Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (13): 2341-2351.doi: 10.3864/j.issn.0578-1752.2019.13.012

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Expression Profile and Correlations of Kruppel Like Factors During Caprine (Capra Hircus) Preadipocyte Differentiation

ZHU JiangJiang1,LIN YaQiu1(),WANG Yong1,2,LIN Sen2   

  1. 1 Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu 610041
    2 Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu 610041
  • Received:2018-01-24 Accepted:2019-05-10 Online:2019-07-01 Published:2019-07-11
  • Contact: YaQiu LIN E-mail:linyq1999@163.com

Abstract:

【Objective】 The aim of this study was to optimize the culture system of goat preadipocytes in vitro and elucidate the expression patterns of Kruppel like factors (KLFs) during preadipocytes differentiation. 【Method】 Three 7-day-old Jianzhou Big-Eared goats were selected randomly from Sichuan Jianyang DAGEDA Animal Husbandry Co. Ltd. as experimental animal. After bloodletting death of goats, their subcutaneous fat tissues were collected in a sterile room. The goat subcutaneous preadipocytes were collected using collagenase I digestion method. The cells at Generation Three were then passaged to a 6-well plate when the cells were grown to 80% density. The combined use of were used for preadipocytes differentiate inducing. The cells were then collected after cultivation for 0 d, 3 d, 5 d and 7 d. The total RNA was extracted by using Trizol method. Real-time fluorescent quantitative PCR (RT-qPCR) was performed to determine the expression levels of 11 members of KLFs, including KLF2-10, KLF12 and KLF15, during goat preadipocytes differentiation. Pearson correlation coefficient was used for expression correlation analysis between KLF individuals. 【Result】 The results showed that the combined use of 150 μmol·L -1oleic acid and 10 mg·L -1 insulin promoted the formation of small lipid droplets after 24 h cultivation. After 48 h, the lipid droplets became bigger and much more. The differentiation of the preadipocytes were enhanced significantly after 120 h comparing with preadipocytes at 0 h. The results of RT-qPCR showed that the combined use of oleic acid and insulin stimulated the expression of peroxisome proliferator-activated receptor-gamma (PPARγ) continuously companying the differentiation of preadipocytes, and toped at 7 d which significantly higher than other groups (P<0.01). The expression levels of KLF2, KLF3, KLF4, KLF6, KLF7 and KLF15 in adipocytes were significantly (P<0.05) or extremely significantly (P<0.01) higher than those in preadipocytes. While the expression of KLF3, KLF6 and KLF15 were topped at 5 d, the KLF2 and KLF4 toped at 7 d. However, the KLF7 expressed most at 3 d. For the other KLF individuals, the expression levels of KLF5, KLF8, KLF9, KLF10 and KLF12 in preadipocytes were extremely significantly higher (P<0.01) than those in adipocytes. The expression of KLF8, KLF10 and KLF12 bottomed at 5 d, while that of the KLF5 and KLF9 bottomed at 7 d. Correlation analysis showed that KLF individual significantly (P<0.05) correlated with each other across cell differentiation. KLF12 was strongly correlated with 6 individuals, followed by KLF4 and KLF9 both of which were significantly correlated with 5 individuals. However, KLF2 was not significantly correlated with other individuals. 【Conclusion】 In this study, the expression patterns of KLFs during goat preadipocytes differentiation were clarified, and also the correlations among KLF individuals. These results provided important basic data for elucidating the molecular mechanism of goat preadipocytes differentiation.

Key words: goat, preadipocytes, differentiation, Kruppel like factors

Table 1

Primers information"

目的基因
Gene
登录号
Accession No.
引物序列(5′-3′)
Primer sequences
退火温度
TM (℃)
产物长度
Products length (bp)
KLF2 KU041748 S: GCGGCAAGACCTACACCAA 60 144
A: TGTGCTTGCGGTAGTGGC
KLF3 KU041753 S: CTCGGTGTCATACCCGTCTAAT 60 128
A: CCATCTGCATCCCGTGAGAC
KLF4 KU041754 S: GTCGGTCATCAGTGTTAGCAAAGG 62 126
A: ACGGTGCACGAGGAGACAGTCT
KLF5 KU041751 S:CACCTCCATCCTATGCTGCTAC 62 169
A:CAGCCTGGGTAATCGCAGTAGT
KLF6 KU041749 S:GCCTCTGAGATCAAATTCGACA 62 189
A:GGAGGACTCGCTGCTCACAT
KLF7 KU041750 S:TTCGGTGAGGACTTGGACTGTT 60 148
A:TGTCCCGAGAGAGCAGAATGTC
KLF8 KX247671 S:GACTACAGCAAGAACCAGCAGC 62 153
A:CTCCTGTATGGATTCTGCGGT
KLF9 KX247670 S:GGATACCTGGAAGGATTACTGC 60 172
A:GGAAGGACTCGACCCAGATT
KLF10 KU643198 S:GTCAGATACTGCCAAGCCTCAC 62 133
A:GTTACACAGTTGGGCATCAGC
KLF12 KX247669 S:GGTCTCCAAACGTCCACAAGTA 62 169
A:GAAACGGCTGTAGGGGATGTC
KLF15 KU041752 S:CTGACTCGCAAACCCTGTGT 62 192
A:ACTCGGGGAAGCTGAAATG
GAPDH XM_005680968 S:GCAAGTTCCACGGCACAG 62 118
A:TCAGCACCAGCATCACCC

Fig. 1

Induced differentiation of goat preadipocytes (100×) A. 24 h after cell differentiation inducing; B. 48 h after cell differentiation inducing; C. 72 h after cell differentiation inducing; D. 120 h after cell differentiation inducing"

Fig. 2

The expression of PPARγ during preadipocyte differentiation Different capital letters represents P<0.01, different lower-case letters represents P<0.05. The same as below "

Fig. 3

The expression of KLF2, KLF3, KLF4, KLF6, KLF7 and KLF15 during preadipocyte differentiation Different capital letters represents P<0.01, different lower-case letters represents P<0.05"

Fig. 4

The expression of KLF5, KLF8, KLF9, KLF10 and KLF12 during preadipocyte differentiation Different capital letters represents P<0.01, different lower-case letters represents P<0.05"

Table 2

The expression correlations of KLF in caprine (Capra hircus) preadipocyte differentiation"

KLF基因
KLF gene
2 3 4 5 6 7 8 9 10 12 15
2 1 0.126 0.517 -0.279 0.236 0.327 -0.569 -0.662 -0.076 -0.459 -0.400
3 1 0.423 -0.206 0.874** 0.027 -0.734* -0.516 -0.500 -0.400 0.467
4 1 -0.841** 0.299 0.770 -0.853** -0.890** -0.840** -0.984** 0.316
5 1 0.078 -0.617 0.595 0.734* 0.636 0.833* -0.085
6 1 0.029 -0.648 -0.436 -0.438 -0.296 0.534
7 1 -0.402 -0.458 -0.698 -0.841** 0.397
8 1 0.959**# 0.732* 0.770# -0.799#
9 1 0.861*# 0.842** -0.820*#
10 1 0.980**# -0.982**#
12 1 -0.988**#
15 1

Fig. 5

The correlation network among KLFs "

[1] STEPHENS J M . The fat controller: adipocyte development. PLoS Biology, 2012,10(11):e1001436.
doi: 10.1371/journal.pbio.1001436
[2] KACZYNSKI J, COOK T, URRUTIA R . Sp1 and Kruppel-like transcription factors. Genome Biology, 2003,4(2):206.
doi: 10.1186/gb-2003-4-2-206
[3] LEE D S, CHOI H, HAN B S, KIM W K, LEE S C, OH K J, BAE K H . c-Jun regulates adipocyte differentiation via the KLF15-mediated mode. Biochemical and Biophysical Research Communications, 2016,469(3):552-558.
doi: 10.1016/j.bbrc.2015.12.035
[4] WU Z N, WANG S Q . Role of kruppel-like transcription factors in adipogenesis. Developmental Biology, 2013,373(2):235-243.
doi: 10.1016/j.ydbio.2012.10.031
[5] PEI J, GRISHIN N V . A new family of predicted Krüppel-like factor genes and pseudogenes in placental mammals. PLoS ONE, 2013,8(11):e81109.
doi: 10.1371/journal.pone.0081109
[6] WEI S J, ZHANG L F, ZHOU X, DU M, JIANG Z H, HAUSMAN G J, BERGEN W G, ZAN L S, DODSON M V . Emerging roles of zinc finger proteins in regulating adipogenesis. Cellular and Molecular Life Sciences, 2013,70(23):4569-4584.
doi: 10.1007/s00018-013-1395-0
[7] BIRSOY K, CHEN Z, FRIEDMAN J . Transcriptional regulation of adipogenesis by KLF4. Cell Metabolism, 2008,7(4):339-347.
doi: 10.1016/j.cmet.2008.02.001
[8] PARK Y K, WANG L M, GIAMPIETRO A, LAI B B, LEE J E, GE K . Distinct roles of transcription factors KLF4, Krox20 and PPARγ in adipogenesis. Molecular and Cellular Biology, 2017,37(2):e00554-16.
[9] JIANG S Z, WEI H K, SONG T X, YANG Y, ZHAGN F, ZHOU Y F, PENG J, JIANG S W . KLF13 promotes porcine adipocyte differentiation through PPARγ activation. Cell & Bioscience, 2015,5:28.
[10] GUO H F, KHAN R, RAZA S H A, NING Y, WEI, D W, HOSSEINI S M, ULLA I, GARCIA M D, ZAN L S . KLF15 promotes transcription of KLF3 gene in bovine adipocytes. GENE, 2018,659(15):77-83.
doi: 10.1016/j.gene.2018.03.049
[11] 池永东, 王永, 朱江江, 林森, 赵越, 林亚秋 . 藏山羊KLF8基因克隆及组织表达分析. 基因组学与应用生物学, 2019,38(2):478-502.
CHI Y D, WANG Y, ZHU J J, LIN S, ZHAO Y, LIN Y Q . Cloning and tissue expression analysis of klf8 gene in Tibetan goat. Genomics and Applied Biology, 2019,38(2):478-502. (in Chinese)
[12] 田苗, 左璐璐, 张小玉, 柏雪, 江明锋, 林亚秋 . 牦牛KLF10基因克隆及组织表达分析. 黑龙江畜牧兽医, 2017,17(09/1):234-236.
TIAN M, ZUO L L, ZHANG X Y, BAI X, JIANG M F, LIN Y Q . Cloning and tissue expression analysis of Klf10 gene in Yak. Heilongjiang Animal Science and Veterinary Medicine, 2017,17(09/1):234-236. (in Chinese)
[13] 朱江江, 林亚秋, 王永, 李倩, 林森, 熊朝瑞, 俄木曲者 . 山羊KLF13 基因的克隆及表达分析. 农业生物技术学报. 2017,25(1):102-109.
ZHU J J, LIN Y Q, WANG Y, LI Q, LIN S, XIONG C R, EMU Q Z . Cloning and expression analysis of goat (Capra hircus) KLF13 gene. Journal of Agricultural Biotechnology, 2017,25(1):102-109. (in Chinese)
[14] NEVE B, FERNANDEZ-ZAPICO M E, ASHKENAZI-KATALAN V, DINA C, HAMID Y H, JOLY E, VAILLANT E, BENMEZROUA Y, DURAND E, BAKAHER N, DELANNOY V, VAXILLAIRE M, COOK T, DALLINGA-THIE G M, JANSEN H, CHARLES M A, CLEMENT K, GALAN P, HERCBERG S, HELBECQUE N, CHARPENTIER G, PRENTKI M, HANSEN T, PEDERSEN O, URRUTIA R, MELLOUL D, FROGUEL P . Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function.Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(13):4807-4812.
[15] WU G, YUAN S, CHEN Z, CHEN G, FAN Q, DONG H, YE F, LI J, ZHU X . The KLF14 transcription factor regulates glycolysis by downregulating LDHB in colorectal cancer. International Journal of Biological Sciences, 2019,15(3):628-635.
doi: 10.7150/ijbs.30652
[16] WANG J, GALVAO J, BEACH K M, LUO W, URRUTIA R A, GOLDBERG J L, OTTESON D C . Novel roles and mechanism for Kruppel-like Factor 16 (KLF16) regulation of neurite outgrowth and ephrin receptor A5 (EphA5) expression in retinal ganglion cells. Journal of Biological Chemistry, 2016,291(35):18084-18095.
doi: 10.1074/jbc.M116.732339
[17] ALI A, ZHANG P, LIANGFANG Y, WENSHE S, WANG H, LIN X, DAI Y, FENG X H, MOSES R, WANG D, LI X, XIAO J . KLF17 empowers TGF-β/Smad signaling by targeting Smad3-dependent pathway to suppress tumor growth and metastasis during cancer progression. Cell Death & Disease, 2015,6(3):e1681.
[18] PEARSON R, FLEETWOOD J, EATON S, CROSSLEY M, BAO S . Krüppel-like transcription factors: A functional family. International Journal of Biochemistry and Cell Biology, 2008,40(10):1996-2001.
doi: 10.1016/j.biocel.2007.07.018
[19] FUNNELL A P W, MALONEY C A, THOMPSON L J, KEYS J, TALLACK M, PERKINS A C, CROSSLEY M . Erythroid Kruppel- like factor directly activates the basic Kruppel-like factor gene in erythroid cells. Molecular and Cellular Biology, 2007,27(7):2777-2790.
doi: 10.1128/MCB.01658-06
[20] EATON S A, FUNNELL A P W, SUE N, NICHOLAS H, RICHARD C M, CROSSLEY M . A network of Krüppel-like factors (Klfs). Journal of Biological Chemistry, 2008,283(40):26937-26947.
doi: 10.1074/jbc.M804831200
[21] 郭红芳, 昝林森, 孙永刚 . 牛前体脂肪细胞的分离培养及诱导分化. 西北农林科技大学学报(自然科学版), 2012,42(2):1-6.
GUO H F, ZAN L S, SUN Y G . Primary culture and differentiation of bovine preadipocytes. Journal of Northwest A&F University, 2012,42(2):1-6. (in Chinese)
[22] SHANG Z C, GUO L, WANG N, SHI H, WANG Y X, LI H . Oleate promotes differentiation of chicken primary preadipocytes in vitro. Bioscience Reports, 2014,34(1):e00093.
[23] 吉红, 曹艳姿, 林亚秋, 刘品, 卢荣华, 苏尚顺, 杨公社, 奥宏海 . 草鱼前体脂肪细胞的原代培养. 水生生物学报, 2009,33(6):1226-1230.
JI H, CAO Y Z, LIN Y Q, LIU P, LU R H, SU S S, YANG G S, AO H H . Primary culture of grass carp preadipocyte in vitro. Acta Hydrobiologica Sinica, 2009,33(6):1226-1230. (in Chinese)
[24] 蔡勇, 阿依木古丽, 杨具田, 马忠仁, 卢建雄, 臧荣鑫, 吴建平 . 绵羊前体脂肪细胞的原代培养及分化. 动物营养学报, 2010,22(6):1768-1774.
doi: 10.3969/j.issn.1006-267x.2010.06.044
CAI Y, AYIMUGULI, YANG J T, MA Z R, LU J X, ZANG R X, WU J P . Primary culture and differentiation of Ovine preadipocytes. Chinese Journal of Animal Nutrition, 2010,22(6):1768-1774. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2010.06.044
[25] 曲贞晓, 刘金凤, 姜颖, 潘庆杰 . 山羊前体脂肪细胞体外培养试验. 青岛农业大学学报(自然科学版), 2013,30(1):1-5.
QU Z X, LIU J F, JIANG Y, PAN Q J . The culture experiment of goats preadipocytes in vitro. Journal of Qingdao Agricultural University(Natural Science), 2013,30(1):1-5. (in Chinese)
[26] 杜琛, 付绍印, 韩志玲, 孟丽云, 爱伦高娃, 高丽霞, 成立新, 张文广, 李金泉 . 绒山羊肌内前体脂肪细胞的基因表达分析. 畜牧兽医学报, 2013,44(10):1532-1538.
doi: 10.11843/j.issn.0366-6964.2013.10.004
DU C, FU S Y, HAN Z L, MENG L Y, AILUN G W, GAO L X, CHENG L X, ZHANG W G, LI J Q . Gene expression analysis on intramuscular preadipocytes in the cashmere goats. Acta Veterinaria et Zootechnica Sinica, 2013,44(10):1532-1538. (in Chinese)
doi: 10.11843/j.issn.0366-6964.2013.10.004
[27] CHEGURU P, CHAPALAMADUGU K C, DOUMIT M E, MURDOCH G K, HILL R A . Adipocyte differentiation-specific gene transcriptional response to C18 unsaturated fatty acids plus insulin. Pflugers Archiv-European Journal of Physiologyl, 2012,463(3):429-447.
doi: 10.1007/s00424-011-1066-7
[28] DING S T, WANG J C, MERSMANN H J . Effect of unsaturated fatty acids on porcine adipocyte differentiation. Nutrition Research, 2003,23(8):1059-1069.
doi: 10.1016/S0271-5317(03)00081-2
[29] ADINA K S, ROBERT Y H M, DANIEL L . Induction of fatty acid synthetase synthesis in differentiai 3T3-Ll preadipocytes. The Journal of Biological Chemistry, 1980,255(25):4745-4750.
[30] BANERJEE S S, FEINBERG M W, WATANABE M, GRAY S, HASPEL R L, DENKINGER D J, KAWAHARA R, HAUNER H, JAIN M K . The Kruppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-gamma expression and adipogenesis. Journal of Biological Chemistry, 2003,278(4):2581-2584 .
doi: 10.1074/jbc.M210859200
[31] LEE H, KANG R, KIM Y S, CHUANG S I, YOON Y . Platycodin D inhibits adipogenesis of 3T3-L 1 cells by modulating kruppel-like factor 2 and peroxisome proliferator-activated receptor γ. Phytotherapy Research, 2010,24(S2):S161-S167.
doi: 10.1002/ptr.v24.2s
[32] SUE N, JACK B H A, EATON S A, PEARSON R C M, FUNNELL A P W, TURNER J, CZOLIJ R, DENYER G, BAO S S, MOLERO-NAVAJAS J C, PERKINS A, FUJIWARA Y, ORKIN S H, BELL-ANDERSON K, CROSSLEY M . Targeted disruption ofthe basic Kriippel-like factor gene (Klf3) reveals a role in adipogenesis. Molecular and Cellular Biology, 2008,28(12):3967-3978.
doi: 10.1128/MCB.01942-07
[33] EISENSTEIN A, CARROLL S H, JOHNSTON-COX H, FARB M, GOKCE N, RAVID K . An adenosine receptor-Krüppel-like factor 4 protein axis inhibits adipogenesis. Journal of Biological Chemistry, 2014,289(30):21071-21081.
doi: 10.1074/jbc.M114.566406
[34] ZHANG Z W, WANG H X, SUN Y N, LI H, WANG N . Klf7 modulates the differentiation and proliferation of chicken preadipocyte. Acta Biochimical et Biophysica Sinica (Shanghai), 2013,45(4):280-288.
doi: 10.1093/abbs/gmt010
[35] LI D, YEA S, LI S, CHEN Z, NORLA G, BANCK M, LABORDA J, TAN S, FRIEDMAN J M, FRIEDMAN S L, WALSH M J . Kruppel- like factor-6 promotes preadipocyte differentiation through histone deacetylase 3-dependent repression of DLK1. Journal of Biological Chemistry, 2005,280(29):26941-26952.
doi: 10.1074/jbc.M500463200
[36] MATSUBARA Y, AOKI M, ENDO T, SATO K . Characterization of the expression profiles of adipogenesis-related factors, ZNF423, KLFs and FGF10, during preadipocyte differentiation and abdominal adipose tissue development in chickens. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 2013,165(3):189-195.
[37] AHMED M, GAFFEN S L . IL-17 inhibits adipogenesis in part via C/EBPα, PPARγ and Krüppel-like factors. Cytokine, 2013,61(3):898-905.
doi: 10.1016/j.cyto.2012.12.007
[38] OISHI Y, MANABE I, TOBE K, SHINDO T, FUJIU K, NISHIMURA G, MAEMURA K, YAMAUCHI T, KUBOTA N, SUZUKI R, KITAMURA T, AKIRA S, KADOWAKI T, NAGAI R . Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metabolism, 2005,1(1):27-39.
doi: 10.1016/j.cmet.2004.11.005
[39] CERVANTES-CAMACHO C, BELTRÁN-LANGARICA A, OCHOA- URIBE A K, MARSCH-MORENO M, AYALA-SUMUANO JT, VELEZ- DELVALLE C, KURI-HARCUCH W . The transient expression of Klf4 and Klf5 during adipogenesis depends on GSK3β activity. Adipocyte, 2015,4(4):248-255.
doi: 10.1080/21623945.2015.1007823
[40] LEE H, KIM H J, LEE Y J, LEE M Y, CHOI H, LEE H, KIM J W . Krüppel-like factor KLF8 plays a critical role in adipocyte differentiation. PLoS ONE, 2012,7(12):e52474.
doi: 10.1371/journal.pone.0052474
[41] PEI H, YAO Y, YANG Y, LIAO K, WU J R . Krüppel-like factor KLF9 regulates PPARγ transactivation at the middle stage of adipogenesis. Cell Death and Differentition, 2011,18(2):315-327.
doi: 10.1038/cdd.2010.100
[42] ILSLEY M D, GILLINDER K R, MAGOR G W, HUANG S, BAILEY T L, CROSSLEY M, PERKINS A C . Krüppel-like factors compete for promoters and enhancers to fine-tune transcription. Nucleic Acids Research, 2017,45(11):6572-6588.
doi: 10.1093/nar/gkx441
[43] FUNNELL A P, MAK K S, TWINE N A, PELKA G J, NORTON L J, RADZIEWIC T, POWER M, WIKINS M R , BELL-ANDERSON K S, FRASER S T, PERKINS A C, TAM P P, PEARSON R C M, CROSSLEY M . Generation of mice deficient in both KLF3/BKLF and KLF8 reveals a genetic interaction and a role for these factors in embryonic globin gene silencing. Molecular and Cellular Biology, 2013,33(15):2976-2987.
doi: 10.1128/MCB.00074-13
[1] YANG XinRan,MA XinHao,DU JiaWei,ZAN LinSen. Expression Pattern of m6A Methylase-Related Genes in Bovine Skeletal Muscle Myogenesis [J]. Scientia Agricultura Sinica, 2023, 56(1): 165-178.
[2] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[3] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[4] CHEN Yu,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,GUO Yun,DING ShiJie,ZHOU GuangHong. Differentiation of Porcine Muscle Stem Cells in Three-Dimensional Hydrogels [J]. Scientia Agricultura Sinica, 2022, 55(22): 4500-4512.
[5] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[6] RAN HongBiao,ZHAO LiLing,WANG Hui,CHAI ZhiXin,WANG JiKun,WANG JiaBo,WU ZhiJuan,ZHONG JinCheng. Effects of lncFAM200B on the Lipid Deposition in Intramuscular Preadipocytes of Yak [J]. Scientia Agricultura Sinica, 2022, 55(13): 2654-2666.
[7] DU Yu,WANG Yong,MENG QingYong,ZHU JiangJiang,LIN YaQiu. Knockdown Goat KLF12 to Promote Subcutaneous Adipocytes Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(1): 184-196.
[8] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[9] ZHAO Le,YANG HaiLi,LI JiaLu,YANG YongHeng,ZHANG Rong,CHENG WenQiang,CHENG Lei,ZHAO YongJu. Expression Patterns of TETs and Programmed Cell Death Related Genes in Oviduct and Uterus of Early Pregnancy Goats [J]. Scientia Agricultura Sinica, 2021, 54(4): 845-854.
[10] HU RongRong,DING ShiJie,GUO Yun,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,TANG ChangBo,ZHOU GuangHong. Effects of Trolox on Proliferation and Differentiation of Pig Muscle Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(24): 5290-5301.
[11] FENG YunKui,WANG Jian,MA JinLiang,ZHANG LiuMing,LI YongJun. Effects of miR-31-5p on the Proliferation and Apoptosis of Hair Follicle Stem Cells in Goat [J]. Scientia Agricultura Sinica, 2021, 54(23): 5132-5143.
[12] DU JiaWei,DU XinZe,YANG XinRan,SONG GuiBing,ZHAO Hui,ZAN LinSen,WANG HongBao. Interference in TP53INP2 Gene Inhibits the Differentiation of Bovine Myoblasts [J]. Scientia Agricultura Sinica, 2021, 54(21): 4685-4693.
[13] CHEN Yuan,CAI He,LI Li,WANG LinJie,ZHONG Tao,ZHANG HongPing. Alternative Splicing of TNNT3 and Its Effect on the Differentiation of MuSCs in Goat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4466-4477.
[14] DU Qing,CHEN Ping,LIU ShanShan,LUO Kai,ZHENG BenChuan,YANG Huan,HE Shun,YANG WenYu,YONG TaiWen. Effect of Field Microclimate on the Difference of Soybean Flower Morphology Under Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2021, 54(13): 2746-2758.
[15] SHI GuoLiang,WU Qiang,YANG NianWan,HUANG Cong,LIU WanXue,QIAN WanQiang,WAN FangHao. Gene Cloning, Expression Pattern and Molecular Characterization of Chitin Deacetylase 2 in Cydia pomonella [J]. Scientia Agricultura Sinica, 2021, 54(10): 2105-2117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!