Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (4): 701-714.doi: 10.3864/j.issn.0578-1752.2019.04.011

• HORTICULTURE • Previous Articles     Next Articles

The Characteristics of Sap Flow of Hanfu Apple Trees and Its Response to Environmental Factors

XIA GuiMin,SUN YuanYuan,WANG WeiZhi,WU Qi,CHI DaoCai   

  1. College of Water Conservancy, Shenyang Agricultural University, Shenyang 110161
  • Received:2018-09-30 Accepted:2018-12-10 Online:2019-02-16 Published:2019-02-27
  • Contact: GuiMin XIA

Abstract:

【Objective】The law of transpiration of fruit trees is embodied in the characteristics of sap flow. The objective of this paper was to study the transpiration and water consumption laws of Malus pumila Mill (‘Hanfu’) in Northeast China, so as to provide a theoretical basis for the development of suitable irrigation system.【Method】In this experiment, the sap flow rates from young fruit stage to the deciduous stage of Hanfu apple trees were continuously monitored by the thermal dissipation probes (TDP) from May to October in 2017, and the meteorological data were continuously recorded by automatic weather station in this orchard. The characteristics of sap flow in Hanfu apple trees and their relationship with environmental factors were analyzed, and then a regression model between sap flow rate and environmental factors was established.【Result】The results showed that the rates of sap flow in Hanfu apple trees were higher in the daytime than that at night. The sap flow rates of Hanfu apple trees at night were stable, the change of sap flow rate was gentle and closed to zero between 0 o’clock and the sunrise, and the high sap flow rate level was still maintained in the period from the sunset to 0 o’clock of the next day. During the growth periods of fruit trees, the start-up and fall time of sap flow was concentrated, and the time of reaching the peak value was dispersive. The proportion of nocturnal sap flow was October > September > May > June > August > July. The proportion of nocturnal sap flow in October was 33.69%, but only 4.57% in July. The correlation degree between environmental factors and sap flow of Hanfu fruit trees was as follows: solar radiation > atmospheric temperature > wind speed > water vapor pressure difference > relative humidity > 30cm soil layer temperature. The multivariate regression equation of sap flow rate and environmental factors of Hanfu fruit tree was: V=6.441+0.012Rn+1.874T–0.577Ts,5cm+1.915Ws–9.766VPD–0.362RH, and the correlation coefficient of R 2 was 0.842. The correlation coefficient between daily sap flow and 10cm soil moisture content was 0.521, which was not significantly correlated with the other layers soil moisture content. 【Conclusion】 The results showed that in the cold area of Northeast China, the transpiration of Hanfu apple trees was large from June to September, and the transpiration was affected by solar radiation, wind speed and other environmental factors. It should be noticed that in the fruit expansion period, especially in July and August, the irrigation should be carried out timely. Irrigation time should avoid the strongest solar radiation time, and be arranged before sunrise or after sunset to reduce water loss caused by evaporation.

Key words: Hanfu apple (Malus pumila Mill) tree, sap flow velocity, night sap flow, thermal dissipation probe method, environmental factors

Table 1

Growth period schedule of Hanfu apple trees"

生育期
Growth period duration
萌芽开花期
Budding and flowering stage
幼果期
Young fruit stage
果实膨大期
Fruit expansion stage
果实成熟期
Fruit maturity
落叶休眠期
Deciduous dormancy period
日期
Date
2017.4.15—
2017.5.10
2017.5.11—
2017.6.12
2017.6.13—
2017.9.10
2017.9.11—
2017.10.15
2017.10.16—
2018.4.14

Fig. 1

Daily variation of sap velocity rate in different growth stages of Hanfu apple trees"

Fig. 2

Daily variation of main meteorological factors in different growth stages of Hanfu apple trees"

Fig. 3

Relationship between peak stem flow rate and stem flow state"

Table 2

Inter-monthly dynamic change of sap velocity rate on sunny days environmental factor daily mean of Hanfu apple trees"

月份Month 观测
日期
Date
环境因子日均值 Environmental factor daily mean 启动时间
Start-up time
到达峰值
时刻
Peak time
峰值
Peak value (cm·h-1)
下降时刻
Fall
time
平均茎流速率
Mean sap velocity (cm·h-1)
太阳净辐射
Rn
(W·m-2)
大气温度
T
(℃)
空气相对
湿度
RH (%)
风速
Ws
(m·s-1)
10cm土壤体积含水率10cm soil moisture content (%)
5 2017.5.19 285.98 28.91 29.93 2.66 12.11 6:30 12:30 7.17 17:00 3.41
6 2017.6.17 232.30 30.81 25.01 2.63 21.72 6:00 8:30 12.63 16:30 5.45
7 2017.7.17 314.94 29.78 50.96 2.26 18.38 6:30 9:30 14.25 17:00 5.89
8 2017.8.11 290.49 28.78 49.50 1.36 17.80 6:30 9:00 15.60 17:00 6.16
9 2017.9.15 172.57 22.00 40.94 1.32 14.98 7:00 10:00 13.92 14:30 4.75
10 2017.10.13 156.23 11.64 26.80 1.51 19.27 8:30 14:00 13.86 15:30 5.06

Table 3

Breakdown of day and night time"

日期Date 白昼Day time 夜晚Night time
2017.5.19 6:00—18:00 18:30—次日5:30
2017.6.17 6:00—18:00 18:30—次日5:30
2017.7.17 5:30—18:30 19:00—次日5:00
2017.8.11 6:00—18:00 18:30—次日5:30
2017.9.15 6:30—16:30 17:00—次日6:00
2017.10.13 7:30—16:00 16:30—次日7:00

Fig. 4

Variation of nocturnal sap velocity"

Table 4

Day and night sap flow ratio"

日期
Date
夜间主要气象因子均值与茎流量
Nocturnal mean of main meteorological factors
and sap flow
白天主要气象因子均值与茎流量
Diurnal mean of main meteorological factors
and sap flow
单日茎流量
Sap flow
(g·d-1)
大气温度
T (℃)
空气相对湿度
RH (%)
夜晚茎流量
Sap flow (g·d-1)
大气温度
T (℃)
空气相对湿度
RH (%)
白天茎流量
Sap flow (g·d-1)
2017.5.19 23.61 35.97 436.32 29.08 30.68 3964.00 4400.32
百分比Percentage - - 9.92% - - 90.08% 100.00%
2017.6.17 26.39 32.53 569.49 30.84 25.29 6528.45 7097.94
百分比Percentage - - 8.02% - - 91.98% 100.00%
2017.7.17 27.15 58.40 345.46 28.93 51.22 7220.51 7565.98
百分比Percentage - - 4.57% - - 95.43% 100.00%
2017.8.11 24.79 60.14 542.44 28.78 49.53 7391.13 7933.58
百分比Percentage - - 6.84% - - 93.16% 100.00%
2017.9.15 19.12 49.83 830.25 23.41 39.76 5367.94 6198.18
百分比Percentage - - 13.39% - - 86.61% 100.00%
2017.10.13 8.64 30.29 2271.92 12.28 32.12 4472.57 6744.49
百分比Percentage - - 33.69% - - 66.31% 100.00%

Fig. 5

Relationship between sap velocity and environmental factors in Hanfu apple trees"

Table 5

Correlation between sap velocity of the apple tree and the environmental factors"

净辐射
Rn
大气温度
T
相对湿度
RH
水气压差VPD 风速
Ws
5 cm土温
Ts,5
10 cm
土温Ts,10
20 cm
土温Ts,20
30 cm
土温Ts,30
40 cm
土温Ts,40
茎流速率
Sap velocity
净辐射Rn 1
大气温度T 0.613** 1
相对湿度RH -0.533** -0.731** 1
水气压差VPD 0.609** 0.920** -0.926** 1
风速Ws 0.622** 0.431** -0.566** 0.548** 1
5 cm土温Ts,5 0.114* 0.742** -0.494** 0.687** 0.148** 1
10 cm土温Ts,10 -0.121* 0.571** -0.339** 0.511** -0.010 0.954** 1
20 cm土温Ts,20 -0.315** 0.321** -0.119* 0.256** -0.180** 0.791** 0.935** 1
30 cm土温Ts,30 -0.308** 0.039 0.123* -0.025 -0.262** 0.458** 0.660** 0.864** 1
40 cm土温Ts,40 -0.094 0.025 0.099 -0.020 -0.145** 0.268** 0.428** 0.637** 0.915** 1
茎流速率
Sap velocity
0.852** 0.656** -0.557** 0.616** 0.619** 0.132** -0.078 -0.281** -0.347** -0.173** 1

Table 6

Path analysis results between sap velocity and environmental factors"

自变量
Independent variable
简单相关系数
Simple correlation coefficient
直接通径系数
Direct path coefficient
间接通径系数 Indirect path coefficient 合计
Total
x1 x2 x3 x4 x5 x6
x1 0.852 0.478 - 0.8018 -0.0285 0.1219 -0.9427 0.4221 0.3746
x2 0.656 1.308 0.2930 - -0.1855 0.0845 -1.4242 0.5790 -0.6532
x3 0.132 -0.250 0.0545 0.9705 - 0.0290 -1.0635 0.3912 0.3817
x4 0.619 0.196 0.2973 0.5637 -0.037 - -0.8483 0.4483 0.4240
x5 0.616 -1.548 0.2911 1.2034 -0.1718 0.1074 - 0.7334 2.1635
x6 -0.557 -0.792 -0.2548 -0.9561 0.1235 -0.1109 1.4334 - 0.2351

Fig. 6

Changes of soil moisture content and sap flow in Hanfu apple trees"

Table 7

Correlation analysis between soil moisture content (MC) and sap flow"

10 cm土层
含水率
10 cm soil MC
20 cm土层
含水率
20 cm soil MC
30 cm土层
含水率
30 cm soil MC
40 cm土层
含水率
40 cm soil MC
50 cm土层
含水率
50 cm soil MC
60 cm土层
含水率
60 cm soil MC
茎流量
Sap flow
10cm土层含水率10cm soil MC 1
20cm土层含水率20cm soil MC 0.645** 1
30cm土层含水率30cm soil MC 0.300 0.909** 1
40cm土层含水率40cm soil MC 0.107 0.807** 0.973** 1
50cm土层含水率50cm soil MC -0.027 0.719** 0.929** 0.985** 1
60cm土层含水率60cm soil MC -0.064 0.687** 0.911** 0.978** 0.998** 1
茎流量Sap flow 0.521** 0.187 -0.034 -0.100 -0.155 -0.180 1
[1] 聂继云 . 苹果的营养与功能. 保鲜与加工, 2013,13(6):56-59.
doi: 10.3969/j.issn.1009-6221.2013.06.013
NIE J Y . Nutritional components of apple and their physiological functions to human health. Storage and Process, 2013,13(6):56-59. (in Chinese)
doi: 10.3969/j.issn.1009-6221.2013.06.013
[2] 翟衡, 史大川, 束怀瑞 . 我国苹果产业发展现状与趋势. 果树学报, 2007,24(3):355-360.
doi: 10.3969/j.issn.1009-9980.2007.03.019
ZHAI H, SHI D C, SHU H R . Current status and developing trend of apple industry in China. Journal of Fruit Science, 2007,24(3):355-360. (in Chinese)
doi: 10.3969/j.issn.1009-9980.2007.03.019
[3] 李嘉瑞, 邹养军, 任小林 . 刍议中国苹果产业现代化. 果树学报, 2008,25(3):378-381.
doi: 10.3969/j.issn.1009-9980.2008.03.018
LI J R, ZOU Y J, REN X L . Humble opinion about modern apple industry in China. Journal of Fruit Science, 2008,25(3):378-381. (in Chinese)
doi: 10.3969/j.issn.1009-9980.2008.03.018
[4] 李怀玉, 孙红旭, 乔凤岐, 丛日春 . 抗寒优质苹果新品种—短枝寒富. 中国果树, 1995(1):1-2.
LI H Y, SUN H X, QIAO F Q, CONG R C . A new cold resistant and high quality apple variety-short branch Hanfu. China Fruits, 1995(1):1-2. (in Chinese)
[5] 孙慧珍, 李夷平, 王翠, 周晓峰 . 不同木材结构树干液流对比研究. 生态学杂志, 2005,24(12):1434-1439.
SUN H Z, LI Y P, WANG C, ZHOU X F . Comparative study on stem sap flow of non- and ring-porous tree species. Chinese Journal of Ecology, 2005,24(12):1434-1439. (in Chinese)
[6] 岳广阳, 张铜会, 刘新平, 移小勇 . 热技术方法测算树木茎流的发展及应用. 林业科学, 2006,42(8):102-107.
doi: 10.3321/j.issn:1001-7488.2006.08.017
YUE G Y, ZHANG T H, LIU X P, YI X Y . Development and application of thermal methods in measuring stem sap flow. Scientia Silvae Sinicae, 2006,42(8):102-107. (in Chinese)
doi: 10.3321/j.issn:1001-7488.2006.08.017
[7] 胡永翔, 李援农, 张莹 . 黄土高原区滴灌枣树作物系数和需水规律试验. 农业机械学报, 2012,43(11):87-91.
doi: 10.6041/j.issn.1000-1298.2012.11.016
HU Y X, LI Y N, ZHANG Y . Experiment on crop coefficient and water requirement of drip-irrigation jujube in Loess Plateau of China. Transactions of the Chinese Society for Agricultural Machinery, 2012,43(11):87-91. (in Chinese)
doi: 10.6041/j.issn.1000-1298.2012.11.016
[8] GRANIER A . Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 1987,3(4):309-320.
doi: 10.1093/treephys/3.4.309 pmid: 14975915
[9] 张继澍 . 植物生理学. 西安: 世界图书出版社, 1999.
ZHANG J S . Plant Physiology. Xi’an: World Book Publishing House, 1999. (in Chinese)
[10] GRANIER A, HUC R, BARIGAH S T . Transpiration of natural rain forest and its dependence on climatic factors. Agricultural and Forest Meteorology, 1996,78(1/2):19-29.
doi: 10.1016/0168-1923(95)02252-X
[11] 孙习轩 . 我国北方苹果树的需水量与灌溉问题的探讨. 河北农业科技, 2008(1):40-41.
SUN X X . Study on water demand and irrigation of apple trees in north China. Hebei agricultural science and technology, 2008(11):40-41. (in Chinese)
[12] 周玉燕, 廖空太, 张莉, 杨国州, 滕保琴 . 山旱塬区花牛苹果树干茎流及其与环境因子的关系. 经济林研究, 2017,35(1):30-35.
doi: 10.14067/j.cnki.1003-8981.2017.01.006
ZHOU Y Y, LIAO T K, ZHANG L, YANG G Z, TENG B Q . Stemflow of Huaniu apple tree and its relationship with environmental factors at mountain plateau areas. Nonwood Forest Research, 2017,35(1):30-35. (in Chinese)
doi: 10.14067/j.cnki.1003-8981.2017.01.006
[13] 高荣, 朱德兰, 康宾 . 渭北高原矮化红富士树干液流动态研究. 西北林学院学报, 2008,23(3):90-93.
GAO R, ZHU D L, KANG B . Stem sap flow dynamics of dwarfing Fuji apple tree trunk sop flow on the Weibei Plateau. Journal of Northwest Forestry University, 2008,23(3):90-93. (in Chinese)
[14] 冯志文, 姜远茂, 田玉政, 宋凯, 栾翠华, 褚富宽, 王燕, 张继祥 . 气象因子对红富士苹果树干茎流特性的影响. 山东农业大学学报(自然科学版), 2013,44(1):18-24.
FENG Z W, JIANG Y M, TIAN Y Z, SONG K, LUAN C H, CHU F K, WANG Y, ZHANG J X . Research on stem sap flow character of ‘FUJI’ apple trees and the response to main meteorological factors. Journal of Shandong Agricultural University (Natural Science Edition), 2013,44(1):18-24. (in Chinese)
[15] 耿兵 . 山东丘陵区苹果园蒸腾耗水规律研究[D]. 山东: 山东农业大学, 2013.
GENG B . Law of transpiration and water consumption in Red Fuji apple orchard in Shandong hilly area[D]. Shandong: Shandong Agricultural University, 2013. (in Chinese)
[16] 张静, 王力, 韩雪, 张林森 . 不同时间尺度下黄土塬区19年生苹果树干液流速率与环境因子的关系. 中国农业科学, 2016,49(13):2583-2592.
doi: 10.3864/j.issn.0578-1752.2016.13.014
ZHANG J, WANG L, HAN X, ZHANG L S . The relationship between sap flow velocity and environmental factors of the 19 a apple trees on the loess plateau at different time scales. Scientia Agricultura Sinica, 2016,49(13):2583-2592. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.13.014
[17] 丁日升, 康绍忠, 龚道枝 . 苹果树液流变化规律研究. 灌溉排水学报, 2004,23(2):21-25.
doi: 10.3969/j.issn.1672-3317.2004.02.005
DING R S, KANG S Z, GONG D Z . Responses of apple trees sap flow to temporal change in weather condition and soil water content by heat-pulse technique. Journal of Irrigation and Drainage, 2004,23(2):21-25. (in Chinese)
doi: 10.3969/j.issn.1672-3317.2004.02.005
[18] 李宏, 刘帮, 李长城, 孙明森, 刁凯, 韩莹莹, 程平 , 张志刚王真真, 武钰苗乾乾. 不同生育期幼龄枣树茎流特征及其与环境因子的关系. 干旱地区农业研究, 2016,34(5):54-61.
LI H, LIU B, LI C C, SUN M S, DIAO K, HAN Y Y, CHENG P, ZHANG Z G, WANG Z Z, WU Y, MIAO Q Q . Characteristics of stem flow of young jujube tree at different reproductive periods and their relationship with environmental factors. Agricultural Research in the Arid Areas, 2016,34(5):54-61. (in Chinese)
[19] 赵付勇, 赵经华, 马英杰, 洪明, 付秋萍 . 滴灌核桃树茎流变化规律与光合作用的研究. 中国农村水利水电, 2017(3):31-40.
ZHAO F Y, ZHAO J H, MA Y J, HONG M, FU Q P . The variation of stem flow and photosynthesis of Walnut Trees under drip irrigations. China Rural Water and Hydropower, 2017(3):31-40. (in Chinese)
[20] 白岩, 朱高峰, 张琨, 马婷 . 敦煌葡萄液流特征及耗水分析. 中国沙漠, 2015,35(1):175-181.
doi: 10.7522/j.issn.1000-694X.2013.00457
BAI Y, ZHU G F, ZHANG K, MA T . Analysis of variation of sap flow velocity and water consumption of grapevine in the Nanhu oasis,Dunhuang,China. Journal of Desert Research, 2015,35(1):175-181. (in Chinese)
doi: 10.7522/j.issn.1000-694X.2013.00457
[21] 王淑芳, 王效科, 欧阳志云 . 环境因素对密云水库上游流域土壤有机碳和全氮含量影响的通径分析. 生态环境学报, 2014,23(8):1378-1383.
doi: 10.3969/j.issn.1674-5906.2014.08.020
WANG S F, WANG X K, OUYANG Z Y . Path analysis on environmental factors controlling soil organic carbon and total nitrogen contents in the upstream watershed of Miyun Reservoir, North China. Ecology and Environmental Sciences, 2014,23(8):1378-1383. (in Chinese)
doi: 10.3969/j.issn.1674-5906.2014.08.020
[22] 刘潇潇, 李国庆, 闫美杰, 杜盛 . 黄土高原主要树种树干液流研究进展. 水土保持研究, 2017,24(3):369-373.
LIU X X, LI G Q, YAN M J, DU S . Research progress on stem sap Flow in major tree species on the Loess Plateau. Research of Soil and Water Conservation, 2017,24(3):369-373. (in Chinese)
[23] 郭映, 董阳, 周振方, 党慧慧, 魏国孝 . 半干旱区玉米茎流规律及其对气象因子的响应. 干旱区资源与环境. 2014,28(9):94-99.
GUO Y, DONG Y, ZHOU Z F, DANG H H, WEI G X . The sap flow of corn during the growth period and its response to meteorological factors in semi-arid area. Journal of Arid Land Resources and Environment, 2014,28(9):94-99. (in Chinese)
[24] DALEY M J, PHILLIPS N G . Interspecific variation in night-time transpiration and stomatal conductance in a mixed new England deciduous forest. Tree Physiology, 2006,26:411-419.
doi: 10.1093/treephys/26.4.411 pmid: 16414920
[25] MC DONALD E P, ERICKSON J E, KRUGER E L . Can decreased transpiration limit plant nitrogen acquisition in elevated CO2? Functional Plant Biology, 2002,29:1115-1120.
doi: 10.1071/fp02007
[26] 赵自国, 夏江宝, 王荣荣, 李田, 赵艳云, 刘京涛 . 不同土壤水分条件下叶底珠(Securinega suffruticosa)茎流特征. 中国沙漠, 2013(5):1385-1389.
ZHAO Z G, XIA J B, WANG R R, LI T, ZHAO Y Y, LIU J T . Effects of soil moisture on characteristics of sap flow ofSecurinega suffruticosa. Journal of Desert Research, 2013(5):1385-1389. (in Chinese)
[27] FORD C R, GORANSON C E, MITCHELL R J, WILL R E, TESKEY R O . Diurnal and seasonal variability in the radial distribution of sap flow: Predicting total stem flow in Pinus taeda trees. Tree Physiology, 2004,24(9):951-960.
doi: 10.1093/treephys/24.9.951 pmid: 15234892
[28] 王力, 王艳萍 . 黄土塬区苹果树干液流特征. 农业机械学报, 2013,44(10):152-158.
doi: 10.6041/j.issn.1000-1298.2013.10.024
WANG L, WANG Y P . Characteristics of stem sap flow of apple trees in Loess Tableland. Transactions of the Chinese Society for Agricultural Machinery, 2013,44(10):152-158. (in Chinese)
doi: 10.6041/j.issn.1000-1298.2013.10.024
[29] 王华, 赵平, 王权, 蔡锡安, 马玲, 饶兴权, 曾小平 . 马占相思夜间树干液流特征和水分补充现象的分析. 生态学杂志, 2007,26(4):476-482.
WANG H, ZHAO P, WANG Q, CAI X A, MA L, RAO X Q, ZENG X P . Characteristics of night-time sap flow and water recharge in Acacia mangium trunk. Chinese Journal of Ecology, 2007,26(4):476-482. (in Chinese)
[30] 刘静, 孙旭, 布和 . 河套灌区节水措施与黄河下游农业可持续发展. 生态农业研究, 2000,8(4):64-66.
LIU J, SUN X, BU H . The water-saving measures in Hetao irrigated district and the sustainable agricultural development of the Lower reaches of the Huanghe River. Eco-agriculture Research, 2000,8(4):64-66. (in Chinese)
[31] 刘春伟, 关芳, 杜太生 . 西北旱区苹果园耗水规律研究// 农业高效用水理论与技术, 2010: 171-178.
LIU C W, GUAN F, DU T S . Research on evapotranspiration of apple tree in arid northwest China// Theory and Technology of Agricultural Efficient Water Use, 2010: 171-178. (in Chinese)
[32] 陈立欣, 张志强, 李湛东 . 大连4种城市绿化乔木树种夜间液流活动特征. 植物生态学报, 2010,34(5):535-546.
doi: 10.3773/j.issn.1005-264x.2010.05.007
CHEN L X, ZHANG Z Q, LI Z D . Nocturnal sap flow of four urban greening tree species in Dalian, Liaoning Province, China. Chinese Journal of Plant Ecology, 2010,34(5):535-546. (in Chinese)
doi: 10.3773/j.issn.1005-264x.2010.05.007
[33] 李焕波 . 黄土高原红富士苹果树干茎流速率的研究[D]. 西安:西北农林科技大学, 2008.
LI H B . Research on sap flow velocity of Red Fuji apple trees grown in the Loess Plateau[D]. Xi’an: Northwest A&F University, 2008. (in Chinese)
[34] 续海红, 郭向红, 仇群伊 . 不同天气条件下苹果树液流日变化规律研究. 中国农学通报, 2015,31(22):120-124.
doi: 10.11924/j.issn.1000-6850.casb15040030
XU H H, GUO X H, QIU Q Y . Research on daily variation of sap flow of apple trees under different weather conditions. Chinese Agricultural Science Bulletin, 2015,31(22):120-124. (in Chinese)
doi: 10.11924/j.issn.1000-6850.casb15040030
[35] 张涵丹, 卫伟, 陈利顶, 于洋, 杨磊, 贾福岩 . 典型黄土区油松树干液流变化特征分析. 环境科学, 2015,36(1):349-356.
doi: 10.13227/j.hjkx.2015.01.047
ZHANG H D, WEI W, CHEN L D, YU Y, YANG L, JIA F Y . Analysis of sap flow characteristics of the Chinese pine in typical Loess Plateau region of China. Environmental Science, 2015,36(1):349-356. (in Chinese)
doi: 10.13227/j.hjkx.2015.01.047
[36] BUŽKOVÁ R, ACOSTA M, DAŘENOVÁ E, POKORNÝ R, PAVELKA M . Environmental factors influencing the relationship between stem CO2 efflux and sap flow. Trees, 2014,29(2):333-433.
doi: 10.1007/s00468-014-1113-z
[37] NADEZHDINA N . Sap flow index as an indicator of plant water status. Tree Physiology, 1999,19:885-891.
doi: 10.1093/treephys/19.14.960 pmid: 10562406
[38] HUANG J T, ZHOU Y X, YIN L H, WENNINGER J, ZHANG J, HOU G C, ZHANG E Y, UHLENBROOK S . Climatic controls on sap flow dynamics and used water sources of Salix psammophila in a semi-arid environment in northwest China. Environmental Earth Sciences, 2015,73(1):289-301.
doi: 10.1007/s12665-014-3505-1
[39] GUO Q Q, ZHANG W H . Sap flow of Abies georgei var. smithii and its relationship with the environment factors in the Tibetan subalpine region, China. Journal of Mountain Science, 2015,12(6):1373-1382.
doi: 10.1007/s11629-015-3618-3
[40] 石游 . 阿克苏地区红富士苹果树干液流特征及其与影响因子的关系研究[D]. 乌鲁木齐: 新疆农业大学, 2012.
SHI Y . Studies on characteristics of stem sap flow and relationship with influence factors of Fuji apple in Aksu Prefecture[D]. Urumchi: Xinjiang Agricultural University, 2012. (in Chinese)
[41] 宋凯 . 成年富士苹果树茎流特征及需水规律的研究[D]. 泰安: 山东农业大学, 2011.
SONG K . Research on stem sap flow characteristics and water demand regulation in trees of ‘Fuji’ apple[D]. Tai’an: Shandong Agricultural University, 2011. (in Chinese)
[42] 刘鑫, 张金池, 汪春林, 庄家尧, 韩诚, 顾哲衍, 杨志华 . 长三角地区典型树种杉木液流速率变化特征. 南京林业大学学报(自然科学版), 2014,38(2):86-92.
doi: 10.3969/j.issn.1000-2006.2014.02.017
LIU X, ZHANG J C, WANG C L, ZHUANG J Y, HAN C, GU Z Y, YANG Z H . The variation characteristics of sap flow of Chinese fir in the Yangtze River Delta. Journal of Nanjing Forestry University (Natural Sciences Edition), 2014,38(2):86-92. (in Chinese)
doi: 10.3969/j.issn.1000-2006.2014.02.017
[43] 冯永建, 马长明, 王彦辉, 杜阿朋 . 华北落叶松人工林蒸腾特征及其与土壤水势的关系. 中国水土保持科学, 2010,2(1):93-98.
doi: 10.3969/j.issn.1672-3007.2010.01.017
FENG Y J, MA C M, WANG Y H, DU A P . Relationship between the characteristics of transpiration of Larix principi-rupprechtii forest and soil water potential. Science of Soil and Water Conservation, 2010,2(1):93-98. (in Chinese)
doi: 10.3969/j.issn.1672-3007.2010.01.017
[44] 张大龙, 常毅博, 李建明, 张中典, 潘铜华, 杜清洁, 郑刚 . 大棚甜瓜蒸腾规律及其影响因子. 生态学报, 2014,34(4) : 953-962.
doi: 10.5846/stxb201210051371
ZHANG D L, CHANG Y B, LI J M, ZHANG Z D, PAN T H, DU Q J, ZHENG G . The critical factors of transpiration on muskmelon in plastic greenhouse. Acta Ecologica Sinica, 2014,34(4):953-962. (in Chinese)
doi: 10.5846/stxb201210051371
[1] WANG XiaoHuan, PAN TongTong, LIAN Sen, WANG CaiXia, LI BaoHua. Effects of Environmental Factors on the Growth and Extension of Valsa mali in the Xylem of Apple Branches [J]. Scientia Agricultura Sinica, 2018, 51(17): 3291-3301.
[2] ZHANG Jing, WANG Li, HAN Xue, ZHANG Lin-sen. The Relationship Between Sap Flow Velocity and Environmental Factors of the 19 a Apple Trees on the Loess Plateau at Different Time Scales [J]. Scientia Agricultura Sinica, 2016, 49(13): 2583-2592.
[3] ,,,. Relationship Between Diurnal Changes of Net Photosynthetic Rate and Environmental Factors in Leaves of Zizania latifolia [J]. Scientia Agricultura Sinica, 2006, 39(03): 502-509 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!