Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (18): 3641-3654.doi: 10.3864/j.issn.0578-1752.2014.18.012

• SPECIAL FOUCUS: AGRO-PRODUCTS SAFETY • Previous Articles     Next Articles

Deoxynivalenol Contamination in Wheat and Its Management

SHI Jian-rong, LIU Xin, QIU Jian-bo, JI Fang, XU Jian-hong, DONG Fei, YIN Xian-chao, RAN Jun-jian   

  1. Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences/Laboratory of Agro-product Quality and Safety Risk Evaluation (Nanjing), Ministry of Agriculture/Key Laboratory of Agro-product Quality and Safety Management and Standard, Ministry of Agriculture, Nanjing 210014
  • Received:2014-03-31 Revised:2014-06-09 Online:2014-09-16 Published:2014-09-16

Abstract: Deoxynivalenol (DON), one of the type B trichothecene mycotoxins, also known as vomitoxin, can cause sickness such as vomiting, feed refusal, bloody diarrhea, dermatitis, hemorrhaging, and even death because of inhibition of DNA, RNA and protein synthesis at the ribosomal level in nonruminant animals, especially swine. DON is the metabolite of Fusarium graminearum species complex(FGSC) which causes wheat head blight around the world. In the last 10 years, FHB has become a severely epidemic for many times in China (especially in Jiangsu, Anhui, Hubei, Henan and Shandong), north America and European countries, causing that DON becomes severe food safety issue for wheat grains. This paper presents the DON contamination of wheat, distribution and chemotype of DON-produced FGSC, the factors which influence the DON production, and the management of DON contaminated grains to facilitate the risk evaluation and surveillance of DON-contaminated wheat in this country.

Key words: common wheat, deoxynivalenol (DON), Fusarium graminearum species complex(FGSC), management

[1] 杨艳涛, 秦富. 世界与中国小麦市场贸易形势及政策分析. 世界农业, 2013(11): 59-65.
Yang Y T, Qin F. Analysis of wheat trade and policy in the world. World Agriculture, 2013(11): 59-65. (in Chinese)
[2] Pestka J J, Smolinski A T. Deoxynivalenol: toxicology and potential effects on humans. Journal of Toxicology and Environmental Health, Part B, 2005, 8(1): 39-69.
[3] Kouadio J H, Mobio T A, Baudrimont I, Moukha S, Dano S D, Creppy E E. Comparative study of cytotoxicity and oxidative stress induced by deoxynivalenol, zearalenone or fumonisin B1 in human intestinal cell line Caco-2. Toxicology, 2005, 213(1): 56-65.
[4] 夏求洁, 吴建丽. 食管贲门癌高发区粮食中的单端孢霉霉素及其致病潜力. 中华肿瘤杂志, 1988, 10(1): 4-14.
Xia Q J, Wu J L. Trichothecenes and its pathogenic potential in grain in the high incidence area of esophageal and cardiac carcinorma. Chinese Journal of Oncology, 1988, 10(1): 4-14. (in Chinese)
[5] 陆维忠, 程顺和, 王裕中. 小麦赤霉病研究. 北京: 科学出版社, 2001.
Lu W Z, Cheng S H, Wang Y Z. Study on Wheat Head Blight. Beijing: Science Press, 2001. (in Chinese)
[6] 王裕中. 中国小麦赤霉病菌优势种—禾谷镰刀菌产毒素能力的研究. 真菌学报, 1994, 13(3): 229-234.
Wang Y Z. Toxin production capability analysis of Fusarium graminearum—the dominant pathogen of wheat scab in China. Acta Mycologica Sinica, 1994, 13(3): 229-234. (in Chinese)
[7] 王晓云, 于雅琴, 俞琼. 2005 年中国居民膳食 DON 污染调查及暴露评估. 长治医学院学报, 2007, 21(2): 101-103.
Wang X Y, Yu Y Q, Yu Q. Contamination Surveys and Exposure Assessment of the Deoxynivalenol in Resident meals in china in 2005. Joural of Changzhi College, 2007, 21(2): 101-103. (in Chinese)
[8] 亓增军, 裴自友, 韩航如, 陈佩度, 刘大钧. 利用 DONtest-HPLC 检测小麦镰刀菌毒素 DON 含量的差异. 南京农业大学学报, 2005, 28(3): 6-10.
Qi Z J, Pei Z Y, Han H R, Chen P D, Liu D J. Detection of deoxynivalenol (DON) content variation in common wheat produced by Fusarium graminearum using DONtest-HPLC. Journal of Nanjing Agricultural University, 2005, 28(3): 6-10. (in Chinese)
[9] 李凤琴, 于钏钏, 邵兵, 王伟, 于红霞. 2007-2008年中国谷物中隐蔽型脱氧雪腐镰刀菌烯醇及多组分真菌毒素污染状况. 中华预防医学杂志, 2011, 45(1): 57-63.
Li F Q, Yu C C, Shao B, Wang W, Yu H X. Nature occurence of masked deoxynivalenol and multi-mycotoxins in cereals from China harvested in 2007 and 2008. China Journal of Preventive Medicine, 2011, 45(1): 57-63. (in Chinese)
[10] Cui L, Selvaraj J N, Xing F, Zhao Y, Zhou L, Liu Y. A minor survey of deoxynivalenol in Fusarium infected wheat from Yangtze-Huaihe river basin region in China. Food Control, 2012, 30(2): 469-473.
[11] 樊平声. 小麦赤霉病和 DON 毒素研究进展. 江苏农业科学, 2010(5): 182-184.
Fan P S. An advance on wheat scab and deoxynivalenol (DON). Jiangsu Agricultural Sciences, 2010(5): 182-184. (in Chinese)
[12] Binder E, Tan L, Chin L, Handl J, Richard J. Worldwide occurrence of mycotoxins in commodities, feeds and feed ingredients. Animal Feed Science and Technology, 2007, 137(3): 265-282.
[13] Ji F, Xu J, Liu X, Yin X, Shi J. Natural occurrence of deoxynivalenol and zearalenone in wheat from Jiangsu province, China. Food Chemistry, 2014, 157: 393-397.
[14] Mcmullen M, Bergstrom G, De Wolf E, Dill-Macky R, Hershman D, Shaner G, Van Sanford D. A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Disease, 2012, 96(12): 1712-1728.
[15] 邵振润, 周明国, 仇剑波, 杨荣明, 刁亚梅, 张帅. 2010 年小麦赤霉病发生与抗性调查研究及防控对策. 农药, 2011, 50(5): 385-389.
Shao Z R, Zhou M G, Qiu J B, Yang R M, Diao Y M, Zhang S. The Occurrence, Resistance to Carbendazim of Wheat Scab and Its Control Measures in Jiangsu Province in 2010. Agrochemicals, 2011, 50(5): 385-389. (in Chinese)
[16] 曾娟, 姜玉英. 2012 年我国小麦赤霉病暴发原因分析及持续监控与治理对策. 中国植保导刊, 2013, 33(4): 38-41.
Zheng J, Jiang Y Y. Reasons of Wheat scab outbreak in China in 2012 and its strategy for continuing monitor and management. China Plant Protection, 2013, 33(4): 38-41. (in Chinese)
[17] L??Gia Martins M, Marina Martins H. Influence of water activity, temperature and incubation time on the simultaneous production of deoxynivalenol and zearalenone in corn (Zea mays) by Fusarium graminearum. Food Chemistry, 2002, 79(3): 315-318.
[18] Strange R, Smith H. A fungal growth stimulant in anthers which predisposes wheat to attack by Fusarium graminearum. Physiological Plant Pathology, 1971, 1(2): 141-150.
[19] Andersen A. The development of Gibberella zeae headblight of wheat. Phytopathology, 1948, 38(2): 595-611.
[20] De Wolf E, Madden L, Lipps P. Risk assessment models for wheat Fusarium head blight epidemics based on within-season weather data. Phytopathology, 2003, 93(4): 428-435.
[21] Chandelier A, Nimal C, André F, Planchon V, Oger R. Fusarium species and DON contamination associated with head blight in winter wheat over a 7-year period (2003–2009) in Belgium. European Journal of Plant Pathology, 2011, 130(3): 403-414.
[22] Kriss A B, Paul P A, Xu X, Nicholson P, Doohan F M, Hornok L, Rietini A, Edwards S G, Madden L V. Quantification of the relationship between the environment and Fusarium head blight, Fusarium pathogen density, and mycotoxins in winter wheat in Europe. European Journal of Plant Pathology, 2012, 133(4): 975-993.
[23] Cowger C, Patton-zkurt J, Brown-Guedira G, Perugini L. Post-anthesis moisture increased Fusarium head blight and deoxynivalenol levels in North Carolina winter wheat. Phytopathology, 2009, 99(4): 320-327.
[24] Hernandez Nopsa J F, Baenziger P S, Eskridge K M, Peiris K H, Dowell F E, Harris S D, Wegulo S N. Differential accumulation of deoxynivalenol in two winter wheat cultivars varying in FHB phenotype response under field conditions. Canadian Journal of Plant Pathology, 2012, 34(3): 380-389.
[25] Culler M, Miller-Garvin J, Dill-Macky R. Effect of extended irrigation and host resistance on deoxynivalenol accumulation in Fusarium- infected wheat. Plant Disease, 2007, 91(11): 1464-1472.
[26] Gautam P, Dill-Macky R. Free Water can leach mycotoxins from Fusarium-infected wheat heads. Journal of Phytopathology, 2012, 160(9): 484-490.
[27] Lu Q, Lillemo M, Skinnes H, He X, Shi J, Ji F, Dong Y, Bjørnstad Anther extrusion and plant height are associated with Type I resistance to Fusarium head blight in bread wheat line ‘Shanghai-3/Catbird’. Theoretical and Applied Genetics, 2013, 126(2): 317-334.
[28] Strange R, Majer H S J. Choline, one of two fungal growth stimulants in anthers responsible for the susceptibility of wheat to Fusarium graminearum. Nature, 1972, 238: 103-104.
[29] Strange R, Majer J, Smith H. The isolation and identification of choline and betaine as the two major components in anthers and wheat germ that stimulate Fusarium graminearum in vitro. Physiological Plant Pathology, 1974, 4(2): 277-290.
[30] Yoshida M, Nakajima T. Deoxynivalenol and nivalenol accumulation in wheat infected with Fusarium graminearum during grain development. Phytopathology, 2010, 100(8): 763-773.
[31] Del Ponte E, Fernandes J, Bergstrom G. Influence of growth stage on Fusarium head blight and deoxynivalenol production in wheat. Journal of Phytopathology, 2007, 155(10): 577-581.
[32] Atanasov D. Fusarium-blight (scab) of Wheat and Other Cereals. East Melbourne: Government Printing Office, 1920.
[33] Lu Q, Szabo-Hever A, Bjørnstad , Lillemo M, Semagn K, Mesterhazy A, Ji F, Shi J, Skinnes H. Two major resistance quantitative trait loci are required to counteract the increased susceptibility to Fusarium head blight of the dwarfing gene in wheat. Crop Science, 2011, 51(6): 2430-2438.
[34] O'donnell K, Kistler H C, Tacke B K, Casper H H. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proceedings of the National Academy of Sciences of the USA , 2000, 97(14): 7905-7910.
[35] O’donnell K, Ward T J, Aberra D, Kistler H C, Aoki T, Orwig N, Kimura M, Bjørnstad , Klemsdal S S. Multilocus genotyping and molecular phylogenetics resolve a novel head blight pathogen within the Fusarium graminearum  species complex from Ethiopia. Fungal Genetics and Biology, 2008, 45(11): 1514-1522.
[36] O’donnell K, Ward T J, Geiser D M, Corby Kistler H, Aoki T. Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genetics and Biology, 2004, 41(6): 600-623.
[37] Sarver B A, Ward T J, Gale L R, Broz K, Corby Kistler H, Aoki T, Nicholson P, Carter J, O’donnell K. Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genetics and Biology, 2011, 48(12): 1096-1107.
[38] Starkey D E, Ward T J, Aoki T, Gale L R, Kistler H C, Geiser D M, Suga H, Toth B, Varga J, O’donnell K. Global molecular surveillance reveals nove Fusarium head blight species and trichothecene toxin diversity. Fungal Genetics and Biology, 2007, 44(11): 1191-1204.
[39] Xu X, Nicholson P. Community ecology of fungal pathogens causing wheat head blight. Annual Review of Phytopathology, 2009: 47: 83-103.
[40] Gale L R, Harrison S A, Ward T J, O'donnell K, Milus E A, Gale S W, Kistler H C. Nivalenol-type populations of Fusarium graminearum and F. asiaticum are prevalent on wheat in southern Louisiana. Phytopathology, 2011, 101(1): 124-134.
[41] Yang L, Van Der Lee T, Yang X, Yu D, Waalwijk C. Fusarium populations on Chinese barley show a dramatic gradient in mycotoxin profiles. Phytopathology, 2008, 98(6): 719-727.
[42] Qu B, Li H, Zhang J, Xu Y, Huang T, Wu A, Zhao C, Carter J, Nicholson P, Liao Y. Geographic distribution and genetic diversity of Fusarium graminearum and F. asiaticum on wheat spikes throughout China. Plant Pathology, 2008, 57(1): 15-24.
[43] Suga H, Karugia G, Ward T, Gale L, Tomimura K, Nakajima T, Miyasaka A, Koizumi S, Kageyama K, Hyakumachi M. Molecular characterization of the Fusarium graminearum species complex in Japan. Phytopathology, 2008, 98(2): 159-166.
[44] Lee J, Kim H, Jeon J J, Kim H-S, Zeller K A, Carter L L, Leslie J F, Lee Y W. Population structure of mycotoxin production by Fusarium graminearum from maize in South Korea. Applied and Environmental Microbiology, 2012, 78(7): 2161-2167.
[45] Qiu J B, Xu J H, Shi J R. Molecular characterization of the Fusarium graminearum species complex in Eastern China. European Journal of Plant Pathology, 2014, DOI: 10.1007/s10658-014-0435-4.
[46] Zhang H, Van der Lee T, Waalwijk C, Chen W, Xu J, Xu J, Zhang Y, Feng J. Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates. Plos One, 2012, 7(2): e31722.
[47] Miller J D, Greenhalgh R, Wang Y, Lu M. Trichothecene chemotypes of three Fusarium species. Mycologia, 1991, 83(2): 121-130.
[48] Chandler E A, Simpson D R, Thomsett M A, Nicholson P. Development of PCR assays to Tri7 and Tri13 trichothecene biosynthetic genes, and characterisation of chemotypes of Fusarium graminearum, Fusarium culmorum and Fusarium cerealis. Physiological and Molecular Plant Pathology, 2003, 62(6): 355-367.
[49] Desjardins A E. Fusarium Mycotoxins: Chemistry, Genetics, and Biology. St. Paul: American Phytopathological Society (APS Press), 2006.
[50] Ward T J, Clear R M, Rooney A P, O’donnell K, Gaba D, Patrick S, Starkey D E, Gilbert J, Geiser D M, Nowicki T W. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genetics and Biology, 2008, 45(4): 473-484.
[51] Lee J, Chang I Y, Kim H, Yun S H, Leslie J F, Lee Y W. Genetic diversity and fitness of Fusarium graminearum populations from rice in Korea. Applied and Environmental Microbiology, 2009, 75(10): 3289-3295.
[52] Puri K, Saucedo E, Zhong S. Molecular characterization of Fusarium head blight pathogens sampled from a naturally infected disease nursery used for wheat breeding programs in China. Plant Disease, 2012, 96(9): 1280-1285.
[53] Karugia G W, Suga H, Gale L R, Nakajima T, Ueda A, Hyakumachi M. Population structure of Fusarium asiaticum from two Japanese regions and eastern China. Journal of General Plant Pathology, 2009, 75(2): 110-118.
[54] Zhang J B, Li H P, Dang F J, Qu B, Xu Y B, Zhao C S, Liao Y C. Determination of the trichothecene mycotoxin chemotypes and associated geographical distribution and phylogenetic species of the Fusarium graminearum clade from China. Mycological Research, 2007, 111(8): 967-975.
[55] Shen C M, Hu Y C, Sun H Y, Li W, Guo J H, Chen H G. Geographic distribution of trichothecene chemotypes of the Fusarium graminearum species complex in major winter wheat production areas of China. Plant Disease, 2012, 96(8): 1172-1178.
[56] Kim J C, Kang H J, Lee D H, Lee Y, Yoshizawa T. Natural occurrence of Fusarium mycotoxins (trichothecenes and zearalenone) in barley and corn in Korea. Applied and Environmental Microbiology, 1993, 59(11): 3798-3802.
[57] Alexander N J, Mccormick S P, Waalwijk C, Van Der Lee T, Proctor R H. The genetic basis for 3-ADON and 15-ADON trichothecene chemotypes in Fusarium. Fungal Genetics and Biology, 2011, 48(5): 485-495.
[58] Gale L R, Bryant J, Calvo S, Giese H, Katan T, O'donnell K, Suga H, Taga M, Usgaard T R, Ward T J. Chromosome complement of the fungal plant pathogen Fusarium graminearum based on genetic and physical mapping and cytological observations. Genetics, 2005, 171(3): 985-1001.
[59] Achilladelis B, Hanson J. Studies in terpenoid biosynthesis—I: The biosynthesis of metabolites of Tricothecium roseum. Phytochemistry, 1968, 7(4): 589-594.
[60] Grünler J, Ericsson J, Dallner G. Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1994, 1212(3): 259-277.
[61] Nozoe S, Machida Y. The structures of trichodiol and trichodiene. Tetrahedron, 1972, 28(20): 5105-5111.
[62] Hohn T M, Beremand P D. Isolation and nucleotide sequence of a sesquiterpene cyclase gene from the trichothecene-producing fungus Fusarium sporotrichioides. Gene, 1989, 79(1): 131-138.
[63] Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura,M. Molecular and genetic studies of fusarium trichothecene biosynthesis: pathways, genes, and evolution. Bioscience, Biotechnology, and Biochemistry, 2007, 71(9): 2105-2123.
[64] Hohn T M, Krishna R, Proctor R H. Characterization of a transcriptional activator controlling trichothecene toxin biosynthesis. Fungal Genetics and Biology, 1999, 26(3): 224-235.
[65] Macpherson S, Larochelle M, Turcotte B. A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiology and Molecular Biology Reviews, 2006, 70(3): 583-604.
[66] Proctor R H, Hohn T M, Mccormick S P, Desjardins A E. Tri6 encodes an unusual zinc finger protein involved in regulation of trichothecene biosynthesis in Fusarium sporotrichioides. Applied and Environmental Microbiology, 1995, 61(5): 1923-1930.
[67] Nasmith C G, Walkowiak S, Wang L, Leung W W, Gong Y, Johnston A, Harris L J, Guttman D S, Subramaniam R. Tri6 is a global transcription regulator in the phytopathogen Fusarium graminearum. PLOS Pathogens, 2011, 7(9): e1002266.
[68] Zhou X, Heyer C, Choi Y E, Mehrabi R, Xu J R. The CID1cyclin C-like gene is important for plant infection in Fusarium graminearum. Fungal Genetics and Biology, 2010, 47(2): 143-151.
[69] Kim H K, Lee S, Jo S M, McCormick S P, Butchko R A, Proctor R H, Yun S H. Functional roles of FgLaeA in controlling secondary metabolism, sexual development, and virulence in Fusarium graminearum. Plos One, 2013, 8(7): e68441.
[70] Jiang J, Liu X, Yin Y, Ma Z. Involvement of a velvet protein FgVeA in the regulation of asexual development, lipid and secondary metabolisms and virulence in Fusarium graminearum. Plos One, 2011, 6(11): e28291.
[71] Gardiner D M, Kazan K, Manners J M. Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum. Fungal Genetics and Biology, 2009, 46(8): 604-613.
[72] Liu X, Wang J, Xu J, Shi J FgIlv5 is required for branched-chain amino acid biosynthesis and full virulence in Fusarium graminearum. Microbiology, 2014, 160(4): 692-702.
[73] Gardiner D M, Osborne S, Kazan K, Manners J M. Low pH regulates the production of deoxynivalenol by Fusarium graminearum. Microbiology, 2009, 155(9): 3149-3156.
[74] Merhej J, Richard-Forget F, Barreau C. The pH regulatory factor Pac1 regulates Tri gene expression and trichothecene production in Fusarium graminearum. Fungal Genetics and Biology, 2011, 48(3): 275-284.
[75] Audenaert K, Callewaert E, Höfte M, Saeger D S, Haesaert G. Hydrogen peroxide induced by the fungicide prothioconazole triggers deoxynivalenol (DON) production by Fusarium graminearum. BMC Licrobiology, 2010, 10(1): 112-124.
[76] 程顺和, 张勇, 别同德, 高德荣, 张伯桥. 中国小麦赤霉病的危害及抗性遗传改良. 江苏农业学报, 2012, 28(5): 938-942.
Cheng S H, Zhang Y, Bie T D, Gao D R, Zhang B Q. Damage of wheat Fusarium head blight(FHB) epidemics and genetic improvement of wheat for scab resistance in China. Jiangsu Journal of Agricultural Sciences, 2012, 28(5): 938-942. (in Chinese)
[77] 马鸿翔, 陆维忠. 小麦赤霉病抗性改良研究进展. 江苏农业学报, 2010, 26(1): 197-203.
Ma H X, Lu W Z. Progress on genetic improvement for resistance to Fusarium head blight in wheat. Jiangsu Journal of Agricultural Sciences, 2010, 26(1): 197-203. (in Chinese)
[78] Bradley C A, Adee E, Ebelhar S, Dill Macky R, Wiersma J, Grybauskas A, Kirk W, Mcmullen M, Halley S, Milus E. Multi-state uniform fungicide evaluations for control of Fusarium head blight and associated mycotoxins. Proc. 2010 National Fusarium Head Blight Forum. 2010.
[79] 刁亚梅, 陈培红, 许德华, 朱祥林, 秦建华. 25% 氰烯菌酯悬浮剂防治小麦赤霉病大田示范试验. 现代农药, 2012, 11(3): 44-46.
Diao Y M, Chen P H, Xu D H, Zhu X L, Qin J H. Field demonstration experiments of JS399-19 25% SC against wheat scab. Modern Agrochemicals, 2012, 11(3): 44-46. (in Chinese)
[80] 李恒奎, 周明国, 王建新, 倪玉萍, 刁亚梅. 氰烯菌酯防治小麦赤霉病及治理多菌灵抗药性研究. 农药, 2006, 45(2): 92-94.
Li H K, Zhou M G, Wang J X, Diao Y M. Controlling wheat scab with JS399-19 and carbendazim resistance management. Agrochemicals, 2006, 45(2): 92-94. (in Chinese)
[81] Müllenborn C, Steiner U, Ludwig M, Oerke E C. Effect of fungicides on the complex of Fusarium species and saprophytic fungi colonizing wheat kernels. European Journal of Plant Pathology, 2008, 120(2): 157-166.
[82] Salgado J D, Wallhead M, Madden L V, Paul P A. Grain harvesting strategies to minimize grain quality losses due to Fusarium head blight in wheat. Plant Disease, 2011, 95(11): 1448-1457.
[83] Delwiche S R, Pearson T C, Brabec D L. High-speed optical sorting of soft wheat for reduction of deoxynivalenol. Plant Disease, 2005, 89(11): 1214-1219.
[84] Niderkorn V, Boudra H, Morgavi D. Binding of Fusarium mycotoxins by fermentative bacteria in vitro. Journal of Applied Microbiology, 2006, 101(4): 849-856.
[85] Niderkorn V, Morgavi D P, Pujos E, Tissandier A, Boudra H. Screening of fermentative bacteria for their ability to bind and biotransform deoxynivalenol, zearalenone and fumonisins in an in vitro simulated corn silage model. Food Additives and Contaminants, 2007, 24(4): 406-415.
[86] 程亮, 伍松陵, 沈晗, 孙长坡. 脱氧雪腐镰刀菌烯醇降解菌的筛选与鉴定. 粮油食品科技, 2013, 21(5): 95-97.
Cheng L, Wu S L, Shen H, Sun C P. Screen and identification of deoxynivalenol degradation strains. Science and Technology of Cereals;oils and Foods, 2013, 21(5): 95-97. (in Chinese)
[87] He C, Fan Y, Liu G, Zhang H. Isolation and identification of a strain of Aspergillus tubingensis with deoxynivalenol biotransformation capability. International Journal of Molecular Sciences, 2008, 9(12): 2366-2375.
[88] Shima J, Takase S, Takahashi Y, Iwai Y, Fujimoto H, Yamazaki M, Ochi K. Novel detoxification of the trichothecene mycotoxin deoxynivalenol by a soil bacterium isolated by enrichment culture. Applied and Environmental Microbiology, 1997, 63(10): 3825-3830.
[89] Yu H, Zhou T, Gong J H, Young C, Su X J, Li X Z, Zhu H J, Tsao R, Yang R. Isolation of deoxynivalenol-transforming bacteria from the chicken intestines using the approach of PCR-DGGE guided microbial selection. BMC Microbiology, 2010, 10(1): 182-190.
[90] Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, Krska R, Kuchler K, Glössl J, Luschnig C, Adam G. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP- glucosyltransferase from Arabidopsis thaliana. Journal of Biological Chemistry, 2003, 278(48): 47905-47914.
[91] Ikunaga Y, Sato I, Grond S, Numaziri N, Yoshida S, Yamaya H, Hiradate S, Hasegawa M, Toshima H, Koitabashi M, Ito M, Karlovsky P, Tsushima S. Nocardioides sp. strain WSN05-2, isolated from a wheat field, degrades deoxynivalenol, producing the novel intermediate 3-epi-deoxynivalenol. Applied Microbiology and Biotechnology, 2011, 89(2): 419-427.
[92] 徐剑宏, 祭芳, 王宏杰, 王建伟, 林凡云, 史建荣. 脱氧雪腐镰刀菌烯醇降解菌的分离和鉴定. 中国农业科学, 2010, 43(22): 4635-4641.
Xu J H, Ji F, Wang H J, Wang J W, Lin F Y, Shi J R. Isolation and identification of deoxynivalenol degradation strains. Scientia Agricultura Sinica, 2010, 43(32): 4635-4641. (in Chinese)
[93] Codex Alimenatrius Commission, Report of the Fifth Session of the Codex Committee on Contaminants in Foods, The Hague, The Netherlands 2011. http://www.codexalimentarius.net/download/report/ 758/REP11_CFe.pdf.
[94] Gratz S W, Duncan G, Richardson A J. The human fecal microbiota metabolizes deoxynivalenol and deoxynivalenol-3-glucoside and may be responsible for urinary deepoxy-deoxynivalenol. Applied and Environmental Microbiology, 2013, 79: 1821-1825.
[95] Nagl V, Schwartz H, Krska R, Moll W D, Knasmuller S, Ritzmann M, Adam G, Berthiller F. Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in rats. Toxicology Letters, 2012, 213: 367-373.
[96] Wu W, He K, Zhou HR, Berthiller F, Adam G, Sugita-Konishi Y, Watanabe M, Krantis A, Durst T, Zhang H, Pestka J J. Effects of oral exposure to naturally-occurring and synthetic deoxynivalenol congeners on proinflammatory cytokine and chemokine mRNA expression in the mouse. Toxicological and Applied Pharmacology, 2014 pii: S0041-008X(14)00156-2. doi: 10.1016/j.taap.2014.04.016. [Epub ahead of print]
[97] Codex Alimenatrius Commission, Report of the 8th Session of the Codex Committee on Contaminants in Foods, The Hague, The Netherlands 2014. Available from ftp://ftp.fao.org/codex/meetings/ cccf/cccf8/cf08_08e.pdf.
[98] U.S. Food and Drug Administration, Guidance for Industry and FDA: Advisory Levels for Deoxynivalenol (DON) in Finished Wheat Products for Human Consumption and Grains and Grain By-Products used for Animal Feed. Available from http://www.fda.gov/Food/ GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/ChemicalContaminantsMetalsNaturalToxinsPesticides/ucm120184.htm.
[99] Cirlini M, Generotti S, Dall'Erta A, Lancioni P, Ferrazzano G, Massi A, Galaverna G, Dall'Asta C. Durum wheat (Triticum durum Desf.) lines show different abilities to form masked mycotoxins under greenhouse conditions. Toxins (Basel), 2014, 6: 81-95.
[1] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[2] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[3] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[4] MI GuoHua,HUO YueWen,ZENG AiJun,LI GangHua,WANG Xiu,ZHANG FuSuo. Integration of Agricultural Machinery and Agronomic Techniques for Crop Nutrient Management in China [J]. Scientia Agricultura Sinica, 2022, 55(21): 4211-4224.
[5] HU ZhiQiang,SONG XiaoYu,QIN Lin,LIU Hui. Study on Seasonal Grazing Management Optimal Model in Alpine Desert Steppe [J]. Scientia Agricultura Sinica, 2022, 55(19): 3862-3874.
[6] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[7] SONG Ge,SHI DongMei,JIANG GuangYi,JIANG Na,YE Qing,ZHANG JianLe. Effects of Different Fertilization Methods on Restoration of Eroded and Degraded Cultivated-Layer in Slope Farmland [J]. Scientia Agricultura Sinica, 2021, 54(8): 1702-1714.
[8] PENG BiLin,LI MeiJuan,HU XiangYu,ZHONG XuHua,TANG XiangRu,LIU YanZhuo,LIANG KaiMing,PAN JunFeng,HUANG NongRong,FU YouQiang,HU Rui. Effects of Simplified Nitrogen Managements on Grain Yield and Nitrogen Use Efficiency of Double-Cropping Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1424-1438.
[9] JianZhao TANG,Jing WANG,DengPan XIAO,XueBiao PAN. Research Progress and Development Prospect of Potato Growth Model [J]. Scientia Agricultura Sinica, 2021, 54(5): 921-932.
[10] MI XiaoTian,SHI Lei,HE Gang,WANG ZhaoHui. Fertilizer Reduction Potential and Economic Benefits of Crop Production for Smallholder Farmers in Shaanxi Province [J]. Scientia Agricultura Sinica, 2021, 54(20): 4370-4384.
[11] ZHANG Yong,YAN Jun,XIAO YongGui,HAO YuanFeng,ZHANG Yan,XU KaiJie,CAO ShuangHe,TIAN YuBing,LI SiMin,YAN JunLiang,ZHANG ZhaoXing,CHEN XinMin,WANG DeSen,XIA XianChun,HE ZhongHu. Characterization of Wheat Cultivar Zhongmai 895 with High Yield Potential, Broad Adaptability, and Good Quality [J]. Scientia Agricultura Sinica, 2021, 54(15): 3158-3167.
[12] YAO Yan,NIU MingLei,SUN FaJun,YAO JingChan,CHANG XiaoYan. Design and Implementation of Agricultural Transfer Payment Project Management System Based on Micro-Service Architecture [J]. Scientia Agricultura Sinica, 2021, 54(15): 3207-3218.
[13] DONG JianXin,SONG WenJing,CONG Ping,LI YuYi,PANG HuanCheng,ZHENG XueBo,WANG Yi,WANG Jing,KUANG Shuai,XU YanLi. Improving Farmland Soil Physical Properties by Rotary Tillage Combined with High Amount of Granulated Straw [J]. Scientia Agricultura Sinica, 2021, 54(13): 2789-2803.
[14] LIU HaiYing,FENG BiDe,RU ZhenGang,CHEN XiangDong,HUANG PeiXin,XING ChenTao,PAN YinYin,ZHEN JunQi. Relationship Between Phytohormones and Male Sterility of BNS and BNS366 in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(1): 1-18.
[15] Xiao ZHANG,Man LI,DaTong LIU,Wei JIANG,Yong ZHANG,DeRong GAO. Analysis of Quality Traits and Breeding Inspiration in Yangmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2020, 53(7): 1309-1321.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!