Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (21): 4155-4171.doi: 10.3864/j.issn.0578-1752.2014.21.003

• EFFICIENT, SAFE AND LARGE-SCALE TRANSGENIC TECHNOLOGY: OPPORTUNITIES AND CHALLENGES • Previous Articles     Next Articles

Establishment and Application of Large-Scale Transformation Systems in Wheat

YE Xing-guo1, XU Hui-jun1, DU Li-pu1, HE Guang-yuan2, WANG Ke1, LIN Zhi-shan1   

  1. 1Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Center for Transgenic Research in Plants, Beijing 100081
     2School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074
  • Received:2014-04-01 Revised:2014-06-16 Online:2014-11-01 Published:2014-11-01

Abstract: Wheat is a plant that is relatively difficult to be genetically modified through traditional transgenic approaches among several major field crops. Factors restricting the transformation of wheat include small scale and low efficiency of transformation, poor repeatability, and fewer availability of transgenic materials with satisfied appearances, and thus leading to the lagged-behind of wheat in transgenic breeding compared to soybean, maize, cotton, and rice. Presently, transgenic techniques mainly used in wheat transformation are biolistic particle and Agrobacterium-mediated transformation based on in vitro tissue culture, although methods of pollen tube pathway, ion beam implantation, laser microbeam puncture, polyethylene glycol (PEG) medium, pollen-mediated, and Agrobacterium dipping floral have also been employed in some laboratories. In the aspect of recipient tissues, wheat immature embryo and its derived callus were mostly used as initiating materials for the transformation of target genes, but transgenic wheat plants were also reported to be obtained by using mature embryo, inflorescence, and anther derived callus, which still need to be investigated and confirmed. As for the transformation efficiency reported in wheat, 0.1%-16.7% is for particle bombardment and 0.7%-44.8% for Agrobacterium. A big variation still existed. In the matter of alien transferring genes for wheat, the target genes are mainly involved in wheat enhancement of flour quality, disease resistance, drought tolerance, aphids resistance, and herbicide tolerance except some selection or reporter genes such as npt, bar, hpt, GUS, GOX, pmi, and ALS. The transformation efficiency of wheat immature embryos mediated by Agrobacterium and particle gun is dramatically affected not only by genotypes, but also by the physiological status of mother plants which is determined by temperature, light, nutrition, and water supply during the growth period. Especially, the suitable day/night temperature during the period between anthesis and sampling of the donor plants is mostly beneficial to the embryonic callus induction and putative transgenic regeneration after transformation. Generally, the development of wheat transgenic technology in China has been largely progressed, for examples, the establishment of high regeneration system of wheat mature embryos and its successful application, optimization of regeneration and transformation system of wheat immature embryos, introduction of a group of interested genes related to wheat improvement in disease control, drought resistance and quality enhancement, preliminary setting up of wheat transformation system with larger scale, etc. However, there is still a big gap between the current status in China and the top-level international biotechnology companies regarding to the efficiency or scale in wheat transformation. It is thought that low transformation rate, strong genotype-dependence, and imperfect artificial climate conditions, as well as unstable manipulating team are the bottleneck to limit the application of wheat transformation technology by large scale in China. Future studies in this field should include the use of commercial wheat varieties, improvement of transformation efficiency, development of marker-free wheat plants, introduction of multiple target genes, integration of foreign genes at specific sites, avoidance of backbone insertion and transgene silencing, etc. Wheat transformation efficiency and scale will be improved and expanded by further modifications of plant regeneration system, exploration of regeneration and transformation-associated genes. Other aspects involve the screening of ideal genotypes, medium and technique improvement of co-culture, optimization and combination of various factors in transformation process. Development and application of biolistic particle and Agrobacterium mediated wheat transformation was reviewed in this article. Particularly, the progress of wheat transgenic technology for large scale performance in the latest five years was studied, which may provide useful information for the transformation of candidate genes for functional analysis and the breeding of transgenic wheat varieties.

Key words: common wheat, transgenic system, transformation efficiency, large-scale

[1]    Shewry P R. Wheat. Journal of Experimental Botany, 2009, 60: 1537-1553.
[2]    Charles H J, Beddington J R, Crute I R, Haddad L, Lawrence D, Muir J F, Pretty F, Robinson S, Thomas S M, Toulmin C. Food security: The challenge of feeding 9 billion people. Science, 2010, 327: 812-818.
[3]    Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science, 2010, 327: 818-822.
[4]    何中虎, 夏先春, 陈新民, 庄巧生. 中国小麦育种进展与展望. 作物学报, 2011, 37: 202-215.
He Z H, Xia X C, Chen X M, Zhuang Q S. Progress of wheat breeding in China and the future perspective. Acta Agronomica Sinica, 2011, 37: 202-215. (in Chinese)
[5]    James C. 2013年全球生物技术/转基因作物商业化发展态势. 中国生物工程杂志, 2014, 34(1): 1-8.
James C. The commercial development situation of global biological technology/gm crops in 2013. China Biotechnology, 2014, 34(1): 1-8. (in Chinese)
[6]    Harwood W A. Advances and remaining challenges in the transformation of barley and wheat. Journal of Experimental Botany, 2012, 63: 1791-1798.
[7]    叶兴国, 陈明, 杜丽璞, 徐惠君. 小麦转基因方法及其评述. 遗传, 2011, 33: 422-430.
Ye X G, Chen M, Du L P, Xu H J. Description and evaluation of transformation approaches used in wheat. Hereditas, 2011, 33: 422-430. (in Chinese)
[8]    Vasil V, Castillo A, Fromm M E, Vasil I K. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Nature Biotechnology, 1992, 10: 667-674.
[9]    Weeks J T, Anderson O D, Blechl A E. Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum L.). Plant Physiology, 1993, 102: 1077-1084.
[10]   Becker D, Brettschneider R, Lörz H. Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. The Plant Journal, 1994, 5: 299-307.
[11]   Nehra N S, Chibbar R N, Leung N, Caswell K, Mallard C, Steinhauser L, Baga M, Kartha K K. Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with 2 distinct gene constructs. The Plant Journal, 1994, 5: 285-297.
[12]   Zhou H, Arrowsmith J W, Fromm M E. Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Reports, 1995, 15: 159-163.
[13]   Altpeter F, Vasil V, Srivastava V, Stöger E, Vasil I K. Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Reports, 1996, 16: 12-17.
[14]   Takumi S, Shimada T. Production of transgenic wheat through particle bombardment of scutellar tissues: Frequency is influenced by culture duration. Journal of Plant Physiology, 1996, 149: 418-423.
[15]   Gaunt S, Riley A, Barcelo P, Lazzeri P A. Analysis of particle bombardment parameters to optimize DNA delivery into wheat tissues. Plant Cell Reports, 1999, 19: 118-127.
[16]   Indra K V, Vimla V. Transformation of wheat via particle bombardment. Methods in Molecular Biology, 2006, 318: 273-283.
[17]   Pellegrineschi A, Noguera L M, Skovmand B, Brito R M, Velazquez L, Salgado M M, Hernandez R, Warburton M, Hoisington D. Identification of highly transformable wheat genotypes for mass production of fertile transgenic plants. Genome, 2002, 45: 421-430.
[18]   Witrzens B, Brettell R I S, Murray F R, McElroy D, Li Z, Dennis E S. Comparison of three selectable marker genes for transformation of wheat by microprojectile bombardment. Austrilia Journal of Plant Physiology, 1998, 25: 39-44.
[19]   Ortiz J P A, Reggiardo M I, Ravizzin R A, Altabe S G, Cervigni G D  L, Spitteler M A, Morata M M, Elias F E, Vallejos R H. Hygromycin resistance as an efficient selectable marker for wheat stable transformation. Plant Cell Reports, 1996, 15: 877-881.
[20]   Gadaleta A, Giancaspro A, Blechl A, Blanco A. Phosphomannose isomerase, pmi, as a selectable marker gene for durum wheat transformation. Journal of Cereal Science, 2006, 43: 31-37.
[21]   Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, Artim-Moore L. Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Reports, 2001, 20: 429-436.
[22]   Ogawa T, Kawahigashi H, Toki S, Handa H. Efficient transformation of wheat by using a mutated rice acetolactate synthase gene as a selectable marker. Plant Cell Reports, 2008, 27: 1325-1331.
[23]   Greer M S, Kovalchuk I, Eudes F. Ammonium nitrate improves direct somatic embryogenesis and biolistic transformation of Triticum aestivum. New Biotechnology, 2009, 26: 44-52.
[24]   Blechl A E, Anderson O D. Expression of a novel high-molecular- weight glutenin subunit gene in transgenic wheat. Nature Biotechnology, 1996, 14: 875-879.
[25]   Altpeter F, Vasil V, Srivastava V, Vasil I K. Integration and expression of the high molecular weight glutenin subunit 1Ax1 gene into wheat. Nature Biotechnology, 1996, 14: 1155-1159.
[26]   Barro F, Rooke L, Békés F, Gras P, Tatham A S, Fido R, Lazzeri P A, Shewry P R, Barceló P. Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nature Biotechnology, 1997, 15: 1295-1299.
[27]   Rooke L, Bekes F, Fido R, Barro F, Gras P, Tatham AS, Barcelo P, Lazzeri P, Shewry P R. Overexpression of a gluten protein in transgenic wheat results in greatly increased dough strength. Journal of Cereal Science, 1999, 30: 115-120.
[28]   Gadaleta A, Blechl A E, Nguyen S, Cardone M F, Ventura M, Quick J S, Blanco A. Stably expressed D-genome-derived HMW glutenin subunit genes transformed into different durum wheat genotypes change dough mixing properties. Molecular Breeding, 2008, 22: 267-279.
[29]   Tamás C, Kisgyörgy B N, Rakszegi M, Wilkinson M D, Yang M S, Láng L, Tamás L, Bedo Z. Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality. Plant Cell Reports, 2009, 28: 1085-1094.
[30]   Harholt J, Bach I C, Lind-Bouquin S, Nunan K J, Madrid S M, Brinch-Pedersen H, Holm P B, Scheller H V. Generation of transgenic wheat (Triticum aestivum L.) accumulating heterologous endo-xylanase or ferulic acid esterase in the endosperm. Plant Biotechnology Journal, 2010, 8: 351-362.
[31]   Sestili F, Janni M, Doherty A, Botticella E, D'Ovidio R, Masci S, Jones H D, Lafiandra D. Increasing the amylose content of durum wheat through silencing of the SBElla genes. BMC Plant Biology, 2010, 10: 144-164.
[32]   Okubara P A, Blechl A E, McCormick S P, Alexander N J, Dill-Macky R, Hohn T M. Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene. Theoretical and Applied Genetics, 2002, 106: 74-83.
[33]   Anand A, Zhou T, Trick H N, Gill B S, Bockus W W, Muthukrishnan S. Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. Journal of Experimental Botany, 2003, 54: 1101-1111.
[34]   Janni M, Sella L, Favaron F, Blechl A E, De Lorenzo G, D'Ovidio R. The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana. Molecular Plant Microbe Interactions, 2008, 21: 171-177.
[35]   Fahim M, Ayala-Navarrete L, Millar A A, Larkin P J. Hairpin RNA derived from viral NIa gene confers immunity to wheat streak mosaic virus infection in transgenic wheat plants. Plant Biotechnology Journal, 2010, 8: 821-834.
[36]   Pellegrineschi A, Reynolds M, Pacheco M, Brito R M, Almeraya R, Yamaguch S K, Hoisington D. Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome, 2004, 47: 493-500.
[37]   陈梁鸿, 王新望, 张晓东, 张文俊, 胡道芬, 刘广田. 小麦编码高分子量谷蛋白亚基基因的转化. 作物学报, 1999, 25: 437-440.
Chen L H, Wang X W, Zhang X D, Zhang W J, Hu D F, Liu G T. Transformation of genes encoding HMW-GS into common wheat Triticumaes tivum L.. Acta Agronomica Sinica, 1999, 25: 437-440. (in Chinese)
[38]   张晓东, 梁荣奇, 陈绪清, 杨凤萍, 张立全. 优质HMW谷蛋白亚. 基转基因小麦的获得及其遗传稳定性和品质性状分析. 科学通报, 2003, 48: 474-479.
Zhang X D, Liang R Q, Chen X Q, Yang F P, Zhang L Q. Transgene inheritance and quality improvement by expressing novel HMW glutenin subunit (HMW-GS) genes in winter wheat. Chinese Science Bulletin, 2003, 48: 474-479. (in Chinese)
[39]   汪越胜, 柯涛, 李三和, 覃建兵, 刘勇, 何光源. 转基因小麦后代HMW-GS 组成的变异研究. 作物学报, 2005, 31: 529-531.
Wang Y S, Ke T, Li S H, Qin J B, Liu Y, He G Y. Variation of HMW-GS component in the progeny of transgenic wheat (Triticum aestivum L.). Acta Agronomica Sinica, 2005, 31: 529-531. (in Chinese)
[40] 徐惠君, 庞俊兰, 叶兴国, 杜丽璞, 李连城, 辛志勇, 马有志, 陈剑平, 陈炯, 程顺和, 吴宏亚. 基因枪法向小麦导入Nib8黄花叶病毒复制酶基因的研究. 作物学报, 2001, 27: 688-693
Xu H J, Pang J L, Ye X G, Du L P, Li L C, Xin Z Y, Ma Y Z, Chen J P, Chen J, Cheng S H, Wu H Y. Study on the gene transferring of Nib8 into wheat for its resistance to the yellow mosaic virus by bombardment. Acta Agronomica Sinica, 2001, 27(6): 688-693. (in Chinese)
[41]   庞俊兰, 徐惠君, 杜丽璞, 叶兴国, 李连城, 辛志勇, 马有志, 刁爱波, Adams M J. 土传花叶病毒外壳蛋白基因导入小麦的研究. 中国农业科学, 2002, 35: 738-742.
Pang J L, Xu H J, Du L P, Ye X G, Li L C, Xin Z Y, Ma Y Z, Diao A B, Adams M J. Transformation of the coat protein of wheat soil-brone mosaic virus to wheat with the gene encoding. Scientia Agricultura Sinica, 2002, 35: 738-742. (in Chinese)
[42]   徐琼芳, 田芳, 陈孝, 侯文胜, 李连城, 杜丽璞, 徐惠君, 辛志勇. 转基因抗虫小麦中sgna 基因的遗传分析及抗虫性鉴定. 作物学报, 2004, 30: 475-480.
Xu Q F, Tian F, Chen X, Hou W S, Li L C, Du L P, Xu H J, Xin Z Y. Inheritance of sgna gene and insect-resistant activity in transgenic wheat. Acta Agronomica Sinica, 2004, 30: 475-480. (in Chinese)
[43]   梁辉, 朱银峰, 朱祯, 孙东发, 贾旭. 雪花莲凝集素基因转化小麦及转基因小麦抗蚜性的研究. 遗传学报, 2004, 31: 189-194.
Liang H, Zhu Y F, Zhu Z, Sun D F, Jia X. Obtainment of transgenic wheat with insecticidal lectin from snowdrop (Galanthus nivalis agglutinin: GNA) gene and analysis of resistance to aphids. Acta Genetica Sinica, 2004, 31: 189-194. (in Chinese)
[44]   康乐, 叶兴国, 徐惠君, 杜丽璞. 葡萄糖氧化酶基因转化小麦的研究. 作物学报, 2005, 31: 686-691.
Kang L, Ye X G, Xu H J, Du L P. Transferring glucose oxidase gene into wheat by biolistic particle. Acta Agronomica Sinica, 2005, 31: 686-691. (in Chinese)
[45]   邢莉萍, 王华忠, 蒋正宁, 倪金龙, 曹爱忠, 于玲, 陈佩度. 小麦类甜蛋白基因的转化及转基因植株的抗病性分析. 作物学报, 2008, 34: 349-354.
Xing L P, Wang H Z, Jiang Z N, Ni J L, Cao A Z, Yu L, Chen P D. Transformation of wheat thaumatin-like protein gene and diseases resistance analysis of the transgenic plants. Acta Agronomica Sinica, 2008, 34: 349-354. (in Chinese)
[46]   Gao S Q, Xu H J, Cheng X G, Chen M, Xu Z S, Li L C, Ye X G, Du L P, Hao X Y, Ma Y Z. Improvement of wheat drought and salt tolerance by expression of a stress-inducible transcription factor GmDREB of soybean (Glycine max). Chinese Science Bulletin, 2005, 50: 2714-2723.
[47]   刘伟华, 李文雄, 胡尚连, 徐香玲, 李集临. 小麦组织培养和基因枪轰击影响因素探讨. 西北植物学报,2002, 22: 602-610.
Liu W H, Li W X, Hu S L, Xu X L, Li J L. Study on influencing factors of tissue culture and biolistic bombardment in wheat. Acta Botanica Boreali-Occidentalia Sinica, 2002, 22: 602-610. (in Chinese)
[48]   闵东红, 何莎, 张彦, 夏兰琴. 基因枪转化小麦主要轰击参数的优化. 作物学报, 2013, 39: 60-67.
Min D H, He S, Zhang Y, Xia L Q. Optimization of Key Bombardment parameters in biolistic mediated transformation in wheat.Acta Agronomica Sinica, 2013, 39: 60-67. (in Chinese)
[49]   Fu X D, Duc L T, Fontana S, Bong B B, Tinjuangjun P, Sudhakar D, Twyman R M, Christou P, Kohli A. Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Research, 2000, 9: 11-19.
[50]   Loc N T, Tinjuangjun P, Gatehouse A M R, Christou P, Gatehouse J A. Linear transgene constructs lacking vector backbone sequences generate transgenic rice plants which accumulate higher levels of proteins conferring insect resistance. Molecular Breeding, 2002, 9: 231-244.
[51]   Yao Q, Cong L, Chang J L, Li K X, Yang G X, He G Y. Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment. Journal of Experimental Botany, 2006, 57: 3737-3746.
[52]   Yao Q, Cong L, He G, Chang J, Li K, Yang G. Optimization of wheat co-transformation procedure with gene cassettes resulted in an improvement in transformation frequency. Molecular Biology Reporter, 2007, 34: 61-67.
[53]   Shi N N, He G Y, Li K X, Wang H Z, Chen G P, Xu Y. Transferring a gene expression cassette lacking the vector backbone sequences of the lAxl high molecular weight glutenin subunit into two Chinese hexaploid wheat genotypes. Agricultural Science in China, 2007, 6: 381-390.
[54]   Zambryski P C. Chronicles from the Agrobacterium-plant cell DNA transfer story. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43: 465-490.
[55]   Gelvin S B. Agrobacterium in the genomics age. Plant Physiology, 2009, 150: 1665-1676.
[56]   Gelvin S B. Plant proteins involved in Agrobacterium-mediated genetic transformation. Annual Review of Phytopathology, 2010, 48: 45-68.
[57]   Mooney P A, Goodwin P B. Adherence of Agrobacterium tumefaciens to the cells of immature wheat embryos. Plant Cell, Tissue and Organ Culture, 1991, 25: 199-208.
[58] Cheng M, Fry J E, Pang S Z, Zhou H P, Hironaka C M, Duncan D R, Conner T W, Wan Y C. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiology, 1997, 115: 971-980.
[59]   Zhou H, Berg J D, Blank S E, Chay C A, Chen G, Eskelsen S R, Fry J E, Hoi S, Hu T, Isakson P J, Lawton M B, Metz S G, Rempel C B, Ryerson D K, Sansone A P, Shook A L, Starke R J, Tichota J M, Valenti S A. Field efficacy assessment of transgenic roundup ready wheat. Crop Science, 2003, 43: 1072-1075.
[60]   Khanna H K, Daggard G E. Agrobacterium tumefaciens-mediated transformation of wheat using a super binary vector and a polyamine- supplemented regeneration medium. Plant Cell Reports, 2003, 21: 429-436.
[61]   Hu T, Metz S, Chay C, Zhou H P, Biest N, Chen G, Cheng M, Feng X, Radionenko M, Lu F, Fry J. Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Reports, 2003, 21: 1010-1019.
[62] Vishnudasan D, Tripathi M N, Rao U, Khurana P. Assessment of nematode resistance in wheat transgenic plants expressing potato proteinase inhibitor (PIN2) gene. Transgenic Res 14: 665-675.earch, 2005,
[63]   Wu H, Sparks C, Amoah B, Jones H D. Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Reports, 2003, 21: 659-668.
[64]   Cheng M, Hu T C, Layton J, Liu C N, Fry J E. Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cell Developmental Biology, 2003, 39: 595-604.
[65]   Wu X, Doherty A, Jones H D. Efficient and rapid Agrobacterium- mediated genetic transformation of durum wheat (Triticum turgidum L. var. durum) using additional virulence genes. Transgenic Research, 2008, 17: 425-436.
[66]   Wu H, Doherty A, Jones H D. Agrobacterium-mediated transformation of bread and durum wheat using freshly isolated immature embryos. Methods in Molecular Biology, 2009, 478: 93-103.
[67]   Risacher T, Craze M, Bowden S, Paul W, Barsby T. Highly efficient Agrobacterium-mediated transformation of wheat via in planta inoculation. Methods in Molecular Biology, 2009, 478: 115-124.
[68]   Agnieszka B, Waclaw O, Anna N. The Agrobacterium-mediated transformation of common wheat (Triticum aestivum L.) and Triticale (x Triticosecale Wittmack): Role of the binary vector system and selection cassettes. Journal of Applied Genetics, 2012, 53: 1-8.
[69]   Xia G M, Li Z Y, He C X, Chen H M, Brettell R. Transgenic plant regeneration from wheat (Triticum aestivum L.) mediated by Agrobacterium tumefaciens. Acta Phytophysiologica Sinica, 1999, 25: 22-28.
[70]   Ye X G, Shirley S, Xu H J, Du L P, Clemente T. Regular production  of transgenic wheat mediated by Agrobacterium tumefaciens. Agricultural Science in China, 2002, 3: 239-244.
[71]   黄益洪, 周淼平, 叶兴国, 唐克轩, 程红梅, 陆维忠. 农杆菌介导法获得小麦转基因植株的研究. 作物学报, 2002, 28: 510-515.
Huang Y H, Zhou M P, Ye X G, Tang K X, Cheng H M, Lu W Z. Study on the development of transgenic wheat mediated by Agrobacterium tumefaciens. Acta Agronomica Sinica, 2002, 28: 510-515. (in Chinese)
[72]   梁雪莲, 孙毅, 郭平毅, 刘惠民, 刘少翔, 王景雪, 解志红, 孙丹琼. 农杆菌介导转化小麦幼胚获得抗除草剂再生植株. 植物生理与分子生物学学报, 2003, 29 : 501-506.
Liang X L, Sun Y, Guo P Y, Liu H M, Liu S X, Wang J X, Xie Z H, Sun D Q. Herbicide-resistant wheat plants obtained by Agrobacterium- mediated transformation of immature embryos. Journal of Plant Physiology and Molecular Biology, 2003, 29: 501-506. (in Chinese)
[73]   叶兴国, 程红梅, 徐惠君, 杜丽璞, 陆维忠, 黄益洪. 转几丁质酶和β-1,3-葡聚糖酶双价基因小麦的获得和鉴定. 作物学报, 2005, 31: 583-586.
Ye X G, Cheng H M, Xu H J, Du L P, Lu W Z, Huang Y H. Development of transgenic wheat plants with chitinase and β-1, 3-glucosanase genes and their resistance to fusarium head blight. Acta Agronomica Sinica, 2005, 31: 583-586. (in Chinese)
[74]   叶兴国, Shirley S, 徐惠君, 杜丽璞, 黄益洪, 陆维忠, Tom Clemente. BCLRIP细胞凋亡基因向小麦中的导入和赤霉病抗性鉴定. 作物学报, 2005, 31: 1389-1393.
Ye X G, Shirley S, Xu H J, Du L P, Huang Y H, Lu W Z, Clemente T. Transformation and identification of BCL and RIP genes related    to cell apoptosis into wheat mediated by Agrobacterium. Acta Agronomica Sinica, 2005, 31: 1389-1393. (in Chinese)
[75]   李加瑞, 赵伟, 李全梓, 叶兴国, 安宝燕, 李祥, 张宪省. Waxy 基因的RNA 沉默使转基因小麦种子中直链淀粉含量下降. 遗传学报, 2005, 32: 846-854.
Li J R, Zhao W, Li Q X, Ye X G, An B Y, Li X, Zhang X S. RNA silencing of Waxy gene results in low levels of amylose in the seeds of transgenic wheat. Acta Genetica Sinica, 2005, 32: 846-854. (in Chinese)
[76]   王翠亭, 卫志明. 根癌农杆菌介导小麦幼胚遗传转化的影响因素. 植物生理与分子生物学学报, 2003, 29: 521-529.
Wang C T, Wei Z M. Factors Influencing transformation of wheat (Triticum aestivum L.) immature embryos mediated by Agrobacterium tumefaciens. Journal of Plant Physiology and Molecular Biology, 2003, 29: 521-529. (in Chinese)
[77]   Ye X G, Wang Y L, Kang L, Du L P, Xu H J. Screening of wheat genotypes sensitive to Agrobacterium tumefaciens infection and transformation. Acta Agronomica Sinica, 2005, 31: 1552-1556.
[78]   Langridge P, Brettschneider R, Lazzeri P, Lorz H. Transformation of cereals via Agrobacterium and the pollen pathway: A critical assessment. The Plant Journal, 1992, 2: 631-638.
[79]   Zeng J Z, Wu Y Q, Zhang J, Zhou W J , Zhu X P, Xu N Z. Transgenic wheat plants obtained with pollen-tube pathway method. Science in China: Series B, 1994, 37: 319-325.
[80]   Cheng Z M, He X Y, Chen C C, Zhang J, Xiao H, Zhou G H. Barley yellow dwarf viruscoat protein gene and transgenic wheat plants obtained by pollen tube path way.Progress in Natural Science, 1994, 4: 235-240.
[81]   侯文胜, 郭三堆, 路明. 利用花粉管通道法将cryIa基因导入小麦. 作物学报, 2003, 29: 806-809.
Hou W S, Guo S D, Lu M. Development of transgenic wheat with a synthetical insecticidal crystal protein gene via pollen-tube pathway. Acta Agronomica Sinica, 2003, 29: 806-809. (in Chinese)
[82]   奚亚军, 林拥军, 张启发, 侯文胜, 路明. 利用花粉管通道法将叶片衰老抑制基因PSAG12-IPT 导入普通小麦的研究. 作物学报, 2004, 30: 608-612.
Xi Y J, Lin Y J, Zhang Q F, Hou W S, Lu M. Studies on introduction of leaf senescence-inhibition gene PSAG12-IPT into common wheat through pollen-tube pathway. Acta Agronomica Sinica, 2004, 30: 608-612. (in Chinese)
[83]   耿洪伟, 张庆祝, 何中虎, 夏兰芹, 陈新民, 王德森, 曲延英. 转外源puroindoline 基因小麦的获得与检测. 中国农业科学, 2006, 39: 1751-1755.
Geng H W, Zhang Q Z, He Z H, Xia L Q, Chen X M, Wang D S, Qu Y Y. Molecular characterization of transgenic wheats with ectopic puroindoline genes. Scientia Agricultura Sinica, 2006, 39: 1751-1755. (in Chinese)
[84]   Khurana J, Chugh A, khurana P. Regeneration from mature and immature embryos and transient gene expression via Agrobacterium- mediated transformation in emmer wheat (Triticum diccocum Schuble). Indian Journal of Experimental Biology, 2002, 40: 1295-1303.
[85]   Patnaik D, Vishnudasan D, Khurana P. Agrobacterium-mediated transformation of mature embryos of Triticum aestivum and Triticum durum. Current Science, 2006, 91: 307-317.
[86]   Ding L P, Li S C, Gao J M, Wang Y S, Yang G X, He G Y. Optimization of Agrobacterium-mediated transformation conditions in mature embryos of elite wheat. Molecular Biology Reporter, 2009, 36: 29-36.
[87]   Wang Y L, Xu M X, Yin G X, Tao L L, Wang D W, Ye X G. Transgenic wheat plants derived from Agrobacterium-mediated transformation of mature embryo tissues. Cereal Research Communication, 2009, 37: 1-12.
[88]   Amoah B K, Wu H, Sparks C, Jones H D. Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue. Journal of Experimental Botany, 2001, 52: 1135-1142.
[89]   Brisibe E A, Gajdosova A, Olesen A, Andersen S B. Cytodifferentiation and transformation of embryogenic callus lines derived from anther culture of wheat. Journal of Experimental Botany, 2000, 51: 187-196.
[90]   陈梁鸿, 王新望, 张文俊, 张晓东, 胡道芬, 刘广田. 抗除草剂草甘膦EPSPS基因在小麦中的转化. 遗传学报, 1999, 26: 239-243.
Chen L H, Wang X W, Zhang W J, Zhang X D, Hu D F, Liu G T. Transformation of common wheat (Triticum aesdvum L.) with herbicide-resistant EPSPs gene. Acta Genetica Sinica, 1999, 26: 239-243. (in Chinese)
[91]   王艳丽, 叶兴国, 刘艳鹏, 杜丽璞, 徐惠君. 农杆菌敏感小麦基因型的筛选研究. 麦类作物学报, 2005, 25(6): 6-10.
Wang Y L, Ye X G, Liu Y P, Du L P, Xu H J. Screening of wheat genotype sensitive to Agrobacterium tumefaciens infection. Journal of Triticeae Crops, 2005, 25(6): 6-10. (in Chinese)
[92]   Chauhan H, Khurana P. Use of doubled haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics. Plant Biotechnology Journal, 2011, 9: 408-417.
[93]   Razzaq A, Zhang Y M, Yang F, You Y J, Zhao H, Ma Z Y, Wang H B. In planta transformation of wheat apical meristem: A preliminary study. Acta Agriculturae Boreali-Sinica, 2005, 20(1): 17-22.
[94]   Zhao T J, Zhao S Y, Chen H M, Zhao Q Z, Hu Z M, Hou B K, Xia G M. Transgenic wheat progeny resistant to powdery mildew generated by Agrobacterium inoculum to the basal portion of wheat seedling. Plant Cell Reports, 2006, 25: 1199-1204.
[95]   Supartana P, Shimizu T, Nogawa M, Shioiri H, Nakajima T, Haramoto N, Nozue M, Kojima M. Development of simple and efficient in planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens. Journal of Bioscience and Bioengineering, 2006, 102(3): 162-170.
[96]   Yang B, Ding LP, Yao L, He G Y, Wang Y S. Effect of seedling ages and inoculation durations with Agrobacterium tumefacien on transformation frequency of the wheat wounded apical meristem. Molecular Breeding, 2008, 6: 358-362.
[97]   Clough S J, Bent A F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 1998, 16: 735-743.
[98]   Hess D, Dressler K, Nimnrichter R. Transformation experiments by pipetting Agrobacterium into the spikelets of wheat. Plant Science, 1990, 72: 233-244.
[99]   Mooney P A, Goodwin P B, Dennis E S, Llewellyn D J. Agrobacterium tumefaciens-gene transfer into wheat tissues. Plant Cell, Tissue and Organ Culture, 1991, 25: 209-218.
[100] Chumakov M I, Kurbanova I V, Solovova G K. Agrobacterium transformation of uninjured plants. Russian Journal of Plant Physiology, 2002, 49: 799-803.
[101]何道一, 李中存, 王洪刚. 农杆菌介导的小麦活体转化. 中国农业科学, 2003, 36: 1437-1441.
He D Y, Li Z C, Wang H G. Agrobacterium-mediated in planta transformation of wheat. Scientia Agricultura Sinica, 2003, 36: 1437-1441. (in Chinese)
[102] Zale J M, Agarwal S, Loar S, Steber C M. Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens. Plant Cell Reports, 2009, 28: 903-913.
[103] Yin G X, Wang Y L, She M Y, Du L P, Xu H J, Ma J X, Ye X G. Establishment of a highly efficient regeneration system for the mature embryo culture of wheat. Agricultural Sciences in China, 2011, 10: 9-17.
[104] Tao L L, Yin G X, Du L P, Shi Z Y, She M Y, Xu H J, Ye X G. Improvement of plant regeneration from immature embryos of wheat infected by Agrobacterium tumefaciens. Agricultural Sciences in China, 2011, 10: 317-326.
[105] She M Y, Yin G X, Li J R, Li X, Du L P, Ma W J, Ye X G. Efficient regeneration potential is closely related to auxin exposure time and catalase metabolism during the somatic embryogenesis of immature embryos in Triticum aestivum L.. Molecular Biotechnology, 2013, 54: 451-460.
[106] Wang X M, Ren X, Yin G X, Wang K, Li J R, Du L P, Xu H J, Ye X G. Effects of environmental temperature on the regeneration frequency of the immature embryos of wheat(Triticum aestivum L.). Journal of Integrative Agriculture, 2014, 13: 722-732.
[107] ZhouX H, Wang K, Lv D W, Wu C J, Li J R, Zhao P, Lin Z S, Du L P, Yan Y M, Ye X G. Global analysis of differentially expressed genes and proteins in the wheat callus infected by Agrobacterium tumefaciens. Plos One, 2013, 8(11): e79390. doi:10.1371/journal.pone. 0079390.
[108] Gao S Q, Chen M, Xia L Q, Xiu H J, Xu Z S, Li L C, Zhao C P, Cheng X G, Ma Y Z. A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Reports, 2009, 28: 301-311.
[109]张双喜, 徐兆师, 张改生, 李连城, 陈孝, 陈明, 马有志. 转W16小麦抗旱新品系的创制及抗旱生理机制分析. 中国农业科学, 2011, 44: 4971-4979.
Zhang S X, Xu Z S, Zhang G S, Li L C, Chen X, Chen M, Ma Y Z. Creation of drought-resistant variety and analysis of physiological mechanism of W16 transgenic wheat. Scientia Agricultura Sinica, 2011, 44: 4971-4979. (in Chinese)
[110] Zhang Z Y, Liu X, Wang X D, Zhou M P, Zhou X Y, Ye X G, Wei X N. An R2R3 MYB transcription factor in wheat, TaPIMP1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense- and stress-related genes. New Phytologist, 2012, 196: 1155-1170.
[111]Rong W, Qi L, Wang A Y, Ye X G, Du L P, Liang H X, Xin Z Y, Zhang Z Y. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnology Journal, 2014, DOI: 10.1111/pbi.12153.
[112] Chen L, Zhang Z Y, Liang H X, Liu H X, Du L P, Xu H J, Xin Z Y. Overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat. Journal of Experimental Botany, 2008, 59: 4195-4204.
[113] Dong N, Liu X, Lu Y, Du L P, Xu H J, Xin Z Y, Zhang Z Y. Overexpression of TaPIEP1, a pathogen-induced ERF of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana. Functional Integrative Genomics, 2010, 10: 215-226.
[114] Li Z, Zhou M P, Zhang Z Y, Ren L J, Du L P, Zhang B Q, Xu H J, Xin Z Y. Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Functional Integrative Genomics, 2011,11: 63-70.
[115]Chen M, Sun L Y, Wu H Y, Chen J, Ma Y Z, Zhang X X, Du L P, Cheng S H, Zhang B Q, Ye X G, Pang J L, Zhang X M, Li L C, Andika I B, Chen J P, Xu H J. Durable field resistance to wheat yellow mosaic virus in transgenic wheat containing the antisense virus polymerase gene. Plant Biotechnology Journal, 2014, 12: 447-456.
[116] Zhu C F, Naqvi S, Breitenbach J, Sandmann G, Christou P, Capell  T. Combinational genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proceedings of the National Academy of Sciences of the USA, 2008, 105: 18232-18237.
[117] Naqvi S, Zhu C, Farre G, Ramessar K, Bassie L, Breitenbach J, Perez Conesa D, Ros G, Sandmann G, Capell T, Christou P. Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proceedings of the National Academy of Sciences of the USA, 2009, 106: 7762-7767.
[118]Li J R, Ye X G, An B Y, Du L P, Xu H J. Genetic transformation of wheat: current status and future prospects. Plant Biotechnology Reports, 2012, 6: 183-193.
[119] Bhalla P L. Genetic engineering of wheat-current challenges and opportunities. Trends in Biotechnology, 2006, 24: 305-311.
[120] Wu H, Sparks C A, Jones H D. Characterization of T-DNA loci and vector backbone sequences in transgenic wheat produced by Agrobacterium-mediated transformation. Molecular Breeding, 2006, 18: 195-208.
[121] Zhang M M, Ji LS, Xue H, Yang Y T, Wu C A, Zheng C C. High transformation frequency of tobacco and rice via Agrobacterium- mediated gene transfer by flanking a tobacco matrix attachment region. Physiologia Plantarum, 2007, 129: 644-651.
[122] Hansen G, Chilton M D. “Agrolistic” transformation of plant cells: Integration of T-strands generated in planta. Proceedings of the National Academy of Sciences of the USA, 1996, 93: 14978-14983.
[123]喻修道, 徐兆师, 陈明, 李连城, 马有志. 小麦转基因技术研究及其应用. 中国农业科学, 2010, 43: 1539-1553.
Yu X D, Xu Z S, Chen M, Li L C, Ma Y Z. The progress and application of wheat transformation technology. Scientia Agricultura Sinica, 2010, 43: 1539-1553. (in Chinese)
[1] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[2] ZHANG Yong,YAN Jun,XIAO YongGui,HAO YuanFeng,ZHANG Yan,XU KaiJie,CAO ShuangHe,TIAN YuBing,LI SiMin,YAN JunLiang,ZHANG ZhaoXing,CHEN XinMin,WANG DeSen,XIA XianChun,HE ZhongHu. Characterization of Wheat Cultivar Zhongmai 895 with High Yield Potential, Broad Adaptability, and Good Quality [J]. Scientia Agricultura Sinica, 2021, 54(15): 3158-3167.
[3] LIU HaiYing,FENG BiDe,RU ZhenGang,CHEN XiangDong,HUANG PeiXin,XING ChenTao,PAN YinYin,ZHEN JunQi. Relationship Between Phytohormones and Male Sterility of BNS and BNS366 in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(1): 1-18.
[4] Xiao ZHANG,Man LI,DaTong LIU,Wei JIANG,Yong ZHANG,DeRong GAO. Analysis of Quality Traits and Breeding Inspiration in Yangmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2020, 53(7): 1309-1321.
[5] YANG YanHui,MA Xiao,ZHANG ZiShan,GUO Jun,LI YueNan,LIANG Ying,SONG JianMin,ZHAO ShiJie. Effects of Drought Stress on Photosynthetic Characteristics of Wheat Near-Isogenic Lines with Different Wax Contents [J]. Scientia Agricultura Sinica, 2018, 51(22): 4241-4251.
[6] ZHAN ShuaiShuai, BAI Lu, XIE Lei, XIA XianChun, REN Yi, Lü WenJuan, QU YanYing, GENG HongWei. Arabinoxylan Feruloyl Transferase Gene Cloning and Development of Functional Markers in Common Wheat [J]. Scientia Agricultura Sinica, 2018, 51(19): 3639-3650.
[7] WanXu ZHANG, Bo MING, KeRu WANG, ChaoWei LIU, Peng HOU, JiangLu CHEN, GuoQiang ZHANG, JingJing YANG, ShuLing CHE, RuiZhi XIE, ShaoKun LI. Analysis of Sowing and Harvesting Allocation of Maize Based on Cultivar Maturity and Grain Dehydration Characteristics [J]. Scientia Agricultura Sinica, 2018, 51(10): 1890-1898.
[8] ZHANG FuYan, CHEN Feng, CHENG ZhongJie, YANG BaoAn, FAN JiaLin, CHEN XiaoJie, ZHANG JianWei, CHEN YunTang, CUI Long. Effects of TaLox-B Alleles on Lipoxygenase Activity and Flour Color in Wheats [J]. Scientia Agricultura Sinica, 2017, 50(8): 1370-1377.
[9] XIN MingMing, PENG HuiRu, NI ZhongFu, YAO YingYin, SUN QiXin. Progresses in Research of Physiological and Genetic Mechanisms of Wheat Heat Tolerance [J]. Scientia Agricultura Sinica, 2017, 50(5): 783-791.
[10] SHI Jia, ZHAI ShengNan, LIU JinDong, WEI JingXin, BAI Lu, GAO WenWei, WEN WeiE, HE ZhongHu, XIA XianChun, GENG HongWei. Genome-Wide Association Study of Grain Peroxidase Activity in Common Wheat [J]. Scientia Agricultura Sinica, 2017, 50(21): 4212-4227.
[11] LIU XinLun, WANG Chao, NIU LiHua, LIU ZhiLi, ZHANG LuDe, CHEN ChunHuan, ZHANG RongQi, ZHANG Hong, WANG ChangYou, WANG YaJuan, TIAN ZengRong, JI WanQuan. Molecular identification of FHB resistance gene in varieties derived from common wheat-Thinopyrum ponticum partial amphiploid [J]. Scientia Agricultura Sinica, 2017, 50(20): 3908-3917.
[12] WANG Kun-yang, ZHANG Wei, ZHANG Shuang-xi, LIU Hong-wei, WANG Ke, DU Li-pu, LIN Zhi-shan, YE Xing-guo. Effect of Chemical Hybridization Agent SQ-1 and Arabinogalactan Proteins on the Embryos Obtaining in Wheat Intervarietal and Wild Crosses [J]. Scientia Agricultura Sinica, 2016, 49(24): 4824-4832.
[13] ZHANG Yong, HAO Yuan-feng, ZHANG Yan, HE Xin-yao, XIA Xian-chun, HE Zhong-hu. Progress in Research on Genetic Improvement of Nutrition and Health Qualities in Wheat [J]. Scientia Agricultura Sinica, 2016, 49(22): 4284-4298.
[14] HU Xue-xu, SUN Li-juan, ZHOU Gui-ying, WU Li-na, LU Wei, LI Wei-xi, WANG Shuang, YANG Xiu-lan, SONG Jing-ke, WANG Bu-jun. Variations of Wheat Quality in China From 2006 to 2015 [J]. Scientia Agricultura Sinica, 2016, 49(16): 3063-3072.
[15] LIU Zi-cheng, MIAO Li-li, WANG Jing-yi, YANG De-long, MAO Xin-guo, JING Rui-lian. Cloning and Characterization of Transcription Factor TaWRKY35 in Wheat (Triticum aestivum) [J]. Scientia Agricultura Sinica, 2016, 49(12): 2245-2254.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!