Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (8): 1527-1537.doi: 10.3864/j.issn.0578-1752.2015.08.07

• PLANT PROTECTION • Previous Articles     Next Articles

A Universal RT-PCR Method for the Simultaneous Detection of the Viruses in Genera Comovirus and Fabavirus

YE Zhi-hong1,2, LIAO Fu-rong1, GUO Mu-jin1,3, FANG Zhi-peng1, CHEN Qing1, CHEN Hong-yun1, LIN Shi-ming1, LIN Yi2   

  1. 1Inspection & Quarantine Technology Center, Xiamen Entry-Exit Inspection and Quarantine Bureau, Xiamen 361026, Fujian
    2Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian
    3College of Plant Protection, Fujian Agricultural and Forestry University, Fuzhou 350002
  • Received:2014-11-03 Online:2015-04-16 Published:2015-04-16

Abstract: 【Objective】 The objective of the study is to develop a universal RT-PCR method for the simultaneous detection of the viruses from Comovirus and Fabavirus. 【Method】Analysis of the complete nucleotide sequence of comoviruses and fabaviruses was used to design a pair of degenerate primers for specific detection of members of the two genera. The sensitivity and specificity were evaluated, respectively. In order to direct the sequence, the non-complementary universal sequencing primer sequence RV-M and M13-47 were added, respectively, to the 5′ termini of the primers. Amplicons were directly sequenced to verify their identity. Finally, the method was used to detect viruses in Pseudostellaria heterophylla coming from Zherong, Fujian Province. 【Result】A generic PCR protocols was developed to detect the two virus genera in Comovirus and Fabavirus using degenerate primers designed to amplify part of the RNA-dependent RNA polymerase (RdRp) gene. An expected size product about 350 bp was amplified using the optimized PCR protocols from all 17 isolates of the 9 comovirus species and 2 fabavirus species tested including Andean potato mottle virus (APMoV), Broad bean stain virus (BBSV), Broad bean true mosaic virus (BBTMV), Bean pod mottle virus (BPMV), Cowpea mosaic virus (CPMV), Cowpea severe mosaic virus (CPSMV), Radish mosaic virus (RaMV), Red clover mottle virus (RCMV), Squash mosaic virus (SqMV), Broad bean wilt virus 1 (BBWV1) and Broad bean wilt virus 2 (BBWV2). When the RV-M and M13-47 primer sequences were added, respectively, to the 5′ termini of the primers, it was not only observed that the PCR’s amplicons could be directly sequenced by the universal sequencing primer, but also it could improve the detection sensitivity by 10-100 times. No cross-reaction was observed with either healthy plants or from isolates in the genus Nepovirus of the Comovirinae. Phylogenetic analysis using the generic PCR’s amplicons sequence showed that it could differentiate comoviruses and fabaviruses at the species level. The partial sequence of the RdRp gene of BBSV was firstly determined by this method, and was shown to have the closest relationship with RCMV. Using this method, BBWV2 was detected in P. heterophylla. 【Conclusion】 The described generic assay could be applied for the broad spectrum detection of members of the genus Comovirus and Fabavirus and, in combination with the PCR’s amplicons sequence, for the identification of species in the two genera. The assay may also be useful for the detection of new or uncharacterized species within the two genera.

Key words: Comovirus, Fabavirus, degenerate primers, RT-PCR, detection and identification

[1]     King A M, Adams M J, Carstens E B, Lefkowitz E J. Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses. San Diego: Elsevier Academic Press, 2012: 887-890.
[2]         Tidona C, Darai G. The Springer Index of Virus. 2nd ed. New York: Springer Science+Business Media, 2011: 345-359. 
[3]      魏梅生, 相宁, 张春泉, Ghabrial S A. 菜豆荚斑驳病毒的RT-PCR检测. 大豆科学, 2005, 24(4): 317-319.
Wei M S, Xiang N, Zhang C Q, Ghabrial S A. Detection of Bean pod mottle virus by RT-PCR. Soybean Science, 2005, 24(4): 317-319. (in Chinese)
[4]      于翠, 杨翠云, 宋绍祎, 洪健. 进口大豆上菜豆荚斑驳病毒的免疫捕获巢式RT-PCR检测. 植物检疫, 2006, 20(4): 201-204.
Yu C, Yang C Y, Song S W, Hong J. Detection of Bean pod mottle virus by immuno-capture nested RT-PCR from the imported soybean. Plant Quarantine, 2006, 20(4): 201-204. (in Chinese)
[5]      闻伟刚, 崔俊霞, 赵秀玲, 徐瑛, 陈先锋. 半巢式RT-PCR检测进口大豆中菜豆荚斑驳病毒的研究. 植物病理学报, 2006, 36(4): 296-300.
Wen W G, Cui J X, Zhao X L, Xu Y, Chen X F. Detection of Bean pod mottle virus by semi-nested RT-PCR in imported soybean. Acta Phytopathologica Sinica, 2006, 36(4): 296-300. (in Chinese)
[6]      陈红运, 陈青, 黄峰, 赵文军, 廖富荣, 陈洪俊, 朱水芳. 蚕豆染色病毒CPS基因的序列测定及RT-PCR 检测方法的建立. 植物病理学报, 2009, 39(6): 646-649.
Chen H Y, Chen Q, Huang F, Zhao W J, Liao F R, Chen H J, Zhu S F. Sequence determination of small coat protein gene of Broad bean stain virus and the development of RT-PCR detection method. Acta Phytopathologica Sinica, 2009, 39(6): 646-649. (in Chinese)
[7]      李彬, 吴翠萍, 粟寒, 安榆林. 一种豇豆重花叶病毒RT-PCR检测方法的研究. 植物检疫, 2010, 24(4): 28-32.
Li B, Wu C P, Su H, An Y L. Research on a method of RT-PCR for detection of Cowpea severe mosaic virus. Plant Quarantine, 2010, 24(4): 28-32. (in Chinese)
[8]      文朝慧. 利用RT-PCR方法检测甜瓜种子中南瓜花叶病毒. 植物保护, 2010, 36(3): 130-133.
Wen C H. Detection of Squash mosaic virus from muskmelon seeds by RT-PCR. Plant Protection, 2010, 36(3): 130-133. (in Chinese)
[9]      廖富荣, 叶志红, 陈青, 吴媛, 陈红运, 林石明. 应用RT-PCR和IC-RT-PCR方法检测南瓜花叶病毒. 植物检疫, 2013, 27(2): 60-64.
Liao F R, Ye Z H, Chen Q, Wu Y, Chen H Y, Lin S M. Development of a novel RT-PCR and IC-RT-PCR method for detecting Squash mosaic virus. Plant Quarantine, 2013, 27(2): 60-64. (in Chinese)
[10]    Maliogka V, Dovas C I, Efthimiou K, Katis N I. Detection and differentiation of Comoviridae species using a semi-nested RT-PCR and a phylogenetic analysis based on the polymerase protein. Journal of Phytopathology, 2004, 152(7): 404-409.
[11]    Ferrer R M, Luis-Arteaga M, Guerri J, Moreno P, Rubio L. Detection and identification of species of the genus Fabavirus by RT-PCR with a single pair of primers. Journal of Virological Methods, 2007, 144(1): 156-160.
[12]    Panno S, Ferriol I, Rangel E A, Olmos A, Han C G, Martinelli F, Rubio L, Davino S. Detection and identification of Fabavirus species by one-step RT-PCR and multiplex RT-PCR. Journal of Virological Methods, 2014, 197: 77-82.
[13]    James D, Varga A, Pallas V, Candresse T. Strategies for simultaneous detection of multiple plant viruses. Canadian Journal of Plant Pathology, 2006, 28(1): 16-29.
[14]    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 2013, 30(12): 2725-2729.
[15]    Tian T, Klaassen V A, Soong J. Wisler G, Duffus J E, Falk B W. Generation of cDNAs specific to lettuce infectious yellows closterovirus and other whitefly-transmitted viruses by RT-PCR and degenerate oligonucleotide primers corresponding to the closterovirus gene encoding the heat shock protein 70 homolog. Phytopathology, 1996, 86(11): 1167-1173.
[16]    Untiveros M, Perez-Egusquiza Z, Clover G. PCR assays for the detection of members of the genus Ilarvirus and family Bromoviridae. Journal of Virological Methods, 2010, 165(1): 97-104.
[17]    Lotos L, Efthimiou K, Maliogka V I, Katis N I. Generic detection of poleroviruses using an RT-PCR assay targeting the RdRp coding sequence. Journal of Virological Methods, 2014, 198: 1-11.
[18]    van der Vlugt R A A, Berendsen M. Development of a general Potexvirus detection method. European Journal of Plant Pathology, 2002, 108(4): 367-371.
[19]    Chen J, Chen J, Adams M J. A universal PCR primer to detect members of the Potyviridae and its use to examine the taxonomic status of several members of the family. Archives of Virology, 2001, 146: 757-766.
[20]     Afonina I, Ankoudinova I, Mills A, Lokhov S, Huynh P, Mahoney W. Primers with 5′ flaps improve real-time PCR. BioTechniques, 2007, 43(6): 770-774.
[21]    Arif M, Ochoa-Corona F M. Comparative assessment of 5′ A/T-rich overhang sequences with optimal and sub-optimal primers to increase PCR yields and sensitivity. Molecular Biotechnology, 2013, 55(1): 17-26.
[22]     Timmons C, Dobhal S, Fletcher J, Ma L M. Primers with 5′ flaps improve the efficiency and sensitivity of multiplex PCR assays for the detection of Salmonella and Escherichia coli O157:H7. Journal of Food Protection, 2013, 76(4): 668-673.
[23]     Wei T, Clover G. Use of primers with 5′ non-complementary sequences in RT-PCR for the detection of nepovirus subgroups A and B. Journal of Virological Methods, 2008, 153(1): 16-21.
[24]    Perez-Egusquiza Z, Tang J Z, Ward L I, Fletcher J D. The truth about Pea mild mosaic virus. Australasian Plant Pathology, 2014, 43(2): 193-196.
[25]     Rajakaruna P, Khandekar S, Meulia T, Leisner S M. Identification and host relations of Turnip ringspot virus, a novel Comovirus from Ohio. Plant Disease, 2007, 91(10): 1212-1220.
[26]     Koloniuk I, Petrzik K. Complete genome sequence of Turnip ringspot virus. Archives of Virology, 2009, 154(11): 1851-1853.
[27]     Petrzik K, Koloniuk I. Emerging viruses in the genus Comovirus. Virus Genes, 2010, 40(2): 290-292.
[28]     Koloniuk I, Petrzik K. Phylogenetic and serological analysis of Turnip ringspot virus and Radish mosaic virus isolates. Archives of Virology, 2012, 157(3): 503-507.
[29]       黄峰, 陈青, 谢毅璇, 陈细红, 陈红运, 林石明. 蚕豆染色病毒RNA2全序列测定. 植物检疫, 2013, 27(5): 41-44.
Huang F, Chen Q, Xie Y X, Chen X H, Chen H Y, Lin S M. Complete sequence of the genomic RNA2 of Broad bean stain virus. Plant Quarantine, 2013, 27(5): 41-44. (in Chinese)
[30]     Kobayashi Y O, Nakano M, Kashiwazaki S, Naito T, Mikoshiba Y, Shiota A, Kameya-Iwaki M, Honda Y. Sequence analysis of RNA-2 of different isolates of Broad bean wilt virus confirms the existence of two distinct species. Archives of Virology, 1999, 144(7): 1429-1438.
[31]    Duarte L M L, Alexandre M A V, Rivas E B, Harakava R, Galleti S R, Barradas M M. Potexvirus diversity in Cactaceae from São paulo state in Brazil. Journal of Plant Pathology, 2008, 90(3): 545-551.
[32]    宋荣浩, 濮祖芹. 太子参 (Pseudostellarla heterophylla)病毒病病原鉴定. 上海农业学报, 1991, 7(2): 80-85.
Song R H, Pu Z Q. Studies of taizhisheng (Pseudostellarla heterophylla) virus diseases. Acta Agriculturae Shanghai, 1991, 7(2): 80-85. (in Chinese)
[1] WANG YiDan,YANG FaLong,CHEN DiShi,XIANG Hua,REN YuPeng. One-Step Multiple TaqMan Real-time RT-PCR for Simultaneous Detection of Swine Diarrhea Viruses [J]. Scientia Agricultura Sinica, 2023, 56(1): 179-192.
[2] WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda [J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578.
[3] XIE LiXue,ZHANG XiaoYan,ZHANG LiJie,ZHENG Shan,LI Tao. Complete Genome Sequence Characteristics and TC-RT-PCR Detection of East Asian Passiflora Virus Infecting Passiflora edulis [J]. Scientia Agricultura Sinica, 2022, 55(22): 4408-4418.
[4] KANG JunMei,ZHANG QiaoYan,JIANG Xu,WANG Zhen,ZHANG TieJun,LONG RuiCai,CUI HuiTing,YANG QingChuan. Cloning MsSQE1 from Alfalfa and Functional Analysis in Saponin Synthesis [J]. Scientia Agricultura Sinica, 2020, 53(2): 247-260.
[5] XU JianJian,WANG YanJiao,DUAN Yu,MA ZhiMin,BIN Yu,ZHOU ChangYong,SONG Zhen. Construction of Genome-Length cDNA of Citrus Vein Enation Virus and Identification of Its Infectivity [J]. Scientia Agricultura Sinica, 2020, 53(18): 3707-3715.
[6] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[7] LIU YiRan,ZHANG Hong,JIN JiSu,ZHOU ZhongShi,GUO JianYing. Identification and Expression Analysis of the Halloween Gene Family in Agasicles hygrophila [J]. Scientia Agricultura Sinica, 2020, 53(10): 2009-2019.
[8] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[9] TANG Bin,SHEN QiDa,ZENG BoPing,XIAO ZhongJiu,QIU LingYu,PAN BiYing,LI Kun,ZHANG DaoWei. Characteristics, Developmental Expression and RNAi Effect Analysis of a Novel Trehalose-6-Phosphate Synthase Gene in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2019, 52(3): 466-477.
[10] JunBo PENG,XingHong LI,Wei ZHANG,Ying ZHOU,JinBao HUANG,JiYe YAN. Pathogenicity and Gene Expression Pattern of the Exocrine Protein LtGH61A of Grape Canker Fungus [J]. Scientia Agricultura Sinica, 2019, 52(24): 4518-4526.
[11] WAN DongLi,HOU XiangYang,DING Yong,REN WeiBo,WANG Kai,LI XiLiang,WAN YongQing. Response and the Expression of Pi-Responsive Genes in Leymus chinensis Under Inorganic Phosphate Treatment [J]. Scientia Agricultura Sinica, 2019, 52(23): 4215-4227.
[12] YUAN JunHu,DING YiJuan,YANG WenJing,YAN BaoQin,CHAI YaRu,MEI JiaQin,QIAN Wei. Identification of Genes Encoding Secretory Proteins Related to the Pathogenicity of Sclerotinia sclerotiorum Using TRV-HIGS [J]. Scientia Agricultura Sinica, 2019, 52(23): 4274-4284.
[13] LIU FanQi,WAN GuiJun,ZENG LuYing,LI ChunXu,PAN WeiDong,CHEN FaJun. Selection of Stable Internal Reference Genes for Transcript Expression Analyses in Laodelphax striatellus Under Near-Zero Magnetic Field [J]. Scientia Agricultura Sinica, 2019, 52(19): 3346-3356.
[14] ZHANG DaoWei,YU YaYa,PAN BiYing,KANG Kui,ZENG BoPing,CHEN Jing,TANG Bin. Regulation Function of Trehalose-6-phosphate Synthase Genes on Chitin Synthesis in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2019, 52(19): 3357-3366.
[15] TANG YaFei,PEI Fan,LI ZhengGang,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Identification of Viruses Infecting Peppers in Guangdong by Small RNA Deep Sequencing [J]. Scientia Agricultura Sinica, 2019, 52(13): 2256-2267.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!