Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (16): 3167-3173.doi: 10.3864/j.issn.0578-1752.2014.16.005

• PLANT PROTECTION • Previous Articles     Next Articles

Mechanism Analysis of Kynurenine 3-monooxygenase Gene BcKMO in Regulation of Pathogenicity in Botrytis cinerea

 LI  Pei-Fen, ZHAO  Fu-Xin, DONG  Li-Ping, ZHENG  Hui-Xin, ZHAO  Bin, HAN  Jian-Min, XING  Ji-Hong, DONG  Jin-Gao   

  1. Agricultural University of Hebei/ Laboratory of Mycotoxin and Molecular Plant Pathology, Baoding 071001, Hebei
  • Received:2014-01-27 Online:2014-08-18 Published:2014-04-15

Abstract: 【Objective】The objective of this study is to reveal the molecular mechanism of kynurenine 3-monooxygenase gene BcKMO in regulating pathogenicity of Botrytis cinerea and lay a foundation for clarifing the pathogenic mechanism of B. cinerea in the future.【Method】The activities of polymethylgalacturonase (PMG), endopolygalacturonase (PG), cellulase (CX), polygalacturonic acid transeliminase (PGTE) and pectin methyl transelimination enzyme (PMTE) were analyzed in the wild-type strain (WT), the BcKMO gene ATMT mutant (BCG183) and gene complement mutant (BCG183/BcKMO) by DNS and Hoffman methods. The toxin was isolated from WT, BCG183 and BCG183/BcKMO and the activity of toxin was analyzed. Acid production assays was performed on PDA medium with bromothymol blue. Penetrability of WT, BCG183 and BCG183/BcKMO was detected with onion epidermis spread on PDA medium. Real-time PCR was used to measure the transcription levels of pathogenicity-related genes, e.g., Bac, Bcg2, Bcg3, PkaR, Bmp1, Sak1, Bcreg1, Bos1, Bcp1, Ras2, Bcpg1, and Sod1 in WT, BCG183 and BCG183/BcKMO.【Result】The activity of PMG and PG in mutant BCG183 were significantly higher than that of WT and BCG183/BcKMO. The CX, PGTE and PMTE activities were no significant difference while compared with WT and BCG183/BcKMO. The toxin activity of mutant BCG183 was significantly higher than that of WT and BCG183/BcKMO. The acid production of the mutant BCG183 significantly decreased. The penetrability of mutant BCG183 appeared no significant difference compared to WT and BCG183/BcKMO. The expression level of pathogenicity-related genes, i.e., Bac, Bcg2, Bcg3, PkaR, Bmp1, Sak1, Bcreg1, Bos1, Bcp1, Ras2, Bcpg1, and Sod1, was obviously up-regulated in mutant BCG183.【Conclusion】The BcKMO gene is involved in regulating cell wall degradation enzyme activity, toxin activity, acid production, penetrability, and the expression of pathogenicity- related genes in B. cinerea.

Key words: Botrytis cinerea , BcKMO , mutants , pathogenicity

[1]Williamson B, Tudzynski B, Tudzynski P, van Kan J A. Botrytis cinerea: The cause of grey mould disease. Molecular Plant Pathology, 2007, 8(5): 561-580.

[2]van Kan J A. Licensed to kill: The lifestyle of a necrotrophic plant pathogen. Trends in Plant Science, 2006, 11(5): 247-253.

[3]Siegmund U, Heller J, van Kann J A, Tudzynski P. The NADPH oxidase complexes in Botrytis cinerea: Evidence for a close association with the ER and the tetraspanin Pls1. PLoS One, 2013, 8(2): e55879.

[4]Gourgues M, Brunet-Simon A, Lebrun M H, Levis C. The tetraspanin BcPls1 is required for appressorium-mediated penetration of Botrytis cinerea into host plant leaves. Molecular Microbiology, 2004, 51(3): 619-629.

[5]Choquer M, Becker H F, Vidal-Cros A. Identification of two group A chitinase genes in Botrytis cinerea which are differentially induced by exogenous chitin. Mycological Research, 2007, 111(5): 615-625.

[6]Patel R M, van Kan J A, Bailey A M, Foster G D. RNA-mediated gene silencing of superoxide dismutase (bcsod1) in Botrytis cinerea. Phytopathology, 2008, 98(12): 1334-1339.

[7]Doehlemann G, Berndt P, Hahn M. Different signalling pathways involving a G? protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Molecular Microbiology, 2006, 59(3): 821-835.

[8]张玉净, 郝志敏, 郑蒙, 张金林, 董金皋. 灰葡萄孢产孢缺陷菌株的遗传分析. 华北农学报, 2011, 26(3): 86-89.

Zhang Y J, Hao Z M, Zheng M, Zhang J L, Dong J G. Genetic analysis of sporulation defective in Botrytis cinerea. Acta Agriculturae Boreali-Sinica, 2011, 26(3): 86-89. (in Chinese)

[9]王璇, 邢继红, 赵斌, 韩建民, 董金皋. 灰葡萄孢分生孢子产生相关基因的克隆及功能分析. 微生物学通报, 2013, 40(3): 533-543.

Wang X, Xing J H, Zhao B, Han J M, Dong J G. Cloning and functional analysis of a gene related to conidiospore formation in Botrytis cinerea. Microbiology China, 2013, 40(3): 533-543. (in Chinese)

[10]Zhang S R, Hao Z M, Wang L H, Shen S, Cao Z Y, Xin Y Y, Hou M L, Gu S Q, Han J M, Dong J G. StRas2 regulates morphogenesis, conidiation and appressorium development in Setosphaeria turcica. Microbiological Research, 2012, 167(8): 478-486.

[11]Klimpel A, Gronover C S, Williamson B, Stewart J A, Tudzynski B. The adenylate cyclase (BAC) in Botrytis cinerea is required for full pathogenicity. Molecular Plant Pathology, 2002, 3(6): 439-450.

[12]Gronover C S, Kasulke D, Tudzynski P, Tudzynski B. The role of G protein alpha subunits in the infection process of the gray mold fungus Botrytis cinerea. Molecular Plant-Microbe Interactions, 2001, 14(11): 1293-1302.

[13]Schumacher J, Kokkelink L, Huesmann C, Jimenez-Teja D, Collado I G, Barakat R, Tudzynski P, Tudzynski B. The cAMP-dependent signaling pathway and its role in conidial germination, growth, and virulence of the gray mold Botrytis cinerea. Molecular Plant-Microbe Interactions, 2008, 21(11): 1443-1459.

[14]Zheng L, Campbell M, Murphy J, Lam S, Xu J R. The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea. Molecular Plant-Microbe Interactions, 2000, 13(7): 724-732.

[15]Heller J, Ruhnke N, Espino J J, Massaroli M, Collado I G, Tudzynski P. The mitogen-activated protein kinase BcSak1 of Botrytis cinerea is required for pathogenic development and has broad regulatory functions beyond stress response. Molecular Plant-Microbe Interactions, 2012, 25(6): 802-816.

[16]Segmuller N, Ellendorf U, Tudzynski B, Tudzynski P. BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryotic Cell, 2007, 6(2): 211-221.

[17]Michielse C B, Becker M, Heller J, Moraga J, Collado I G, Tudzynski P. The Botrytis cinerea Reg1 protein, a putative transcriptional regulator, is required for pathogenicity, conidiogenesis, and the production of secondary metabolites. Molecular Plant-Microbe Interactions, 2011, 24(9): 1074-1085.

[18]Yan L, Yang Q, Sundin G W, Li H, Ma Z. The mitogen-activated protein kinase BOS5 is involved in regulating vegetative differentiation and virulence in Botrytis cinerea. Fungal Genetics and Biology, 2010,47(9): 753-760.

[19]Viaud M, Brunet-Simon A, Brygoo Y, Pradier J M, Levis C. Cyclophilin A and calcineurin functions investigated by gene inactivation, cyclosporin A inhibition and cDNA arrays approaches in the phytopathogenic fungus Botrytis cinerea. Molecular Microbiology, 2003, 50(5): 1451-1465.

[20]ten Have A, Mulder W, Visser J, van Kan J A. The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Molecular Plant-Microbe Interactions, 1998, 11(10): 1009-1016.

[21]Juge N. Plant protein inhibitors of cell wall degrading enzymes. Trends in Plant Science, 2006, 11(7): 359-367.

[22]Choquer M, Fournier E, Kunz C, Levis C, Pradier J M, Simon A, Viaud M. Botrytis cinerea virulence factors: New insights into a necrotrophic and polyphageous pathogen. FEMS Microbiology Letters, 2007, 277(1): 1-10.

[23]Greenberg J T, Yao N. The role and regulation of programmed cell death in plant-pathogen interactions. Cellular Microbiology, 2004, 6: 201-211.

[24]van Baarlen P, Woltering E J, Staats M, van Kan J A. Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: An important role for cell death control. Molecular Plant Pathology, 2007, 8: 41-54.

[25]Schumacher J, Viaud M, Simon A, Tudzynski B. The G? subunit BCG1, the phospholipase C (BcPLC1) and the calcineurin phosphatase co-ordinately regulate gene expression in the grey mould fungus Botrytis cinerea. Molecular Microbiology, 2008, 67(5): 1027-1050.

[26]Rui O, Hahn M. The Slt2-type MAP kinase Bmp3 of Botrytis cinerea is required for normal saprotrophic growth, conidiation, plant surface sensing and host tissue colonization. Molecular Plant Pathology, 2007, 8(2): 173-184.

[27]Schamber A, Leroch M, Diwo J, Mendgen K, Hahn M. The role of mitogen-activated protein (MAP) kinase signalling components and the Ste12 transcription factor in germination and pathogenicity of Botrytis cinerea. Molecular Plant Pathology, 2010, 11(1): 105-119.

[28]Schumacher J, de Larrinoa I F, Tudzynski B. Calcineurin-responsive zinc finger transcription factor CRZ1 of Botrytis cinerea is required for growth, development, and full virulence on bean plants. Eukaryotic Cell, 2008, 7(4): 584-601.
[1] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[2] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[3] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[4] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[5] ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513.
[6] LI ZhengGang,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,HE ZiFu. Molecular Characteristics and Pathogenicity Analysis of Youcai Mosaic Virus Guangdong Isolate Infecting Radish [J]. Scientia Agricultura Sinica, 2022, 55(14): 2752-2761.
[7] ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903.
[8] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[9] ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109.
[10] ZHAO JingYa,XIA HuiQing,PENG MengYa,FAN Zhuo,YIN Yue,XU SaiBo,ZHANG Nan,CHEN WenBo,CHEN LinLin. Identification and Functional Analysis of Transcription Factors FpAPSES in Fusarium pseudograminearum [J]. Scientia Agricultura Sinica, 2021, 54(16): 3428-3439.
[11] ZHENG XinShi,SHANG PengXiang,LI JingYuan,DING XinLun,WU ZuJian,ZHANG Jie. Effects of Proteins Encoded by “C4 ORFs” of Cotton Leaf Curl Multan Virus on Viral Pathogenicity [J]. Scientia Agricultura Sinica, 2021, 54(10): 2095-2104.
[12] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
[13] LI ZhengGang,NONG Yuan,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Molecular Characteristic and Pathogenicity Analyses of Cucumber green mottle mosaic virus (CGMMV) Infecting Bottle Gourd in Lianzhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(5): 955-964.
[14] LI YueYue,ZHOU WenPeng,LU SiQian,CHEN DeRong,DAI JianHong,GUO QiaoYou,LIU Yong,LI Fan,TAN GuanLin. Occurrence and Biological Characteristics of Tomato mottle mosaic virus on Solanaceae Crops in China [J]. Scientia Agricultura Sinica, 2020, 53(3): 539-550.
[15] WANG BaoBao,GUO Cheng,SUN SuLi,XIA YuSheng,ZHU ZhenDong,DUAN CanXing. The Genetic Diversity, Pathogenicity, and Toxigenic Chemotypes of Fusarium graminearum Species Complex Causing Maize Ear Rot [J]. Scientia Agricultura Sinica, 2020, 53(23): 4777-4790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!