-DNA integration flanking sequences of Ustilaginoidea virens mutant strain B-726. Scientia Agricultura Sinica, 2013, 46(16): 3344-3353. (in Chinese)
[21]   Zhang Y, Zhang K, Fang A F, Han Y Q, Yang J, Xue M F, Bao J D, Hu D W, Zhou B, Sun X Y, Li S J, Wen M, Yao N, Ma L J, Liu Y F, Zhang M, Huang F, Luo C X, Zhou L G, Li J Q, Chen Z Y, Miao J K, Wang S, Lai J S, Xu J R, Hsiang T, Peng Y L, Sun W X. Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics. Nature Communications, 2014, 5: 3849.
[22]   张君成, 陈志谊, 张炳欣, 刘永锋, 陆凡. 稻曲病的接种技术研究. 植物病理学报, 2004, 34(5): 463-467.
Zhang J C, Chen Z Y, Zhang B X, Liu Y F, Lu F. Inoculation techniques used for inducing rice false smut efficiently. Acta Phytopathologica Sinica, 2004, 34(5): 463-467. (in Chinese)
[23]   Mullins E D, Chen X, Romaine P, Raina R, Geiser D M, Kang S. Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology, 2001, 91(2): 173-180.
[24]   顾志敏, 丁正中, 陈析丰, 郭龙彪, 曾大力, 钱前, 马伯军. 实时荧光定量PCR筛选稻曲病菌内参基因. 中国水稻科学, 2012, 26(5): 615-618.
Gu Z M, Ding Z Z, Chen X F, Guo L B, Zeng D L, Qian Q, Ma B J. Reference genes selection of Ustilaginoidea virens by real-time PCR. Chinese Journal of Rice Science, 2012, 26(5): 615-618. (in Chinese)
[25]   Junges A, Boldo J T, Souza B K, Guedes R L M, Sbaraini N, Kmetzsch L, Thompson C E, Staats C C, de Almeida L G P, de Vasconcelos A T R, Vainstein M H, Schrank A. Genomic analyses and transcriptional profiles of the glycoside hydrolase family 18 genes of the entomopathogenic fungus Metarhizium anisopliae. PLoS ONE, 2014, 9(9): e107864.
[26]   张君成, 陈志谊, 张炳欣, 刘永锋, 陆凡. 稻曲病菌的形态学观察研究. 植物病理学报, 2003, 33(6): 517-523.
Zhang J C, Chen Z Y, Zhang B X, Liu Y F, Lu F. Study on morphology of Ustilaginoidea virens. Acta Phytopathologica Sinica, 2003, 33(6): 517-523. (in Chinese)
[27]   何海永, 陈小均, 杨学辉, 吴石平, 王莉爽, Wongkaew S, 袁洁. 水稻稻曲病菌单孢分离技术及分生孢子培养条件优化. 贵州农业科学, 2011, 39(12): 119-121.
He H Y, Chen X J, Yang X H, Wu S P, Wang L S, Wongkaew S, Yuan J. Isolation technology of single spore and optimization of conidium culture condition in rice Ustilaginoidea virens. Guizhou Agricultural Sciences, 2011, 39(12): 119-121. (in Chinese)
[28]   李卫平, 王洪凯, 林福呈. 稻曲病菌厚垣孢子的萌发特性. 浙江农业学报, 2008, 20(4): 278-281.
Li W P, Wang H K, Lin F C. Germination characteristics of chlamydospore of Ustilaginoidea virens. Acta Agriculturae Zhejiangensis, 2008, 20(4): 278-281. (in Chinese)
[29]   李阳, 李其利, 郑露, 罗汉钢, 黄俊斌, 张求东. 稻曲病菌无性孢子萌发及在不同培养基上生长特性. 植物保护学报, 2008, 35(1): 23-27.
Li Y, Li Q L, Zheng L, Luo H G, Huang J B, Zhang Q D. Characteristics of asexual spore germination and growth of Ustilaginoidea virens in different media. Acta phytophylacica sinica, 2008, 35(1): 23-27. (in Chinese)
[30]   刘冰南, 杨谦. 禾谷镰刀菌 (Fusarium graminearum)几丁质酶基因特征分析. 东北农业大学学报, 2010, 41(12): 60-64.
Liu B N, Yang Q. Feature analysis of chitinase genes from genome of Fusarium graminearum. Journal of Northeast Agricultural University, 2010, 41(12): 60-64. (in Chinese)
[31]   Funkhouser J D, Aronson N N Jr. Chitinase family GH18: evolutionary insights from the genomic history of a diverse protein family. BMC Evolutionary Biology, 2007, 7: 96.
[32]   Hartl L, Zach S, Seidl-Seiboth V. Fungal chitinases: diversity, mechanistic properties and biotechnological potential. Applied Microbiology and Biotechnology, 2012, 93: 533-543.
[33]   Staats C C, Kmetzsch L, Lubeck I, Junges A, Vainstein M H, SCHRANK A. Metarhizium anisopliae chitinase CHIT30 is involved in heat-shock stress and contributes to virulence against Dysdercus peruvianus. Fungal Biology, 2013, 117: 137-144.
[34]   Shin K S, Kwon N J, Kim Y H, Park H S, Kwon G S, YU J H. Differential roles of the ChiB chitinase in autolysis and cell death of Aspergillus nidulans. Eukaryotic Cell, 2009, 8(5): 738-746.
[35]   Jaques A K, Fukamizo T, Hall D, Barton R C, Escott  G M, Parkinson t, Hitchcock C A, Adams D J. Disruption of the  gene encoding the ChiB1 chitinase of Aspergillus fumigatus and characterization of a recombinant gene product. Microbiology, 2003, 149: 2931-2939.
[36]   Carsolio C, Gutierrez A, Jimenez B, Van Montagu M, Herrera-Estrella A. Characterization of ech-42, a Trichoderma harzianum endochitinase gene expressed during mycoparasitism. Proceedings of the National Academy of Sciences of the United States of America,1994, 91: 10903-10907.
[37]   Gruber S, Seidl-Seiboth V. Self versus non-self: fungal cell wall degradation in Trichoderma. Microbiology, 2012, 158(1): 26-34.
[38]   Tzelepis G D, Melin P, Jensen D F, Stenlid J, Karlsson M. Functional analysis of glycoside hydrolase family 18 and 20 genes in Neurospora crassa. Fungal Genetics and Biology, 2012, 49: 717-730.
[39]   Tzelepis G, Dubey M, Jensen D F, Karlsson M. Identifying glycoside hydrolase family 18 genes in the mycoparasitic fungal species Clonostachys rosea. Microbiology, 2015, 161(7): 1407-1419.
[1] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[2] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[3] ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513.
[4] MA XueMeng,YU ChengMin,SAI XiaoLing,LIU Zhen,SANG HaiYang,CUI BaiMing. PSORA: A Strategy Based on High-Throughput Sequence for Analysis of T-DNA Insertion Sites [J]. Scientia Agricultura Sinica, 2022, 55(15): 2875-2882.
[5] LI ZhengGang,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,HE ZiFu. Molecular Characteristics and Pathogenicity Analysis of Youcai Mosaic Virus Guangdong Isolate Infecting Radish [J]. Scientia Agricultura Sinica, 2022, 55(14): 2752-2761.
[6] ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903.
[7] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[8] ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109.
[9] ZHAO JingYa,XIA HuiQing,PENG MengYa,FAN Zhuo,YIN Yue,XU SaiBo,ZHANG Nan,CHEN WenBo,CHEN LinLin. Identification and Functional Analysis of Transcription Factors FpAPSES in Fusarium pseudograminearum [J]. Scientia Agricultura Sinica, 2021, 54(16): 3428-3439.
[10] ZHENG XinShi,SHANG PengXiang,LI JingYuan,DING XinLun,WU ZuJian,ZHANG Jie. Effects of Proteins Encoded by “C4 ORFs” of Cotton Leaf Curl Multan Virus on Viral Pathogenicity [J]. Scientia Agricultura Sinica, 2021, 54(10): 2095-2104.
[11] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
[12] LI ZhengGang,NONG Yuan,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Molecular Characteristic and Pathogenicity Analyses of Cucumber green mottle mosaic virus (CGMMV) Infecting Bottle Gourd in Lianzhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(5): 955-964.
[13] LI YueYue,ZHOU WenPeng,LU SiQian,CHEN DeRong,DAI JianHong,GUO QiaoYou,LIU Yong,LI Fan,TAN GuanLin. Occurrence and Biological Characteristics of Tomato mottle mosaic virus on Solanaceae Crops in China [J]. Scientia Agricultura Sinica, 2020, 53(3): 539-550.
[14] WANG BaoBao,GUO Cheng,SUN SuLi,XIA YuSheng,ZHU ZhenDong,DUAN CanXing. The Genetic Diversity, Pathogenicity, and Toxigenic Chemotypes of Fusarium graminearum Species Complex Causing Maize Ear Rot [J]. Scientia Agricultura Sinica, 2020, 53(23): 4777-4790.
[15] SUN Qi,HE Fang,SHAO ShengNan,LIU Zheng,HUANG JiaFeng. Cloning and Functional Analysis of VdHP1 in Verticillium dahliae from Cotton [J]. Scientia Agricultura Sinica, 2020, 53(14): 2872-2884.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!