Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (2): 319-330.doi: 10.3864/j.issn.0578-1752.2016.02.012

• HORTICULTURE • Previous Articles     Next Articles

Effect of Phosphorus Levels on Growth, Morphological Characteristics and Leaf Element Contents of Juglans sigillata Dode Seedlings

ZANG Cheng-feng, FAN Wei-guo, PAN Xue-jun   

  1. Institute for Fruit Resources of Karst Mountain Region, Guizhou University/Guizhou Fruits Engineering Technology Research Centre, Guiyang 550025
  • Received:2015-08-24 Online:2016-01-16 Published:2016-01-16

Abstract: 【Objective】The objective of this study was to explore the effect of different phosphorus levels on the growth, morphological characteristics and element absorption of Juglans sigillata Dode seedlings, and provide a scientific foundation for the determination of soil phosphorus diagnostic criteria and phosphorus application for young trees.【Method】Using Juglans sigillata Dode seedlings as materials, the metamorphic rocks of acid yellow soil parent material development for cultivating soil,the soil culture experiments were employed to study the effect of different phosphorus levels on the growth, biomass, root-shoot ratio, root morphology characteristics and leaf element contents. 【Result】 Under the condition of 5, 25, 45, 65, 85, 105 and 125 mg·kg-1 effective phosphorus levels, the plant total biomass, root and shoot biomass decreased when the phosphorus nutrition level was lower than 45 mg·L-1 or higher than 45 mg·L-1. Under the condition of 45 mg·kg-1 phosphorus nutrition level, the root development of Juglans sigillata Dode root was the best and the plant of fresh and dry weight reached maximum, 183.07 g/plant and 109.84 g/plant. Under the condition of 125 mg·kg-1 phosphorus nutrition level , root system growth was the worst and plant total biomass was the minimum, only 66.93 g/plant and 40.16 g/plant. Phosphorus levels higher than 45 mg·kg-1, with the increase of the phosphorus levels on plant growth inhibition enhanced obviously, the inhibitory effect was more obvious than the low phosphorus treatment. The root-shoot ratio of the plant with 5 mg·kg-1 phosphorus processing one of the biggest was 1.34, with 45 mg·kg-1 deal with the minimum of only 1.07. In the 5, 25 and 45 mg·kg-1 of phosphorus processing , with the increase of phosphorus levels of the plant height, aboveground base diameter, total leaf area, root length, total surface area, root volume, root average diameter, total root number, root fractal dimension number, root length, lateral root length, lateral root number, whole plant root length density and root mass density increased obviously, the above index of phosphorus levels higher than 45 mg·kg-1 processing decreased significantly, with 125 mg·kg-1 phosphorus levels to a minimum. With the phosphorus nutrition level increasing, the elements content of P, Ca, Mg, Mn and Cu increased. With the increase of phosphorus levels leaf N, K, Fe, Zn, and B content and phosphorus supply was on a first increasing and then decreasing trend. When the phosphorus nutrition level was extremely lower or higher than 45 mg·kg-1, the contents of P, Mg, Mn and Cu would be deficient or excessively accumulative. When phosphate levels were higher or lower than 45 mg·kg-1, the absorption of N, K, Fe, Zn, and B elements was significantly lower.【Conclusion】In the metamorphic rock the parent material development of acid yellow soil, the condition of soil phosphorus levels that reached about 45 mg·kg-1 was most conducive to Juglans sigillata Dode seedlings growth and uptake of nutrient elements, obviously improved root morphological characteristics, phosphorus levels too low or too high had obvious inhibitory effects on the growth of the plant root system and above ground growth, high phosphorus levels had an adverse effect on plant growth and was more obvious than the low phosphorus condition.

Key words: Juglans sigillata Dode, seedling, phosphorus level, nutrient element, morphological characteristics of root

[1]    潘学军, 张文娥, 刘伟, 张政, 彭剑. 贵州核桃种仁脂肪酸和氨基酸含量分析. 西南农业学报, 2010, 23(2): 479-501.
Pan X J, Zhang W E, Liu W, Zhang Z, Peng J. Guizhou walnut seeds fatty acid and amino acid content analysis. Journal of Southwest Agricultural. 2010, 23(2): 479-501. (in Chinese)
[2]    郗荣庭, 张毅萍. 中国果树志: 核桃卷. 北京: 中国林业出版社, 1996: 44-45.
Xi R T, Zhang Y P. Chinese Fruit Trees - Walnut Volume. Beijing: China Forestry Publishing House, 1996: 44-45. (in Chinese)
[3]    陈杰忠. 果树栽培学各论(南方本). 北京: 中国农业出版社, 2011: 452-461.
Chen J Z. Fruit Cultivation to Learn The Theory of (South). Beijing: China Agriculture Press, 2011: 452-461. (in Chinese)
[4]    Ponder F, Jones J E, Haines J. Annual applications of N, P, and K for four years moderately increase nut production in Black walnut. Hortscience. 1998, 33(6): 1011-1013.
[5]    Ponder F J, Jones J E. Annual applications of N, P and K interrupt alternate-year nut crops in Black walnut. Journal of Plant Nutrition, 2001, 24(4/5): 661-670.
[6]    史永江. 矿质营养水平对核桃幼树生长发育的影响[D]. 保定: 河北农业大学, 2004.
Shi Y J. The effects of mineral nutrition level on the growth and development of young walnut [D]. Baoding: Agriculture University of Hebei, 2004. (in Chinese)
[7]    郭向华. 主要矿质元素含量与早实核桃产量质量的关系[D]. 保定: 河北农业大学, 2006.
Guo X H. The relationship of main mineral elements contents and Yield, quality of early bearing walnut [D]. Baoding: Agriculture University of Hebei, 2006. (in Chinese)
[8]    李永夫, 金松恒, 叶正钱, 黄坚钦, 姜培坤. 低磷胁迫对山核桃幼苗根系形态和生理特性的影响. 浙江林学院学报, 2010, 27(2): 239-245.
Li Y F, Jin S H, Ye Z Q, Huang J Q, Jiang P K. Root morphology and physiological characteristics in Carya cathayensis seedlings with low phosphorus stress. Journal of Zhejiang Forestry College, 2010, 27(2): 239-245. (in Chinese)
[9]    徐向华, 丁贵杰. 马尾松适应低磷胁迫的生理生化响应. 林业科学, 2006, 42(9): 24-28.
Xu X H, Ding G J. Physiological and biochemical responses of Pinus massoniana to low phosphorus stress. Scientia Silvae Sinicae, 2006, 42(9): 24-28. (in Chinese)
[10]   吴楚, 范志强, 王政权. 氮磷供应状态对水曲柳幼苗氮磷吸收与生长的影响. 林业科学, 2005, 41(5): 192-195.
Wu C, Fan Z Q, Wang Z Q. Influences of nitrogen and phosphorus supply on their absorption and growth of Fraxinus mantishurica seedling. Scientia Silvae Sinicae, 2005, 41(5): 192-195. (in Chinese)
[11]   习金根, 吴浩, 梁敏枝, 孙光明. 不同的磷水平对剑麻根系和植株生长的影响. 广东农业科学, 2009(11): 82-85.
Xi J G, Wu H, Liang M Z, Sun G M. Effects of phosphorus on plant and root of sisal. Guangdong Agricultural Sciences, 2009(11): 82-85. (in Chinese)
[12]   王政权, 张彦东, 王庆成. 氮、磷对胡桃楸幼苗根系生长的影响. 东北林业大学学报, 1999, 27(1): 1-4.
Wang Z Q, Zhang Y D, Wang Q C. Effects of nitrogen and phosphorus on root growth of Juglans mandshurica. Journal of Northeast Forestry University, 1999, 27(1): 1-4. (in Chinese)
[13]   王建霄, 罗微, 茶正早, 林钊沐, 华元刚. 水培条件下不同磷水平对橡胶树幼苗根系生长发育的影响. 海南大学学报, 2009, 27(3): 265-268.
Wang J X, Luo W, Cha Z Z, Lin Z M, Hua Y G. Effects of different phosphorus concentration on buddings growth of Hevea brasiliensis. Natural Science Journal of Hainan University, 2009, 27(3): 265-268. (in Chinese)
[14]   肖晓明, 刘军生, 周程, 王国霞, 陈国云, 岳海. 不同磷水平下澳洲坚果幼苗根系分泌物的差异. 热带作物学报, 2014, 35(2): 261-265.
Xiao X M, Liu J S, Zhou C, Wang G X, Chen G Y, Yue H. Difference of root exudates from macadamia seedlings under different phosphorus supply. Chinese Journal of Tropical Crops, 2014, 35(2): 261-265. (in Chinese)
[15]   樊卫国, 王立新. 不同供磷水平对纽荷尔脐橙幼树生长及叶片营养元素含量的影响. 中国农业科学, 2012, 45(4): 714-725.
Fan W G, Wang L X. Effect of different phosphorus levels on growth and leaf element contents of young Newhall Navel orange trees. Scientia Agricultura Sinica, 2012, 45(4): 714-725. (in Chinese)
[16]   樊卫国, 罗燕. 不同施磷水平下4种柑橘砧木的生长状况、根系形态和生理特性. 中国农业科学, 2015, 48(3): 534-545.
Fan W G, LuoY. Growth Status, root morphology and physiological characteristics of four citrus rootstocks under different phosphorus levels. Scientia Agricultura Sinica, 2015, 48(3): 534-545. (in Chinese)
[17]   罗燕, 樊卫国. 不同施磷水平下4种柑橘砧木的根际土壤有机酸、微生物及酶活性. 中国农业科学, 2014, 47(5): 955-967.
Luo Y, Fan W G. Organic acid content, microbial quantity and enzyme activity in rhizosphere soil of four citrus rootstocks under different phosphorus levels. Scientia Agricultura Sinica, 2014, 47(5): 955-967. (in Chinese)
[18]   Cierezko I, Gniazdowska A, Mikulska M. Assimilate translocation in bean plants (Phaseolus vulgaris L.) during phosphate deficiency. Plant Physiology, 1996, 149: 343-348.
[19]   Wagner B M, Beck E. Cytokinins in the perennial herb Urtica dioica L. as influenced by its nitrogen status. Planta. 1993, 190: 511-518.
[20]   Horgan J M, Wareing P F. Cytokinins and the growth responses of seedlings of Betula pendula Roth. and Acer pseudoplanus L. to nitrogen and phosphorus deficiency. Journal of Experimental Botany, 1980, 31: 525-532.
[21]   Salama A,Waering PF.Effects of mineral nutrition on endogenous cytokinins in plants of sunflower (Helianthus annuus L.). Journal of Experimental Botany, 1979, 30: 971-981.
[22]   刘辉, 王三根. 低磷胁迫对大麦内源激素的影响. 西南农业大学学报, 2003, 25(1): 48-51.
Liu H, Wang S G. Influences of P deficiency stress on endogenous hormones in Barley. Journal of Southwest Agricultural University, 2003, 25(1): 48-51. (in Chinese)
[23]   鲁如坤. 我国土壤氮、磷、钾的基本状况. 土壤学报. 1989, 26(32): 50-286.
Lu R K. General status of nutrients (N, P, K) in soils of china. Acta Pedologica Sinica. 1989, 26(32): 50-286. (in Chinese)
[24]   Lopez-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L, Nieto- Jacobo M F, Simpson J, Herrera-Estrella L. Phosphate availability alters architecture and causes changes in hormone sensitivity in theArabidopsis root system. Plant Physiology, 2002, 129: 244-256.
[25]   王进鑫, 王迪海, 刘广全. 刺槐和侧柏人工林有效根系密度分布规律研究. 西北植物学报, 2004, 24(12): 2208-2214.
Wang J X, Wang D H, Liu G Q. Distribution characteristics of effective root density in the planted Robinia pseudoacacia and Platycladus or ientals forest site. Acta BotBoreal Occident Sin, 2004, 24(12): 2208-2214. (in Chinese)
[26]   单长卷, 梁宗锁. 黄土高原刺槐人工林根系分布与土壤水分的关系. 中南林学院学报, 2006(1): 19-21.
Shan C J, Liang Z S .Relationship between root distribution of Locust plantation and soil water in the Loess Plateau. Jouranl of Central South Forestry University, 2006(1): 19-21. (in Chinese)
[27]   鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000: 263-268.
Bao S D. Soil Agrochemistry Analysis. Beijing: China agriculture press, 2000: 263-268. (in Chinese)
[28]   王义琴, 张慧娟, 白克智, 孙勇如. 分形几何在植物根系研究中的应用. 自然杂志, 1999, 21 (3): 143-146.
Wang Y Q, Zhang H J, Bai K Z, Sun Y R. Application of fractal geometry in the studies of plant root systems. Chinese Journal of Nature, 1999, 21(3): 143-146. (in Chinese)
[29]   陈吉虎, 余新晓, 有祥亮, 刘苹, 张长达, 谢港. 不同水分条件下银叶椴根系的分形特征. 中国水土保持科学, 2006, 4(2): 71-74.
Chen J H, Yu X X, You X L, Liu P, Zhang C D, Xie G. Fractal characteristics of Tilia tomentosa’s root system under different water conditions. Science of Soil and Water Conservation, 2006, 4 (2): 71-74. (in Chinese)
[30]   邵明安, 杨文治, 李玉山. 植物根系吸收土壤水分的数学模型. 土壤学报, 1987, 24(4): 295-304.
Shao M A, Yang W Z, Li Y S. Mathematical model of soil moisture absorption by plant roots. Acat Pedologica Sinica, 1987, 24(4): 295-304. (in Chinese)
[31]   米国华, 陈范骏, 张福锁. 作物养分高效的生理与遗传改良. 北京: 中国农业大学出版社, 2012: 73-98.
Mi G H, Chen F J, Zhang F S. Physiological Basis and Genetic Improvement of Nutrient Use Efficiency in Crops. Beijing: China Agricultural University Press, 2012: 73-98. (in Chinese)
[32]   Ericsson T. Growth and shoot-root ratio of seedlings in relation to nutrient availability. Plant and Soil, 1995, 168: 205-214.
[33]   Nielsen K L, Eshel A, Lynch J P. The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes. Journal of Experiental Botany, 2001, 52: 329-339.
[34]   严小龙, 廖红, 戈振扬, 罗锡文. 植物根构型特性与磷吸收效率. 植物学通报, 2000, 17(6): 511-519.
Yan X L, Liao H, Ge Z Y, Luo X W. Root architectural characteristics and phosphorus acqtfisifion eficiency in plants. Chinese Bulletin of Botany, 2000, 17(6): 511-519. (in Chinese)
[35]   张福锁, 申建波, 冯固. 根际生态学. 北京: 中国农业大学出版社, 2009.
Zhang F S, Shen J B, Feng G. Rhizosphere Ecology. Beijing: China Agricultural UniversityPress, 2009. (in Chinese)
[36]   Liao H, Yan X L. Adaptive changes and genotypic variation for root architecture of common bean in response to phosphorus deficiency. Acta Botanica Sinica, 2000, 42(2): 158-163.
[37]   陈磊, 王盛锋, 刘自飞, 刘荣乐, 汪洪. 低磷条件下植物根系形态反应及其调控机制. 中国土壤与肥料, 2011(6): 1-12.
Chen L, Wang S F, Liu Z F, Liu R L, Wang H. Morphological and physiological responses of plant root growth to low phosphorus stress. Soil and Fertilizer in China, 2011(6): 1-12. (in Chinese)
[38]   Nielsen K L, Eshel A, Lynch J P. The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes. Journal of Experiental Botany, 2001, 52: 329-339.
[39]   何鹏, 王大鹏, 韦家少, 吴敏, 吴炳孙, 高乐, 覃怀德. 低磷胁迫对巴西橡胶树幼苗若干生理代谢指标的影响. 热带作物学报, 2012, 33(11): 1976-1979.
He P, Wang D P, Wei J S, Wu M, Wu B S, Gao L, Qin H D. Low phoshorus stress on the physiological metabolism of Hevea seedling. Chinese Journal of Tropical Crops, 2012, 33(11): 1976-1979. (in Chinese)
[40]   李景娟, 高建伟. 氮磷调控根系形态的分子机制研究进展. 山东农业科学, 2013, 45(6): 123-129.
Li J J, Gao J W. Research advances in molecular regulation mechanism of nitrogen and phosphorus on root morphology. Shandong Agricultural Science, 2013, 45(6): 123-129. (in Chinese)
[41]   Hajabbasi M A, Schumacher T E. Phosphorus effects on root growth and development in two maize genotypes. Plant and Soil, 1994, 158: 39-46.
[42]   Plenet D, Molloer A, Pellerin S. Growth analysis of maize field crops under phosphorus deficiency. II. Radiation-use efficiency, biomass accumulation and yield components. Plant Soil, 2000, 224: 259-272.
[43]   Rodriguez D, Keltjens W G, Gougriaan J. Plant leaf area expansion and assimilate production in wheat growing under low phosphorus conditions. Plant Soil, 1998, 200: 227-240.
[44]   Qiu J, Israel D W. Carbohydrate accumulation and utilization in soybean plants in response to altered phosphorus nutrition. Physiologia Plantarum, 1994, 90: 722-728.
[45]   Sanchez-Calderon L, López-Bucio J, Chacón-López A, Gutiérrez- Ortega A, Hernández-Abreu E, Herrera-Estrella L. Characterization of low phosphorus insensitive mutants reveals a crosstalk between low phosphorus-induced determinate root development and the activation of genes involved in the adaptation of Arabidopsis to phosphorus deficiency. Plant Physiology, 2006, 140: 879-889.
[46]   Liu J, Samac D A, Bucciarelli B, Allan D L, Vance C P. Signaling of phosphorus deficiency-induced gene expression in white lupin requires sugar and phloem transport. Plant Journal, 2005, 41: 257-268.
[47]   Bates T R, Lynch J P. Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant, Cell and Environment, 1996, 19: 529-538.
[48]   Williamson L C, Ribrioux S, Fitter A H, Leyser H M O. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiology, 2001, 126: 875-882.
[49]   Linkohr B I, Williamson L C, Fitter A H, Leyser H M O. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant Joural for Cell & Molecular Biology, 2002, 29: 751-760.
[50]   王庆成, 程云环. 土壤养分空间异质性与植物根系的觅食反应. 应用生态学报, 2004, 15(6): 1063-1068.
Wang Q C, Cheng Y H. Response of fine roots to soil nutrient spatial heterogeneity. Chinese Journal of Applied Ecology, 2004, 15(6): 1063-1068. (in Chinese)
[51]   Rao I M, Fredeen A L, Terry N. Leaf phosphate status, photosynthesis, and carbon partitioning in sugar beet .Ⅲ. Diurnal changes in carbo partitioning and carbon export. Plant Physiology, 1990(76): 392-394.
[52]   Kuiper D, Schuit J, Kuiper P J C. Effects of intermal and external cytokinin concentrations on root growth and shoot to root ratio of Plantago major ssp. Pleosperma at different nutrient conditions. Plant Soil, 1988, 111: 231-236.
[53]   白冰. 氮、磷营养供应对落叶松幼苗内源激素的影响[D]. 哈尔滨: 东北林业大学, 2005.
Bai B. Effect of nitrogen and phosphorus supply on endogenous phytohormones of Larch seedlings [D]. Harbin: Northeast Forestry University, 2005. (in Chinese)
[54]   张玉星. 果树栽培学总论. 北京: 中国农业出版社, 2011.
Zhang Y X. Pomology. Beijing: China Agriculture Press, 2011. (in Chinese)
[55]   叶静, 潘存德, 王世伟, 肖冰, 常志帅, 努斯热提·托合提. 新疆乌什县新温号核桃树体营养盈亏分析. 新疆农业科学, 2014, 51(4): 614-619.
Ye J, Pan C D, Wang S W, Xiao B, Chang Z S, Tuoheti Nusireti. Analysis of nutrition elements of abundance and loss situation of Juglans regia Xinwen 185 in wushi county, Xinjiang. Xinjiang Agricultural Sciences, 2014, 51(4): 614-619. (in Chinese)
[56]   贾宏昉, 尹贵宁, 黄化刚, 刘维智, 刘国顺, 崔红. 低磷胁迫对烤烟云烟87糖代谢及营养元素吸收的影响机理初探. 中国农业科技导报, 2014, 16(3): 36-41.
Jia H F, Yin G N, Huang H G, Liu W Z, Liu G S, Cui H. Influence of low phosphorus stress on glucose metabolism and nutrition accumulation in tobacco Yunyan 87. Journal of Agricultural Science and Technology, 2014, 16(3): 36-41. (in Chinese)
[57]   杨波, 车玉红, 徐叶挺, 龚鹏, 卢春生. 外源N、P、K肥对扁桃叶片矿质营养元素含量的影响. 中国农学通报, 2014, 30(4): 127-131.
Yang B, Che Y H, Xu Y T, Gong P, Lu C S. The influence of mineral nutrient elements content of almond’s leaves on Exogenous Fertilizer of N, P and K. Chinese Agricultural Science Bulletin, 2014, 30(4): 127-131. (in Chinese)
[58]   刘玮. N、P、K水平对核桃幼树生长及生理指标的影响[D]. 保定: 河北农业大学, 2005.
Liu W. The effect of N、P、K level on the growth of young walnut and it’s physiology index [D]. Baoding: Agriculture University of Hebei, 2005. (in Chinese)
[59]   张彤彤, 徐福利, 汪有科, 林云. 施用氮磷钾对密植梨枣生长与叶片养分季节动态的影响. 植物营养与肥料学报, 2012, 18(1): 241-248.
Zhang T T, Xu F L, Wang Y K, Lin Y. Effects of fertilization on growth and seasonal dynamic of leaf nutrients of close planting pear-jujube trees. Plant Nutrition and Fertilizer Science, 2012, 18(1): 241-248. (in Chinese)
[60]   俞小鹏, 白玉杰, 俞元春, 徐莉, 周垂帆, 雷小林, 龚春, 徐林初, 陈容. 施肥对油茶生长与叶片营养元素含量的影响. 安徽农业大学学报, 2013, 40(5): 731-735.
Yu X P, Bai Y C, Xu L, Zhou C F, Lei X L, Gong C, Xu L C, Chen R. Effects of fertilization on growth and dynamic of leaf nutrients of oil camellia tree. Journal of Anhui Agricultural University, 2013, 40(5): 731-735. (in Chinese)
[61]   曾骧. 果树生理学. 北京: 北京农业大学出版社, 1990: 274-335.
Zeng X. Fruit Tree Physiology. Beijing: Beijing Agricultural University Press, 1990: 274-335. (in Chinese)
[62]   浙江农业大学. 植物营养与肥料. 北京: 中国农业出版社, 1999: 149-156.
Zhejiang Agricultural University. Plant Nutrient and Fertilizer. Beijing: China Agriculture Press, 1999: 149-156. (in Chinese)
[63]   张德山, 何文寿. 植物营养元素之间的相互关系及其机理. 宁夏农学院学报, 1993, 14(2): 75-81.
Zhang D S, He W T. Interrelationship between plant-nutrient elements and it’s mechanism. Journal of Ningxia Agricultural College, 1993, 14(2): 75-81. (in Chinese)
[1] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[2] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
[3] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[4] SHEN Qian,ZHANG SiPing,LIU RuiHua,LIU ShaoDong,CHEN Jing,GE ChangWei,MA HuiJuan,ZHAO XinHua,YANG GuoZheng,SONG MeiZhen,PANG ChaoYou. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage [J]. Scientia Agricultura Sinica, 2022, 55(22): 4342-4355.
[5] GONG XiaoYa,SHI JiBo,FANG Ling,FANG YaPeng,WU FengZhi. Effects of Flooding on Soil Chemical Properties and Microbial Community Composition on Farmland of Continuous Cropped Pepper [J]. Scientia Agricultura Sinica, 2022, 55(12): 2472-2484.
[6] JIANG WeiQin,HU Qun,YU Hang,MA HuiZhen,REN GaoLei,MA ZhongTao,ZHU Ying,WEI HaiYan,ZHANG HongCheng,LIU GuoDong,HU YaJie,GUO BaoWei. Effect of One-Time Basal Application of the Mixed Controlled-Release Nitrogen Fertilizer in Japonica Rice with Good Taste Quality [J]. Scientia Agricultura Sinica, 2021, 54(7): 1382-1396.
[7] LÜ TengFei,SHEN Jie,MA Peng,DAI Zou,YANG ZhiYuan,XU Hui,ZHENG ChuanGang,MA Jun. Effects of Combined Application of Slow Release Nitrogen Fertilizer and Urea on the Nitrogen Utilization Characteristics in Machine- Transplanted Hybrid Rice [J]. Scientia Agricultura Sinica, 2021, 54(7): 1410-1423.
[8] HUANG Xiu,YE Chang,YAN JinXiang,LI FuMing,CHU Guang,XU ChunMei,CHEN Song,ZHANG XiuFu,WANG DanYing. Analysis of Ammonium Uptake and Growth Differences of Rice Varieties with Different Nitrogen Recovery Efficiency at Seedling Stage [J]. Scientia Agricultura Sinica, 2021, 54(7): 1455-1468.
[9] TAO YouFeng,PU ShiLin,ZHOU Wei,DENG Fei,ZHONG XiaoYuan,QIN Qin,REN WanJun. Canopy Population Quality Characteristics of Mechanical Transplanting Hybrid Indica Rice with “Reducing Hills and Stabilizing Basic-Seedlings” in Low-Light Region of Southwest China [J]. Scientia Agricultura Sinica, 2021, 54(23): 4969-4983.
[10] ZHAO LiQun,QIU YanHong,ZHANG XiaoFei,LIU Hui,YANG JingJing,ZHANG Jian,ZHANG HaiJun,XU XiuLan,WEN ChangLong. The Detection of Citrullus lanatus Cryptic Virus Using TaqMan-qPCR Method [J]. Scientia Agricultura Sinica, 2021, 54(20): 4337-4347.
[11] KUAI Jie,LI Zhen,WANG Bo,LIU Fang,YE Jun,ZHOU GuangSheng. Effects of Density and Row Spacing on Seedling Traits of Rapeseed and Seed Yield [J]. Scientia Agricultura Sinica, 2021, 54(11): 2319-2332.
[12] ZHU ShiPing,WANG FuSheng,CHEN Jiao,YU Xin,YU Hong,LUO GuoTao,HU Zhou,FENG JinYing,ZHAO XiaoChun,HONG QiBin. Seed Traits and Seedling Performances of Different Types of Citrus Rootstock [J]. Scientia Agricultura Sinica, 2020, 53(3): 585-599.
[13] LIU Qi,MEI YanHao,LI Qi,MA HongXiu,WU YongJun,YANG ZhenChao. Effects of End of Day Far-Red Light on Growth, Histiocyte Morphology and Phytohormones Content of Pumpkin Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(20): 4248-4258.
[14] WEI Xi,WANG QianHua,GE XiaoYang,CHEN YanLi,DING YanPeng,ZHAO MingZhe,LI FuGuang. Effects of Different Red and Blue Ratios on the Somatic Embryogenesis and Plant Regeneration of Cotton [J]. Scientia Agricultura Sinica, 2019, 52(6): 968-980.
[15] ChunHua PANG,Yuan ZHANG,YaNi LI. Effects of Soaking Seeds with Lanthanum Nitrate on Seed Germination and Seedling Growth of Quinoa Under Salt Stress [J]. Scientia Agricultura Sinica, 2019, 52(24): 4484-4492.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!