Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (19): 4066-4074.doi: 10.3864/j.issn.0578-1752.2013.19.012

• PLANT PROTECTION • Previous Articles     Next Articles

Bioinformatics of Downy Mildew Resistance to Cucumber Candidate Genes and Specific Expression in Organise

 LIU  Da-Jun-12, QIN  Zhi-Wei-1, ZHOU  Xiu-Yan-1, WU  Tao-1, XIN  Ming-1   

  1. 1.College of Horticulture, Northeast Agricultural University, Harbin 150030
    2.Harbin Academy of Agricultural Sciences,       Harbin 150029
  • Received:2013-02-07 Online:2013-10-01 Published:2013-04-19

Abstract: 【Objective】The objective of this study is to investigate the downy mildew resistance genes in cucumber, and to clarify its molecular mechanism. 【Method】Cucumber candidate genes with resistance against downy mildew were identified from the cucumber genome database and blast protein sequences in Arabidopsis thaliana, and melon downy mildew resistance genes. Cucumber candidate genes were analyzed by bioinformatics way. Inbred line M801-3-1 with downy mildew resistance was used as test materials. Expression patterns of the genes were monitored by RT-PCR technique in cucumber leaf.【Result】One hundred and eighty-seven cucumber candidate genes as resistances against downy mildew were identified. Through bioinformatics analysis, the location of candidate genes in chromosomes and characteristics of arrangement were confirmed, and sequence comparability characteristics and relationship of system evolution were analyzed. The results of RT-PCR test indicated that most of the tested genes expressed either sprayed with the pathogen or water. The results of Florescent real-time quantitative RT-PCR test indicated that only Csa001907 and Csa002921 showed significant reduction in the leaves sprayed with the pathogen. 【Conclusion】 In the cucumber genome, there are 185 genes homologous A. thaliana downy mildew resistance genes, and there are 2 genes homologous melon resistance to downy mildew genes At1 and At2. Through clustering analysis these genes can be divided into 6 categories. Csa001907 and Csa002921 are most likely R gene of cucumber downy mildew resistance. R genes may be stablly expressed in leaves, R genes original expressions are interfered that may be the reasons of cucumber downy mildew infections.

Key words: cucumber , downy mildew resistance gene , RT-PCR , gene expression analysis

[1]Goker M, Voglmayr H, Riethmuller A, Oberwinkler F. How do obligate parasites evolve? A multi-gene phylogenetic analysis of downy mildews. Fungal Genetic and Biology, 2007, 44(2): 105-122.

[2]Bouwmeester K, van Poppel P M J A, Govers F. Genome biology cracks enigmas of oomycete plant pathogens. Annual Plant Reviews, 2009, 34: 102-133.

[3]Cohen Y, Meron I, Mor N, Zuriel S. A new pathotype of Pseudoperonospora cubensis causing downy mildew in cucurbits in Israel. Phytoparasitica, 2003, 31(5): 458-466.

[4]Colucci S J, Wehner T C, Holmes G J. The downy mildew epidemic of 2004 and 2005 in the eastern United States//Holmes G J. Proceedings of Cucurbitaceae 2006. North Carolina, USA: Universal Press, 2006: 403-411.

[5]Olczak-Woltman H, Marcinkowska J, Niemirowicz-Szczytt K. The genetic basis of resistance to downy mildewin Cucumis spp.-latest developments and prospects. Journal of Applied Genetics, 2011, 52: 249-255.

[6]Dangl J L, Jones J D. Plant pathogens and integrated defence responses to infection. Nature, 2001, 411(6839): 826-833.

[7]Holub E B. The arms race is ancient history in Arabidopsis, the wildflower. Nature Reviews Genetic, 2001, 2: 516-527.

[8]丁国华, 秦智伟, 刘宏宇, 周秀艳, 池春玉, 王志坤. 黄瓜NBS类型抗病基因同源序列的克隆与分析. 园艺学报, 2005, 32(4): 638-642.

Ding G H, Qin Z W, Liu H Y, Zhou X Y, Chi Y C, Wang Z K. Analysis and cloning of NBS class disease resistant gene analog in cucumber. Acta Horticulturae Sinica, 2005, 32(4): 638-642. (in Chinese)

[9]李金鑫. 黄瓜抗霜霉病相关基因的鉴定[D]. 哈尔滨: 东北农业大学, 2007.

Li J X. Identification of cucumber resistant downy mildew mutuality gene[D]. Harbin: Northeast Agricultural University, 2007. (in Chinese)

[10]王丽娟, 牛德, 孙彩玉, 秦智伟. 霜霉病菌侵染的黄瓜叶片cDNA文库的构建及抗病相关基因筛选. 园艺学报, 2010, 37(11): 1775-1782.

Wang L J, Niu D, Sun C Y, Qin Z W. Construction of cDNA library from cucumber leaves infection by Pseudoperonospora cubensis and screening of resistance-related genes. Acta Horticulturae Sinica, 2010, 37(11): 1775-1782. (in Chinese)

[11]李建吾, 司胜伟, 胡建斌, 刘丽君. 黄瓜霜霉病抗性相关基因的初步研究. 园艺学报, 2011, 38(3): 471-478.

Li J W, Si S W, Hu J B, Liu L J. Preliminary study on resistance- related genes in cucumber inoculated with Pseudoperonospora cubensis. Acta Horticulturae Sinica, 2011, 38(3): 471-478. (in Chinese)

[12]Taler D, Galperin M, Benjamin I, Cohen Y, Kenigsbuch D. Plant eR genes that encode photorespiratory enzymes confer resistance against disease. The Plant Cell, 2004, 16: 172-184.

[13]康静. 氨基转移酶基因 (eR基因) 的克隆及在黄瓜中的遗传转化[D]. 长春: 吉林农业大学, 2007.

Kang J. Clone of plant aminotransferases genes (eR genes) and transformation in cucumber[D]. Changchun: Jilin Agricultural University, 2007. (in Chinese)

[14]Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas W J, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, van der Vossen E A, Wu Y, Guo J, He J, Jia Z, Ren Y, Tian G, Lu Y, Ruan J, Qian W, Wang M, Huang Q, Li B, Xuan Z, Cao J, Asan, Wu Z, Zhang J, Cai Q, Bai Y, Zhao B, Han Y, Li Y, Li X, Wang S, Shi Q, Liu S, Cho W K, Kim J Y, Xu Y, Heller-Uszynska K, Miao H, Cheng Z, Zhang S, Wu J, Yang Y, Kang H, Li M, Liang H, Ren X, Shi Z, Wen M, Jian M, Yang H, Zhang G, Yang Z, Chen R, Liu S, Li J, Ma L, Liu H, Zhou Y, Zhao J, Fang X, Li G, Fang L, Li Y, Liu D, Zheng H, Zhang Y, Qin N, Li Z, Yang G, Yang S, Bolund L, Kristiansen K, Zheng H, Li S, Zhang X, Yang H, Wang J, Sun R, Zhang B, Jiang S, Wang J, Du Y, Li S. The genome of the cucumber, Cucumis sativus L. Nature Genetic, 2009, 41(12): 1275-1281.

[15]王岩, 李兆阳, 唐心龙, 卢姗, 许鹏, 张静, 方奎, 席景会. 拟南芥基因组NBS-LRR类基因家族的生物信息学分析. 中国农学通报, 2009, 25(15): 40-45.

Wang Y, Li Z Y, Tang X L, Lu S, Xu P, Zhang J, Fang K, Xi J H. Bioinformatic analysis of the NBS-LRR gene family in Arabidopsis thaliana. Chinese Agricultural Science Bulletin, 2009, 25(15): 40-45. (in Chinese)

[16]Bittner-Eddy P D, Crute I R, Holub E B, Beynon J L. RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica. The Plant Journal, 2000, 21(2): 177-188.

[17]Botella M A, Parker J E, Frost L N, Bittner-Eddy P D, Beynon J L, Daniels M J, Holub E B, Jones J D. Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants. The Plant Cell, 1998, 10: 1847-1860.

[18]Cooley M B, Pathirana S, Wu H J, Kachroo P, Klessig D F. Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. The Plant Cell, 2000, 12: 663-676.

[19]McDowell J M, Dhandaydham M, Long T A, Aarts M G M, Goff S, Holub E B, Dangl J L. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. The Plant Cell, 1998, 10: 1861-1874.

[20]Parker J E, Coleman M J, Szabo V, Frost L N, Schmidt R, Van der Biezen E A, Moores T, Dean C, Daniels M J, Jones J D G. The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6. The Plant Cell, 1997, 9: 879-894.

[21]Parker J E, Holub E B, Frost L N, Falk A, Gunn N D, Daniels M J. Characterisation of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. The Plant Cell, 1996, 8: 2033-2046.

[22]Flor H H. Current status of the gene-for-gene concept. Annul Reviews of Phytopathology, 1971, 9: 275-296.

[23]Liu J L, Liu X L, Dai L Y, Wang G L. Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants. Journal of Genetics and Genomics, 2007, 34(9): 765-776.

[24]吴嘉, 杨红玉, 郭丽红. 植物NB-LRR类R蛋白的结构和功能. 植物保护, 2009, 35(6): 1-5.

Wu J, Yang H Y, Guo L H. The structure and function of the NB-LRR protein-a class of plant R proteins. Plant Protection, 2009, 35(6): 1-5. (in Chinese)

[25]Tan X P, Meyers B C, Kozik A, West M A, Morgante M, St Clair D A, Bent A F, Michelmore R W. Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis. BMC Plant Biology, 2007, 7: 56.

[26]Joobeur T, King J J, Nolin S J, Thomas C E, Dean R A. The  fusarium wilt resistance locus Fom-2 of melon contains a single resistance gene with complex features. The Plant Journal, 2004, 39(3): 283-297.

[27]Thomas C E, Cohen Y, McCreight J D, Jourdain E L, Cohen S. Inheritance of resistance to downy mildew in Cucumis melo. Plant Disease, 1988, 72: 33-35.

[28]Epinat C, Pitrat M. Inheritance of resistance to downy mildew (Pseudoperonospora cubensis) in muskmelon (Cucumis melo). I. Analysis of a 8×8 diallel table. Agronomie, 1994, 14(4): 239-248.

[29]Angelov D, Krasteva L. Dominant inheritance of downy mildew resistance in melons. Acta Horticulture, 2000, 510: 273-275.

[30]Doruchowski R W, Lakowska R. Inheritance of resistance to downy mildew (Pseudoperonospora cubensis Berk & Curt) in Cucumis sativus//Doruchowski R W. Proceedings of the V Eucarpia Cucurbitaceae Symposium. Skierniewice-Warszawa, 1992: 132-138.

[31]张胜菊, 司龙亭. 黄瓜霜霉病抗性的遗传表现与基因效应分新. 北方园艺, 2009(4): 71-72.

Zhang S J, Si L T. Analysis of genetic effects for resistance to cucumber downy mildew. Northern Horticulture, 2009(4): 71-72. (in Chinese)
[1] WANG YiDan,YANG FaLong,CHEN DiShi,XIANG Hua,REN YuPeng. One-Step Multiple TaqMan Real-time RT-PCR for Simultaneous Detection of Swine Diarrhea Viruses [J]. Scientia Agricultura Sinica, 2023, 56(1): 179-192.
[2] WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda [J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578.
[3] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[4] XIE LiXue,ZHANG XiaoYan,ZHANG LiJie,ZHENG Shan,LI Tao. Complete Genome Sequence Characteristics and TC-RT-PCR Detection of East Asian Passiflora Virus Infecting Passiflora edulis [J]. Scientia Agricultura Sinica, 2022, 55(22): 4408-4418.
[5] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[6] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[7] WANG JunZheng,ZHANG Qi,GAO ZiXing,MA XueQiang,QU Feng,HU XiaoHui. Effects of Two Microbial Agents on Yield, Quality and Rhizosphere Environment of Autumn Cucumber Cultured in Organic Substrate [J]. Scientia Agricultura Sinica, 2021, 54(14): 3077-3087.
[8] LI ZhengGang,NONG Yuan,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Molecular Characteristic and Pathogenicity Analyses of Cucumber green mottle mosaic virus (CGMMV) Infecting Bottle Gourd in Lianzhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(5): 955-964.
[9] KANG JunMei,ZHANG QiaoYan,JIANG Xu,WANG Zhen,ZHANG TieJun,LONG RuiCai,CUI HuiTing,YANG QingChuan. Cloning MsSQE1 from Alfalfa and Functional Analysis in Saponin Synthesis [J]. Scientia Agricultura Sinica, 2020, 53(2): 247-260.
[10] XU JianJian,WANG YanJiao,DUAN Yu,MA ZhiMin,BIN Yu,ZHOU ChangYong,SONG Zhen. Construction of Genome-Length cDNA of Citrus Vein Enation Virus and Identification of Its Infectivity [J]. Scientia Agricultura Sinica, 2020, 53(18): 3707-3715.
[11] ZHOU Qi,LIU XiaoPing,BO KaiLiang,MIAO Han,DONG ShaoYun,GU XingFang,ZHANG ShengPing. Cloning and Analysis of Folate Synthesis Key Genes in Cucumber [J]. Scientia Agricultura Sinica, 2020, 53(18): 3764-3776.
[12] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[13] LIU YiRan,ZHANG Hong,JIN JiSu,ZHOU ZhongShi,GUO JianYing. Identification and Expression Analysis of the Halloween Gene Family in Agasicles hygrophila [J]. Scientia Agricultura Sinica, 2020, 53(10): 2009-2019.
[14] HeXu CAI,KaiLiang BO,Qi ZHOU,Han MIAO,ShaoYun DONG,XingFang GU,ShengPing ZHANG. GWAS Analysis of Hypocotyl Length and Candidate Gene Mining in Cucumber Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(1): 122-132.
[15] Jian PAN,HaiFan WEN,HuanLe HE,HongLi LIAN,Gang WANG,JunSong PAN,Run CAI. Genome-Wide Identification of Cucumber ERF Gene Family and Expression Analysis in Female Bud Differentiation [J]. Scientia Agricultura Sinica, 2020, 53(1): 133-147.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!