Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (16): 3308-3314.doi: 10.3864/j.issn.0578-1752.2014.16.016

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Advances in Differentiation of iPS Cells into Male Germ Cells

 DU  Jun-Hui, CAO  Wen-Guang   

  1. Institute of Animal Sciences and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2013-11-04 Online:2014-08-18 Published:2014-05-26

Abstract: Induced pluripotent stem cells (iPS cells) refers to reprograming animals or human somatic cells by gene transfer technology, i.e. using so-called packed viral vectors or particles to infect the cells to be induced. Different somatic cells can be induced into iPS cells through different vectors or different transcription factors combination, such as fibroblasts, hepatocytes, keratinocytes and cord blood, etc. As a new member, iPS cells were similar to embryonic stem cells, i.e. clonal morphology, gene expression pattern, surface marker, embryoid bodies formation, differentiative capacity, teratoma and chimeras (in mice) and so on. Just like ESCs, studies have shown that iPS cells can be induced into different cells in vitro under the conditions of specific induction, including myocardial cells, blood cells and germ cells. It shortens the distance between stem cells and clinical disease, Therefore iPS cells have become the most promising seed cells in cell therapy and tissue organ regeneration, and they have a potential value in the cells’ alternative treatment, pathogenesis research and new drug screening simultaneously. Male sterility not only affects human normal life, but is also very adverse to the development of animal husbandry. Great progress has been made in that iPS cells from humans and mice can be differentiated into primordial germ cells (PGCs), spermatozoa and their precursors. These findings can help not only avoid the difficulties in obtaining ESCs, immune rejection and ethical problems, which may be aroused by using embryonic stem cells, but also provide a good research platform for revealing the developmental mechanism of male germ cells. Patients can use their iPS cells derived male gametes to reproduction. Therefore, differentiation of iPS cells into male germ cells brings new hope for the treatment of male sterility in the future. In addition, differentiation of iPS cells in vitro has broad application potentials for modern animal husbandry. It can be used to produce the transgenic animals. Here, the authors highlighted the advances in research of the differentiation of iPS cells into male germ cells in vitro and its potential application prospects from the different culture conditions and inducers and the prospects in application of the differentiation of iPS cells.

Key words: induced pluripotent stem cells, differentiation, spermatogonial stem cells, male germ cells

CLC Number: 

  • null
[1]de Kretser D M, Baker H W. Infertility in men: recent advances and continuing controversies. Journal of Clinical Endocrinology Metabolism, 1999, 84: 3443-3450.

[2]Schlegel P N. Evaluation of male infertility. Minerva Ginecologica,  2009, 61: 261-283.

[3]Larson K L, de Jonge C J, Barnes A M, Jost L K, Evenson D P. Sperm chromatin structure assay parameters as of failed pregnancy following assisted reproductive techniques.  Human Reproduction, 2000, 15(8): 1717-1722.

[4]Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley G Q. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature, 2004, 427:148-154.

[5]Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell, 2011, 146:519-532.

[6]Bucay N, Yebra M, Cirulli V, Afrikanova I, Kaido T, Hayek A, Montgomery A M. A novel approach for the derivation of putative primordial germ cells and sertoli cells from human embryonic stem cells. Stem Cells, 2009, 27:68-77.

[7]Fukunaga N, Teramura T, Onodera Y, Takehara T, Fukuda K, Hosoi Y. Leukemia inhibitory factor (LIF) enhances germ cell differentiation from primate embryonic stem cells. Cellular Reprogramming, 2010, 12:369-376.

[8]Teramura T, Takehara T, Kawata N, Fujinami N, Mitani T, Takenoshita M, Matsumoto K, Saeki K, Iritani A, Sagawa N, Hosoi Y. Primate embryonic stem cells proceed to early gametogenesis in vitro. Cloning and Stem Cells, 2007, 9:144-156.

[9]Tilgner K, Atkinson SP, Golebiewska A, Stojkovic M, Lako M, Armstrong L. Isolation of primordial germ cells from differentiating human embryonic stem cells. Stem Cells, 2008, 26:3075-3085.

[10]Yamauchi K, Hasegawa K, Chuma S, Nakatsuji N, Suemori H. In vitro germ cell differentiation from cynomolgus monkey embryonic stem cells. PLOS ONE, 2009, 4:e5338.

[11]Kee K, Angeles VT, Flores M, Nguyen HN, Reijo Pera R A. Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature, 2009, 462:222-225.

[12]Kang L, Wang J, Zhang Y, Kou Z H, Gao S R. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell,  2009, 5:135-138.

[13]Zhao X Y, Li W, Lü Z, Liu L, Tong M, Hai T, Hao J, Guo CL, Ma Q W, Wang L, Zeng F Y, Zhou Q. iPS cells produce viable mice through tetraploid complementation. Nature,  2009, 461(7260):86-90.

[14]Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from human fibroblasts by defined factors. Cell, 2007, 131(5):861-872.

[15]Wernig M, Zhao J P, Pruszak J, Hedlund E, Fu D D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R, Affiliations A. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’ s disease. Proceedings of National Academy of Sciences of the United States of America, 2008, 105(15):5856-5861.

[16]Dimos J T, Rodolfa K T, Niakan K K, Weisenthal L M, Mitsumoto H, Chung W, Croft G F, Saphier G, Leibel R, Goland R, Wichterle H, Henderson C E, Eggan K. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons.  Science,  2008, 321(5893):1218-1221.

[17]Schenke-Layland K, Rhodes K E, Angelis E, Butylkova Y, Heydarkhan-Hagvall S, Gekas C, Zhang R, Goldhaber J I, Mikkola H K, Plath K, Maclellan M D W R. Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells, 2008, 26(6):1537-1546.

[18]Duester G, Retinoic acid synthesis and signaling during early organogenesis. Cell, 2008, 134(6):921-931.

[19]Ghyselinck N B, Vernet N, Dennefeld C, Giese N, Nau H, Chambon P, Viville S, Mark M. Retinoids and spermatogenesis: lessons from mutant mice lacking the plasma retinol binding protein. Developmental Dynamics, 2006, 235: 1608-1622.

[20]Vernet N, Dennefeld C, Rochette-Egly C, Oulad-Abdelghani M, Chambon P, Ghyselinck N B, Mark M. Retinoic acid metabolism and signaling pathways in the adult and developing mouse testis. Endocrinology, 2006, 147:96-110.

[21]Sherley J L. Asymmetric cell kinetics genes: the key to expansion of adult stem cells in culture. Stem cells, 2002,20(6):561-572.

[22]Bowles J, Koopman P. Retinoci acid, meiosis and germ cell fate in mammals. Development, 2007,134(19):3401-3411.

[23]Bowles J, Knight D, Smith C, Wilhelm D, Richman J, Mayima S, Yashiro K, Chawengsaksophak K. Wilson M J, Rossant J, Hamada H, Koopman P. Retinoid signaling determines germ cell fate in mice. Science, 2006, 312:596-600.

[24]Pellegrini M, Grimaldi P, Rossi P, Geremia R, Dolci S. Developmental expression of BMP4/ALK3/SAMD5 signalling pathway in the mouse testis: a potential role of BMP4 in spermatogonia differentiation. Journal of Cell Science, 2003, 116: 3363-3372.

[25]West F D, Roche-Rios M I, Abraham S, Rao R R, Natrajan M S, Bacanamwo M, Stice S L. KIT ligand and bone morphogenetic protein signaling enhances human embryonic stem cell to germ-like cell differentiation. Human Reproduction, 2010, 25(1):168-178.

[26]He Z P. Derivation of male germ cells from induced pluripotent stem (iPS) cells: a novel and crucial source for generating male gametes. Asian Journal of Andrology, 2012, 14:516-517.

[27]West J A, Viswanathan S R, Yabuuchi A, Cunniff K, Takeuchi A, Park I H, Sero J E, Zhu H, Perez-Atayde A, Frazier A L, Surani M A, Daley G Q. A role for Lin28 in primordial germ-cell development and germ-cell malignancy.  Nature, 2009, 460(7257) :909-913.

[28]Zhu Y, Hu H L, Li P, Yang S, Zhang W, Ding H, Tian R H, Ning Y, Zhang L L, Guo X Z, Shi Z P, Li Z, He Z P. Generation of male germ cells from induced pluripotent stem cells (iPS cells): an in vitro and in vivo study. Asian Journal of Andrology, 2012, 14:574-579.

[29]Brinster R L. Germline stem cell transplantation and  transgenesis. Science, 2002, 296(5576):2174-2176.

[30]Payne C, Braun R E. Glial cell line-derived neurotrophic factor maintains a POZ-itive influence on stem cells. Proceedings of National Academy of Sciences of the United States of America, 2006, 103: 9751-9752.

[31]Ryu B Y, Orwig K E, Oatley J M, Avarbock M R, Brinster R L. Effects of aging and niche microenvironment on spermatogonial stem cell self-renewal. Stem Cells, 2006, 24: 1505-1511.

[32]Park T S, Galic Z, Conway A E, Lindgren A, Handel B J, Magnusson M, Richter L, Teitell M A, Mikkola H K, Lowry W E, Plath K, Clark A T. Derivation of primordial germ cells from human embryonic and induced pluripotent stem cells is significantly improved by coculture with human fetal gonadal cells. Stem Cells, 2009, 27(4):783-795.

[33]Imamura M, Aoi T, Tokumasu A, Mise N, Abe K, Yamanaka S, Noce T. Induction of primordial germ cells from mouse induced pluripotent stem cells derived from adult hepatocytes. Molecular Reproduction and Development, 2010; 77:802-811.

[34]Conrad S, Renninger M, Hennenlotter J, Wiesner T, Just L, Bonin M, Aicher W, Bühring HJ, Mattheus U, Mack A, Wagner H J, Minger S, Matzkies M, Reppel M, Hescheler J,Sievert KD, Stenzl A, Skutella T. Generation of pluripotent stem cells from adult human testis. Nature, 2008, 456:344-349.

[35]Ko K, Tapia N, Wu G, Kim J B, Bravo M J, Sasse P, Glaser T, Ruau D, Han D W, Greber B, Hausdörfer K, Sebastiano V, Stehling M, Fleischmann B K, Brüstle O, Zenke M, Schöler H R. Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cell, 2009, 5:87-96.

[36]Kossack N, Meneses J, Shefi S, Nguyen H N, Chavez S, Nicholas C, Gromoll J, Turek P J, Reijo-Pera R A. Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells. Stem Cells, 2009, 27:138-149.

[37]Easley Ⅳ C A, Phillips B T, McGuire M M, Barringer J M, Valli H, Hermann B P, Simerly C R, Rajkovic A, Miki T, Orwig K E, Schatten G P. Direct differentiation of human pluripotent stem  cells into haploid spermatogenic cells. Cell Reports, 2012, 2:1-7.

[38]Panula S, Medrano J V, Kee K, Bergström R, Nguyen H N, Byers B, Wilson K D, Wu J C, Simon C, Hovatta O, Reijo Pera R A. Human germ cell differentiation from fetal-and adult-derived induced pluripotent stem cells. Human Molecular Genetics, 2011, 20(4): 752-762.

[39]Eguizabal C, Montserrat N, Vassena R, Barragan M, Garreta E, Garcia-Quevedo L, Vidal F, Giorgetti A, Veiga A, Izpisua Belmonte J C. Complete meiosis from human induced pluripotent stem cells. Stem Cells, 2011, 29:1186-1195.

[40]Takahashi K, Yamanaka S. Induced of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126:663-676.

[41]Brambrink T, Foreman R, Welstead G G, Lengner C J, Wernig M, Suh H, Jaenisch R. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell, 2008, 2:151-159.

[42]Stadtfeld M, Nagaya M, Utikal, J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science, 2008,322:945-949.

[43]Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science, 2008,322:949-953.

[44]Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 2008, 26: 101-106.

[45]Koubova J, Menke D B, Zhou Q, Capel B, Griswold M D, Page D C. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proceedings of National Academy of Sciences of the United States of America, 2006, 103: 2474-2479.

[46]Zhou H, Wu S, Joo J Y, Zhu S, Han D W, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Schöler H R, Duan L, Ding S. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 2009, 4: 381-384.

[47]Hou P P, Li Y Q, Zhang X, Liu C, Guan J Y, Li H G, Zhao T, Ye J Q, Yang W F, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng H K. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 2013, 341(6146):651-654.

[48]Hanna J, Wernig M, Markoulaki S, Sun C W, Meissner A, Cassady J P, Beard C, Brambrink T, Wu L C, Townes T M, Jaenisch R. Treatment of Sickle Cell Anemia mouse model with iPS cells generated from autologous skin. Science, 2007, 318(5858):1920-1923.

[49]Tateishi K, He J, Taranova O, Liang G Y, D’Alessio A C, Zhang Y. Generation of Insulin-secreting islet-like clusters from human skin fibroblasts. Biological Chemistry, 2008, 283:31601-31607.

[50]Nelson T J, Martinez-Fernandez A, Yamada S, Perez-Terzic C, Ikeda Y, Terzic A. Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation, 2009, 120: 408-416.

[51]Nayernia K, Lee J H, Drusenheimer N, Nolte J, Wulf G, Dressel R, Gromoll J, Engel W. Derivation of male germ cells from bone marrow stem cells. Laboratory Investigation, 2006, 86(7): 654-663.

[52]Dyce P W, Wen L, Li J. In vitro germline potential of stem cells derived from fetal porcine skin. Nature Cell Biology, 2006, 8(4): 384-390.

[53]Ohinata Y, Ohta H, Shigeta M, Yamanaka K, Wakayama T, Saitou M. A signaling principle for the specification of the germ lineage in mice. Cell, 2009, 137: 571-584.
[1] YANG XinRan,MA XinHao,DU JiaWei,ZAN LinSen. Expression Pattern of m6A Methylase-Related Genes in Bovine Skeletal Muscle Myogenesis [J]. Scientia Agricultura Sinica, 2023, 56(1): 165-178.
[2] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[3] CHEN Yu,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,GUO Yun,DING ShiJie,ZHOU GuangHong. Differentiation of Porcine Muscle Stem Cells in Three-Dimensional Hydrogels [J]. Scientia Agricultura Sinica, 2022, 55(22): 4500-4512.
[4] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[5] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[6] HU RongRong,DING ShiJie,GUO Yun,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,TANG ChangBo,ZHOU GuangHong. Effects of Trolox on Proliferation and Differentiation of Pig Muscle Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(24): 5290-5301.
[7] DU JiaWei,DU XinZe,YANG XinRan,SONG GuiBing,ZHAO Hui,ZAN LinSen,WANG HongBao. Interference in TP53INP2 Gene Inhibits the Differentiation of Bovine Myoblasts [J]. Scientia Agricultura Sinica, 2021, 54(21): 4685-4693.
[8] CHEN Yuan,CAI He,LI Li,WANG LinJie,ZHONG Tao,ZHANG HongPing. Alternative Splicing of TNNT3 and Its Effect on the Differentiation of MuSCs in Goat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4466-4477.
[9] DU Qing,CHEN Ping,LIU ShanShan,LUO Kai,ZHENG BenChuan,YANG Huan,HE Shun,YANG WenYu,YONG TaiWen. Effect of Field Microclimate on the Difference of Soybean Flower Morphology Under Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2021, 54(13): 2746-2758.
[10] SHI GuoLiang,WU Qiang,YANG NianWan,HUANG Cong,LIU WanXue,QIAN WanQiang,WAN FangHao. Gene Cloning, Expression Pattern and Molecular Characterization of Chitin Deacetylase 2 in Cydia pomonella [J]. Scientia Agricultura Sinica, 2021, 54(10): 2105-2117.
[11] ZHAO JiYu,REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang. Relationship Between Growth and Development Characteristics and Yield Formation of Summer Maize Varieties Differing in Maturities [J]. Scientia Agricultura Sinica, 2021, 54(1): 46-57.
[12] QIN BenYuan,YANG Yang,ZHANG YanWei,LIU Min,ZHANG WanFeng,WANG HaiZhen,WU YiQi,ZHANG XueLian,CAI ChunBo,GAO PengFei,GUO XiaoHong,LI BuGao,CAO GuoQing. Isolation, Culture, Identification and Biological Characteristics of Pig Skeletal Muscle Satellite Cells [J]. Scientia Agricultura Sinica, 2020, 53(8): 1664-1676.
[13] LAI YuTing,ZHU FeiFei,WANG YiMin,GUO Hong,ZHANG LinLin,LI Xin,GUO YiWen,DING XiangBin. Effects of PSMB5 on the Proliferation and Myogenic Differentiation of Skeletal Muscle Satellite Cells [J]. Scientia Agricultura Sinica, 2020, 53(20): 4287-4296.
[14] YANG YunFei,XIN XiaoPing,LI JianDong. A Discussion on the Diffusion Pathway of Leymus Chinensis in the Natural Grassland of China Based on Differentiation in the Phenotypes and Genotypes [J]. Scientia Agricultura Sinica, 2020, 53(13): 2541-2549.
[15] ZHU JiangJiang,LIN YaQiu,WANG Yong,LIN Sen. Expression Profile and Correlations of Kruppel Like Factors During Caprine (Capra Hircus) Preadipocyte Differentiation [J]. Scientia Agricultura Sinica, 2019, 52(13): 2341-2351.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!