Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (13): 2717-2729.doi: 10.3864/j.issn.0578-1752.2013.13.010

• HORTICULTURE • Previous Articles     Next Articles

Evolutionary Studies of S-RNase Genes in Genus Malus

 TANG  Liang, MA  Xiang, LI  Ming-Xia, ZHOU  Zhi-Qin   

  1. 1.Key Laboratory of Horticulture Science for Southern Mountainous Regions,Ministry of Education, Southwest University, Chongqing 400715
    2.College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716
  • Received:2013-01-07 Online:2013-07-01 Published:2013-05-06

Abstract: 【Objective】By analyzing the sequences of S-RNase gene at the self-incompatibility loci, its evolutionary history, sequence divergence and genetic polymorphism were studied for species belonged to genus Malus. 【Method】All of the Malus S-RNase genes were retrieved from GenBank by NCBI BLAST using the known S-RNase genes of Malus domestica, except four S-RNase genes of M. kansuensis and M. toringoides which were obtained by PCR amplification and clone sequencing. The evolutionary history of the Malus S-RNase genes was studied by phylogenetic analysis, and the characteristics of sequence divergence were analyzed. The genetic polymorphisms and divergence were estimated for different taxa of Malus.【Result】The S-RNase genes of Malus can be divided into 16 clearly delimitated subgroups, the divergence of S-RNase genes within subgroups was low, while it was high among subgroups. There were 50% dN/dS estimations that were greater than 1 among S-RNase gene pairs, and S-RNase genes possessed multiple codons of which dN/dS ratio was greater than 1. There was no difference in the genetic polymorphism between M. domestica and wild Malus species, and the closet taxa with M. domestica was M. sieversii based on divergence of S-RNase gene.【Conclusion】Adaptive amino acid substitutions play an important role in the sequence divergence of S-RNase in Malus. According to the analysis of S-RNase genes belonging to Malus, it was found that the genetic polymorphism of M. domestica has not been affected by cultivation, and M. domestica was derived from M. sieversii through human domestication.

Key words: Malus , S-RNAse gene , evolutionary history , sequence divergence , genetic polymorphism

[1]Takayama S, Isogai A. Self-incompatibility in plants. Annual Review of Plant Biology, 2005, 56: 467-489.

[2]Hua Z H, Fields A, Kao T H. Biochemical models for S-RNase-based self-incompatibility. Molecular Plant, 2008, 1(4): 575-585.

[3]Iwano M, Takayama S. Self/non-self discrimination in angiosperm self-incompatibility. Current Opinion in Plant Biology, 2012, 15(1): 78-83.

[4]Brennan A C, Harris S A, Hiscock S J. The population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae): the number, frequency, and dominance interactions of S alleles across its British range. Evolution, 2006, 60: 213-224.

[5]Edh K, Widen B, Ceplitis A. Molecular population genetics of the SRK and SCR self-incompatibility genes in the wild plant species Brassica cretica (Brassicaceae). Genetics, 2009, 181(3): 985-995.

[6]Edh K, Widen B, Ceplitis A. The evolution and diversification of S-locus haplotypes in the Brassicaceae family. Genetics, 2009, 181(3): 977-984.

[7]Broothaerts W. New findings in apple S-genotype analysis resolve previous confusion and request the re-numbering of some S-alleles. Theoretical and Applied Genetics, 2003, 106(4): 703-714.

[8]de Albuquerque C L, Denardi F, Dantas A C D, Nodari R O. The self-incompatible RNase S-alleles of Brazilian apple cultivars. Euphytica, 2011, 181(2): 277-284.

[9]Garkava-Gustavsson L, Kolodinska Brantestam A, Sehic J, Nybom H. Molecular characterisation of indigenous Swedish apple cultivars based on SSR and S-allele analysis. Hereditas, 2008, 145(3): 99-112.

[10]Halasz J, Hegedus A, Gyorgy Z, Pallinger E, Toth M. S-genotyping of old apple cultivars from the Carpathian basin: methodological, breeding and evolutionary aspects. Tree Genetics & Genomes, 2011, 7(6): 1135-1145.

[11]Heo S, Han S E, Kwon S I, Jun J H, Kim M J, Lee H J. Identification of S-allele genotypes of Korean apple cultivars by using allele-specific polymerase chain reaction. Horticulture Environment and Biotechnology, 2011, 52(2): 158-162.

[12]Kim H T, Hattori G, Hirata Y, Kim D I, Hwang J H, Shin Y U, Nou I S. Determination of self-incompatibility genotypes of Korean apple cultivars based on S-RNase PCR. Journal of Plant Biology, 2006, 49(6): 448-454.

[13]Kitahara K, Matsumoto S. Sequence of the S10 cDNA from ‘McIntosh’ apple and a PCR-digestion identification method. HortScience, 2002, 37(1): 187-190.

[14]Long S S, Li M F, Han Z H, Wang K, Li T Z. Characterization of three new S-alleles and development of an S-allele-specific PCR system for rapidly identifying the S-genotype in apple cultivars. Tree Genetics & Genomes, 2010, 6(2): 161-168.

[15]龙慎山, 李茂福, 韩振海, 张冰冰, 王昆, 李天忠. 苹果两个新S-RNase基因克隆与46 个品种S基因型鉴定. 农业生物技术学报, 2010, 18 (2): 1-7.

Long S S, Li M F, Han Z H, Zhang B B, Wang K, Li T Z. Characterization of two novel S-RNase genes and PCR analyzing of S-genotypes of 46 cultivars in Malus domestica Borkh. Journal of Agricultural Biotechnology, 2010, 18(2): 1-7. (in Chinese)

[16]李天忠, 龙慎山, 李茂福, 白松龄, 孟冬. 苹果自交不亲和基因型(S基因)研究进展. 中国农业科学, 2011, 44(6): 1173-1183.

Li T Z, Long S S, Li M F, Bai S L, Meng D. Advances in research of the self-incompatibility genotypes (S-genotypes) in apple. Scientia Agricultura Sinica, 2011, 44(6): 1173-1183. (in Chinese)

[17]Li T Z, Long S S, Li M F, Bai S L, Zhang W. Determination S-genotypes and identification of five novel S-RNase alleles in wild Malus species. Plant Molecular Biology Reporter, 2012, 30(2): 453-461.

[18]Altschul S F, Madden T L, Schaffer A A, Zhang J H, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 1997, 25(17): 3389-3402.

[19]Doyle J J, Doyle J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 1987, 19: 11-15.

[20]Ishimizu T, Shinkawa T, Sakiyama F, Norioka S. Primary structural features of Rosaceous S-RNases associated with gametophytic self-incompatibility. Plant Molecular Biology, 1998, 37(6): 931-941.

[21]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 2011, 28(10): 2731-2739.

[22]Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 1980, 16: 111-120.

[23]Saitou N, Nei M. The Neighbor-Joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 1987, 4(4): 406-425.

[24]Guindon S, Dufayard J F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 2010, 59(3): 307-321.

[25]PosadaD, Crandall K A. MODELTEST: testing the model of DNA substitution. Bioinformatics, 1998, 14(9): 817-818.

[26]Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution, 1986, 3(5): 418-426.

[27]Steinway S N, Dannenfelser R, Laucius C D, Hayes J E, Nayak S. JCoDA: a tool for detecting evolutionary selection. BMC Bioinformatics, 2010, 11: 284.

[28]Librado P, Rozas J. DNASP V5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 2009, 25(11): 1451-1452.

[29]Newbigin E, Uyenoyama M K. The evolutionary dynamics of self-incompatibility systems. Trends in Genetics, 2005, 21(9): 500-505.

[30]Charlesworth D, Vekemans X, Castric V, Glemin S. Plant self- incompatibility systems: a molecular evolutionary perspective. New Phytologist, 2005, 168(1): 61-69.

[31]Tian F, Stevens N M, Buckler E S. Tracking footprints of maize domestication and evidence for a massive selective sweep on chromosome 10. Proceedings of the National Academy of Sciences of the USA, 2009, 106(1): 9979-9986.

[32]Zhu Q H, Zheng X M, Luo J C, Gaut B S, Ge S. Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: Severe bottleneck during domestication of rice. Molecular Biology and Evolution, 2007, 24(3): 875-888.

[33]Glemin S, Gaude T, Guillemin M, Lourmas M, Olivieri I, Mignot A. Balancing selection in the wild: testing population genetics theory of self-incompatibility in the rare species Brassica insularis. Genetics, 2005, 171(1): 279-289.

[34]Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar S K, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Salamini F, Viola R. The genome of the domesticated apple (Malus x domestica Borkh.). Nature Genetics, 2010, 42(10): 833-839.
[1] GAO Yuan,WANG DaJiang,WANG Kun,CONG PeiHua,ZHANG CaiXia,LI LianWen,PIAO JiCheng. Genetic Diversity and Phylogenetics of Malus baccata (L.) Borkh Revealed by Chloroplast DNA Variation [J]. Scientia Agricultura Sinica, 2020, 53(3): 600-611.
[2] GAO Yuan,WANG DaJiang,WANG Kun,CONG PeiHua,LI LianWen,PIAO JiCheng. Genetic Relationship and Structure Analysis of 15 Species of Malus Mill. Based on SNP Markers [J]. Scientia Agricultura Sinica, 2020, 53(16): 3333-3343.
[3] XIA GuiMin,SUN YuanYuan,WANG WeiZhi,WU Qi,CHI DaoCai. The Characteristics of Sap Flow of Hanfu Apple Trees and Its Response to Environmental Factors [J]. Scientia Agricultura Sinica, 2019, 52(4): 701-714.
[4] BIAN ShuXun,HAN XiaoLei,YUAN GaoPeng,ZHANG LiYi,TIAN Yi,ZHANG CaiXia,CONG PeiHua. Cloning and Functional Analysis of U6 Promoter in Apple [J]. Scientia Agricultura Sinica, 2019, 52(23): 4364-4373.
[5] LI FeiHong,HOU YingJun,LI XueHan,YU XinYi,QU ShenChun. Cloning and Function Analysis of Apple Gibberellin Oxidase Gene MdGA2ox8 [J]. Scientia Agricultura Sinica, 2018, 51(22): 4339-4351.
[6] GAO Yuan, WANG Kun, WANG DaJiang, ZHAO JiRong, ZHANG CaiXia, CONG PeiHua, LIU LiJun, LI LianWen, PIAO JiCheng. The Genetic Diversity and Population Structure Analysis on   Malus baccata (L.) Borkh from 7 Sources [J]. Scientia Agricultura Sinica, 2018, 51(19): 3766-3777.
[7] WANG YanFang, XIANG Li, XU ShaoZhuo, WANG Sen, WANG XiaoWei, CHEN XueSen, MAO ZhiQuan, ZHANG Min. Effects of Biochar and Chitin Combined Application on Malus hupehensis Rehd. Seedlings and Soil Environment Under Replanting Conditions [J]. Scientia Agricultura Sinica, 2017, 50(4): 711-719.
[8] LIU LiNa, YANG Jing, XU LiuYan, LI ChengYun. Genetic Diversity Analysis of Pi-ta Gene 3′-UTR in Rice Landraces [J]. Scientia Agricultura Sinica, 2017, 50(15): 2851-2860.
[9] MAYNUR·turdi, ZHANG Yan-hui, QIN Wei, SI Hong-zhang, YANG Xin-feng. The Analysis of Chromosome Karyotype of Malus sieversii Germplasm Resources Infraspecies in Xinjiang [J]. Scientia Agricultura Sinica, 2016, 49(8): 1540-1549.
[10] SUN Ming-yue, ZHOU Jun, TAN Qiu-ping, FU Xi-ling, CHEN Xiu-de, LI Ling, GAO Dong-sheng. Analysis of Basic Leucine Zipper Genes and Their Expression During Bud Dormancy in Apple (Malus×domestica) [J]. Scientia Agricultura Sinica, 2016, 49(7): 1325-1345.
[11] GAO Yuan, LIU Feng-zhi, WANG Kun, WANG Da-jiang, GONG Xin, LIU Li-jun. Establishment of Molecular ID for Some Apple Germplasm Resources [J]. Scientia Agricultura Sinica, 2015, 48(19): 3887-3898.
[12] WANG Yan-Fang-1, 2 , SHEN Xiang-1, CHEN Xue-Sen-1, WU Shu-Jing-1, MAO Zhi-Quan-1. Effects of Biochar on Alleviation of the Influence of p-hydroxybenzoic Acid on Physiological Characteristics in Malus Hupehensis Rehd. Seedlings [J]. Scientia Agricultura Sinica, 2014, 47(5): 968-976.
[13] HE Yi-kun, ZHONG Min, HU Tong-le, WANG Shu-tong, DUAN Hao, DING Li, WANG Ya-nan, CAO Ke-qiang. Screening of the Host Factors Interacting with CP of Apple chlorotic leaf spot virus by Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2014, 47(24): 4821-4829.
[14] SU Hong, LI Li-jie, MA Huai-yu, Lü De-guo, SUN Jing. Effects of Calcium on Mitochondrial Function in Malus baccata Borkh. Roots Under Changing Temperature [J]. Scientia Agricultura Sinica, 2014, 47(19): 3866-3873.
[15] FAN Wei-guo, YANG Hong-qiang. Response of Root Architecture, Nutrients Uptake and Shoot Growth of Malus hupehensis Seedling to the Shape of Root Zone [J]. Scientia Agricultura Sinica, 2014, 47(19): 3907-3913.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!