Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (18): 3633-3640.doi: 10.3864/j.issn.0578-1752.2014.18.011

• SPECIAL FOUCUS: AGRO-PRODUCTS SAFETY • Previous Articles     Next Articles

Advances in Research of Cadmium Metabolism and Control in Rice Plants

ZHU Zhi-wei, CHEN Ming-xue, MOU Ren-xiang, CAO Zhao-yun, ZHANG Wei-xing, LIN Xiao-yan   

  1. China National Rice Research Institute, Hangzhou 311400
  • Received:2014-03-31 Revised:2014-05-27 Online:2014-09-16 Published:2014-09-16

Abstract: Cadmium (Cd) is one of the major pollutants in rice grains, for rice plants can absorb Cd easily. Thus, it becomes the potential important pollutant for the food supply and food safety in China. In this review, the authors attempt to show three important steps in the bio-accumulation of Cd in rice plants, including the activation and absorption of Cd by rice roots, the loading and transportation of Cd by rice xylem, and the enrichment of Cd in rice grains by the phloem from rice internodes. The metabolic process of Cd at different rice growing stages, the control mechanism of Cd through transport protein and key genes, and the influence of environmental conditions and inputs to Cd accumulation in rice plants were discussed. The future research of Cd control mechanism in rice was also highlighted from the viewpoint of the sustainable agricultural development and the management of rice safety.

Key words: rice (Oryza sativa L.), cadmium accumulation, cadmium control, food safety

[1]    郑陶, 李廷轩, 张锡洲, 余海英, 王勇. 水稻镉高积累品种对镉的富集特性. 中国农业科学, 2013, 46(7): 1492-1500.
Zheng T, Li T X, Zhang X Z, Yu H Y, Wang Y. Accumulation characteristics of cadmium-accumulated rice cultivars with high cadmium accumulation. Scientia Agricultura Sinica, 2013, 46(7): 1492-1500. (in Chinese)
[2]    程旺大, 姚海根, 张国平, 汤美玲, Peter Dominy. 镉胁迫对水稻生长和营养代谢的影响. 中国农业科学, 2005, 38(3): 528-537.
Cheng W D, Yao H G, Zhang G P, Tang M L, Dominy P. Effect of cadmium on growth and nutrition metabolism in rice. Scientia Agricultura Sinica, 2005, 38(3): 528-537. (in Chinese)
[3]    Grant C A, Clarke J M, Duguid S.Selection and breeding of plant cultivars to minimize cadmium accumulation. Science of the TotalEnvironment, 2008, 390: 301-310.
[4]    Chaney R L, Reeves P G, Ryan J A, Simmons R W, Welch R M, Angle J S. An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks. BioMetals, 2004, 17(5): 549-553.
[5]    Yoneyama T, Gosho T, Kato M, Goto S, Hayashi H. Xylem and phloem transport of Cd, Zn and Fe into the grains of rice plants (Oryza sativa L.) grown in continuously flooded Cd-contaminated soil. Soil Science and Plant Nutrition, 2010, 56(3): 445-453.
[6]    Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experimental Botany, 2009, 60(9): 2677-2688.
[7]    Uraguchi S, Fujiwara T. Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice, 2012, 5(1): 1-8.
[8]    Uraguchi S, Fujiwara T. Rice breaks ground for cadmium-free cereals. Current Opinion in Plant Biology, 2013, 16(3): 328-334.
[9]    赵步洪, 张洪熙, 奚岭林, 朱庆森, 杨建昌. 杂交水稻不同器官镉浓度与累积量. 中国水稻科学, 2006, 20(3): 306-312.
Zhao B H, Zhang H X, Xi L L, Zhu Q S, Yang J C. Concentrations and accumulation of cadmium in different organs of hybrid rice. Chinese Journal of Rice Science, 2006, 20(3): 306-312.(in Chinese)
[10]   刘侯俊, 梁吉哲, 韩晓日, 李军, 芦俊俊, 张素静, 冯璐, 马晓明. 东北地区不同水稻品种对 Cd 的累积特性研究. 农业环境科学学报, 2011, 30(2): 220-227.
Liu H J, Liang J Z, Han X R, Li J, Lu J J, Zhang S J, Feng L, Ma X M. Accumulation and distribution of cadmium in different rice cultivars of northeastern China. Journal of Agro-Environment Science, 2011, 30(2): 220-227.(in Chinese)
[11]   Cosio C, Martinoia E, Keller C. Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiology, 2004, 134: 716-725.
[12]   Pence N S, Larsen P B, Ebbs S D, Letham D L D, Lasat M M, Garvin D F, Eide D, Kochian L V. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceedings of the National Academy of Sciences of the USA, 2000, 97(9): 4956-4960.
[13]   Ramesh S A, Shin R, Eide D J, Schachtman D P. Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiology, 2003, 133: 126-134.
[14]   Vert G, Briat J F, Curie C. Arabidopsis IRT2 gene encodes a root-periphery iron transporter. Plant Journal, 2001, 26: 181-189.
[15]   Shao G S, Chen M X, Wang D Y, Xu C M, Mou R X, Cao Z Y, Zhang X F. Using iron fertilizer to control Cd accumulation in rice plants: A new promising technology. Science China Life Sciences, 2008, 51(3): 245-253. 
[16] 杨肖娥, 龙新宪, 倪吾钟. 超级累植物吸收重金属的生理及分子机制. 植物营养与肥料学报, 2002, 8(1): 8-15.
Yang X E, Long X X, Ni W Z. Physiological and molecular mechanisms of heavy metal uptake by hyperaccumulting plants. Plant Nutrition and Fertilizer Science, 2002, 8(1): 8-15. (in Chinese)
[17] Kobayashi N I, Tanoi K, Hirose A, Nakanishi T M. Characterization of rapid inter vascular transport of cadmium in rice stem by radioisotope imaging. Journal of Experimental Botany, 2013, 64(2): 507-517.
[18] Ueno D, Koyama E, Yamaji N, Ma J. Physiological genetic and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan. Journal of Experimental Botany, 2011, 62(7): 2265-2272.
[19] Tanaka K, Fujimaki S, Fujiwara T, Yoneyama T, Hayashi H. Cadmium concentrations in the phloem sap of rice plants (Oryza saliva L.) treated with a nutrient solution containing cadmium (environment). Soil Science and Plant Nutrition, 2003, 49(2): 311-313. [20]   Tanaka K, Fujimaki S, Fujiwara T, Yoneyama T, Hayashi H. Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants (Oryza sativa L.). Soil Science and Plant Nutrition, 2007, 53(1): 72-77.
[21]   Fujimaki S, Suzui N, Ishioka N S, Kawachi N, Ito S, Chino M, Nakamura S I. Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant. Plant Physiology, 2010, 152: 1796-1806.
 
[22]   Rodda M, Li G, Reid R. The timing of grain Cd accumulation in rice plants: the relative importance of remobilisation within the plant and root Cd uptake post-flowering. Plant Soil, 2011, 347: 105-114.
[23]   Kato M, Ishikawa S, Inagaki K, Chiba K, Hayashi H, Yanagisawa S, Yoneyama T. Possible chemical forms of cadmium and varietal differences in cadmium concentrations in the phloem sap of rice plants (Oryza sativa L.). Soil Science and Plant Nutrition, 2010, 56(6): 839-847.
 
[24]   Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa N K. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OslRT2 in rice. Soil Science and Plant Nutrition, 2006, 52(4): 464-469.
 
[25]   Lee S, An G. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in ricePlant Cell Environment, 2009, 32(4): 408-4l6.
[26]   Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa N K. Characterlizing the role of rice NRAMP5 in manganese iron and cadmium transport. Science Reports, 2012, 2: 286-293. 
[27]   Ishikawa S, Ishimaru Y, Igura M. Ion-beam irradiation gene identification, and marker assisted breeding in the development of 1ow-cadmium rice. Proceedings of the National Academy of Sciences of the USA, 2012, 109(47): 19166-19171.
[28] Sasaki A, Yamaji N, Yokosho K, Ma J F. NRAMP5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell, 2012, 24(5): 2155-2167.[29]   Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H. OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytologist, 2011, 189(1): 190-199.  X X, Ma Y B, Sun B. Influence of soil type and genotype on Cd bioavailability and uptake by rice and implications for food safety. Journal of Environmental Sciences, 2012, 24(9): 1647-1654.
[30]   Tezuka K, Miyadate H, Katou K, Kodama I, Matsumoto S, Kawamoto T, Masaki S, Satoh H, Yamaguchi M, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H. A single recessive gene controls cadmium translocation in the cadmium hyperaccumulating rice cultivar Cho-Ko-Koku. Theoretical and Applied Genetics, 2010, 120(6): 1175-1182.
[31]   Ueno D, Yamaji N, Kono I, Huang C F, Ando T, Yano M, Ma J F. Gene limiting cadmium accumulation in rice. Proceedings of the National Academy of Sciences of the USA, 2010, 107(38): 16500-16505.
[32]   Ye X X, Ma Y B, Sun B. Influence of soil type and genotype on Cd bioavailability and uptake by rice and implications for food safety. Journal of Environmental Sciences, 2012, 24(9): 1647-1654.
[33]   Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T. Low-affinity cation transporter (OsLCT1 ) regulates cadmium transport into rice grains. Proceedings of the National Academy of Sciences of the USA, 2011, 108(52): 20959-20964.
[34]   鄂志国, 张玉屏, 王磊. 水稻镉胁迫应答分子机制研究进展. 中国水稻科学, 2013, 27(5): 539-544.
E Z G, Zhang Y P, Wang L. Molecular mechanism of rice responses to cadmium stress. Chinese Journal of Rice Science, 2013, 27(5): 539-544. (in Chinese)
[35]   Nocito F F, Lancilli C, Dendena B, Lucchini G, Sacchi G A. Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation. Plant Cell & Environment, 2011, 34(6): 994-1008.
[36]   Zeng F, Ali S, Zhang H, Ouyang Y, Qiu B, Wu F, Zhang G. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 2011, 159(1): 84-91.
[37]   成颜君, 龚伟群, 李恋卿, 潘根兴. 种杂交水稻对2种不同土壤中Cd吸收与分配的比较. 农业环境科学学报, 2008, 27(5): 1895-1900.
Cheng Y J, Gong W Q, Li L Q, Pan G X. Comparison of cd uptake and partitioning in plant tissues by two hybrid rice grown in two contrasting paddy soils. Journal of Agro-Environment Science, 2008, 27(5): 1895-1900.(in Chinese)
[38]   范中亮, 季辉, 杨菲, 吴琦, 张卫建. 不同土壤类型下Cd和Pb在水稻籽粒中累积特征及其环境安全临界值. 生态环境学报, 2010, 19(4): 792-797.
Fan Z L, Ji H, Yang F, Wu Q, Zhang W J. Accumulation characteristics of Cd and Pb in rice grain and their security threshold values in paddy field under different soil types. Ecology and Environmental Sciences, 2010, 19(4): 792-797.(in Chinese)
[39]   秦鱼生, 詹绍军, 喻华, 涂仕华, 王正银. 镉在不同质地水稻土剖面中的分布特征及与作物吸收的关系. 光谱学与光谱分析, 2013(2): 476-480.
Qin Y S, Zhan S J, Yu H, Tu S H, Wang Z Y. Distribution characteristics of soil cadmium in different textured paddy soil profiles and its relevance with cadmium uptake by crops. Spectroscopy and Spectral Analysis, 2013(2): 476-480. (in Chinese)
[40]   Reddy C N, Patrick W H. Effect of redox potential and pH on the uptake of cadmium and lead by rice plants. Journal of Environmental Quality, 1977, 6(3): 259-262.
[41]   Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. Journal of Hazardous Materials, 2010, 174(1): 1-8.
[42]   Cai Y, Lin L, Cheng W, Zhang G, Wu F. Genotypic dependent effect of exogenous glutathione on Cd-induced changes in cadmium and mineral uptake and accumulation in rice seedlings (Oryza sativa). Plant, Soil and Environment, 2010, 56(11): 516-525.
[43]   Feng R, Wei C, Tu S, Ding Y, Song Z. A dual role of Se on Cd toxicity: evidences from the uptake of Cd and some essential elements and the growth responses in paddy rice. Biological Trace Element Research, 2013, 151(1): 113-121.
[44]   Solti Á, Sárvári É, Tóth B, Basa B, Lévai L, Fodor F. Cd affects the translocation of some metals either Fe-like or Ca-like way in poplar. Plant Physiology and Biochemistry, 2011, 49(5): 494-498.
[45]   章明奎, 杨东伟. 绍兴平原二种典型农田系统中重金属流及其平衡分析. 生态环境学报, 2010, 19(2): 320-324.
Zhang M K, Yang D W. Flows and mass balance of heavy metals in two typical farming systems in Shaoxing plain, Zhejiang province, China. Ecology and Environmental Sciences, 2010, 19(2): 320-324. (in Chinese)
[46]   Grant C A. Influence of phosphate fertilizer on cadmium in agricultural soils and crops. Pedologist, 2011, 54: 143-155.
[47]   Han C, Wu L, Tan W, Zhong D, Huang Y, Luo Y, Christie P. Cadmium distribution in rice plants grown in three different soils after application of pig manure with added cadmium. Environmental Geochemistry and Health, 2012, 34(4): 481-492.
[48]   衣纯真, 傅桂平, 张福锁. 不同钾肥对水稻镉吸收和运移的影响. 中国农业大学学报, 1996, 1(3): 65-70.
Yi C Z, Fu G, Zhang F. Effect of different potash fertilizers on Cd uptake and translocation in rice. Journal of China Agricultural University, 1996, 1(3): 65-70. (in Chinese)
[49]   滕斌, 李之林, 肖立中, 张瑛, 吴敬德, 朱学桂, 宣红. 施氮水平对优质稻产量、品质及稻米 Hg, As, Cd 含量的影响. 中国农学通报, 2011, 27(7): 30-33.
Teng B, Li Z, Xiao L Z, Li Z, Zhang Y, Wu J D, Zhu X G, Xuan H. Effects of nitrogen application level on yield, quality, and Hg, As, Cd concentrations in grains of high quality rice. Chinese Agricultural Science Bulletin, 2011, 27(7): 30-33. (in Chinese)
[50]   章明奎, 唐红娟, 常跃畅. 不同改良剂降低矿区土壤水溶态重金属的效果及其长效性. 水土保持学报, 2012, 26(5): 144-148.
Zhang M K, Tang H J, Chang Y C. Long-term effects of different amendments on reduction of water soluble heavy metals in a mine contaminated soil. Journal of Soil and Water Conservation, 2012, 26(5): 144-148. (in Chinese)
[51]   周丽英, 叶仁杰, 林淑婷, 刘杰, 肖清铁, 林素兰, 李艺, 林文雄, 林瑞余. 水稻根际耐镉细菌的筛选与鉴定. 中国生态农业学报, 2012, 20(5): 597-603.
Zhou L Y, Ye R J, Lin S T, Liu J, Xiao Q T, Lin S L, Li Y, Lin W X, Lin R Y. Screening and identification of cadmium-tolerant bacteria from rhizosphere soils under rice. Chinese Journal of Eco-Agriculture, 2012, 20(5): 597-603. (in Chinese)
[52]   Hu P, Li Z, Yuan C, Ouyang Y, Zhou L, Huang J, Huang Y, Luo Y, Christie P, Wu L. Effect of water management on cadmium and arsenic accumulation by rice (Oryza sativa L.) with different metal accumulation capacities. Journal of Soils and Sediments, 2013, 13(5): 916-924.
[53]   张锡洲, 张洪江, 李廷轩, 余海英. 水稻镉耐性差异及镉低积累种质资源的筛选. 中国生态农业学报, 2013, 21(11): 1434-1440.
Zhang X Z, Zhang H J, Li T X, Yu H Y. Differences in Cd-tolerance of rice and screening for Cd low-accumulation rice germplasm resources. Chinese Journal of Eco-Agriculture, 2013, 21(11): 1434-1440. (in Chinese)
[1] HUI YuanYuan,PENG HaiShuai,WANG BiNi,ZHANG FuXin,LIU YuFang,JIA Rong,REN Rong. Research Progress of Food-Borne Pathogen Detection Based on Electrochemical and Optical Aptasensors [J]. Scientia Agricultura Sinica, 2021, 54(11): 2419-2433.
[2] JIA ShiRong. Risk Assessment and Regulation of Genetically Engineered Crops: History and Reformation [J]. Scientia Agricultura Sinica, 2018, 51(4): 601-612.
[3] LI Pei-Wu, DING Xiao-Xia, BAI Yi-Zhen, ZHOU Hai-Yan, YIN 南Ri. Advance in Research on Risk Assessment of Aflatoxin in Agricultural Products [J]. Scientia Agricultura Sinica, 2013, 46(12): 2534-2542.
[4] WEI Yi-Min, GUO Bo-Li, WEI Shuai, SUN Shu-Min, ZHAO Hai-Yan. The Principle of Food Geographical Origin Traceability and Authenticity Technique [J]. Scientia Agricultura Sinica, 2012, 45(24): 5073-5081.
[5] HUANG Chen-yang,CHEN Qiang,ZHAO Yong-chang,ZHANG Jin-xia
. Investigation on Heavy Metals of Main Wild Edible Mushrooms in Yunnan Province#br# [J]. Scientia Agricultura Sinica, 2010, 43(6): 1198-1203 .
[6] LU Liang-shu, XU Shi-wei. Expectation of the Research Projection of China Grain and Food Safety Development Strategy in 2020 [J]. Scientia Agricultura Sinica, 2007, 40(增刊): 2931-2940.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!