Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (3): 534-544.doi: 10.3864/j.issn.0578-1752.2013.03.010

• PLANT PROTECTION • Previous Articles     Next Articles

Loop-Mediated Isothermal Amplification Assay for Rapid Diagnosis of Meloidogyne enterolobii Directly from Infected Plants

 HE  Xu-Feng, PENG  Huan, DING  Zhong, HE  Wen-Ting, HUANG  Wen-Kun, PENG  De-Liang   

  1. 1.State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
    2.College of Biosafety Science and Technology, Hunan Agricultural University, Changsha 410128
  • Received:2012-08-13 Online:2013-02-01 Published:2012-11-07

Abstract: 【Objective】 The objective of this study is to establish a rapid diagnostic method for Meloidogyne enterolobii from the infected plants based on the loop-mediated isothermal amplification (LAMP), and to provide technical supports for monitoring and prevention of M. enterolobii. 【Method】 The LAMP specific primers were designed according to the distinction of ITS (internal transcribed spacer) sequences between M. enterolobii and other Meloidogyne spp.. The reaction conditions of LAMP, including the concentrations of Mg2+, dNTPs, betain and reaction times were optimized, and the specificity and sensitivity of the LAMP were testified. A rapid method for M. enterolobii from infected plants by LAMP was established on this basis. 【Result】 The optimum conditions for LAMP reaction could be carried out under the concentrations of 5.0 mmol•L-1 Mg2+ and 2.4 mmol•L-1 dNTPs, without betain and 45 minutes of reaction. The method developed in this paper was able to specifically detect M. enterolobii from 11 species of plant nematodes and to sensitivity detect DNA as low as 1/200000 nematode DNA. The sensitivity of LAMP reaction was 100 times higher than the conventional PCR method, which was capable of detecting M. enterolobii directly from the infected roots with 100% accuracy.【Conclusion】The rapid detection of M. enterolobii by LAMP assay targeted the ITS region of ribosomal DNA was built. The method is high specificity, sensitivity, and economic value, which makes it possible for quick and accurately detecting M. enterolobii from the infected plant tissue, and has higher actual application value.

Key words: Meloidogyne enterolobii , LAMP , specificity , sensitivity , diagonosis

[1]Hunt D J, Handoo Z A. Taxonomy, identification and principal species//Perry RN, Moens M, Starr J L. Root-Knot Nematodes. Wallingford: CAB International, 2009: 55-97.

[2]简恒. 植物线虫学. 北京: 中国农业大学出版社, 2011: 68-69.

Jian H. Plant Nematology. Beijing: China Agricultural University Press, 2011: 68-69. (in Chinese)

[3]Yang B, Eisenback J D. Meloidogyne enterolobii n. sp. (Meloidogynidae), a root-knot nematode parasitizing pacara earpod tree in China. The Journal of Nematology, 1983, 15(3): 381-391.

[4]Xu J H, Liu P L, Meng Q P, Long H. Characterisation of Meloidogyne species from China using isozyme phenotypes and amplified mitochondrial DNA restriction fragment length polymorphism. European Journal of Plant Pathology, 2004, 110: 309-315.

[5]Rammah A, Hirschmann H. Meloidogyne mayaguensis n. sp. (Meloidogynidae), a root-knot nematode from Puerto Rico. The Journal of Nematology, 1988, 20(1): 58-69.

[6]刘昊, 龙海, 鄢小宁, 徐建华. 海南省番石榴根结线虫病病原的种类鉴定及其寄主范围的测试. 南京农业大学学报, 2005, 28(4): 55-59.

Liu H, Long H, Yan X N, Xu J H. Species identification and host range testing of a root-knot nematode infecting guava in Hainan Province. Journal of Nanjing Agricultural University, 2005, 28(4): 55-59. (in Chinese)

[7]Fargette M, Davies K G, Robinson M P, Trudgill D L. Characterization of resistance breaking Meloidogyne incognita-like populations using lectins, monoclonal antibodies and spores of Pasteuria penetrans. Fundamental and Applied Nematology, 1994, 17(6): 537-542.

[8]Duponnois R, Mateille T, Gueye M. Biological characteristics and effects of two stains of Arthrobotrys oligospora from Senegal on Meloidogyne species parasitizing tomato plants. Biocontrol Science and Technology, 1995, 5(4): 517-526.

[9]Carneiro R M D G, Almeida M R A, Quénéhervé P. Enzyme phenotypes of Meloidogyne spp. populations. Nematology, 2000, 2(6): 645-654.

[10]Blok V C, Wishart J, Fargette M, Berthier K, Phillips M S. Mitochondrial DNA differences distinguishing Meloidogyne mayaguensis from the major species of tropical root-knot nematodes. Nematology, 2002, 4(7): 773-781.

[11]Brito J, Powers T O, Mullin P G, Dickson D W. Morphological and molecular characterization of Meloidogyne mayaguensis isolates from Florida. Journal of Nematology, 2004, 36(3): 232-240.

[12]Hu M X, Zhuo K, Liao J L. Multiplex PCR for the simultaneous identification and detection of Meloidogyne incognita, M. enterolobii, and M. javanica using DNA extracted directly from individual galls. Phytopathology, 2011, 101(11): 1270-1277.

[13]Fargette M, Phillips M S, Blok V C, Waugh R, Trudgill D L. An RFLP study of relationships between species, populations and resistance-breaking lines of tropical species of Meloidogyne. Fundamental and Applied Nematology, 1996, 19(2): 193-200.

[14]Carneiro R M D G, Almeida M R A, Braga R S, Almeida C A, Gioria R. Primeiro registro de Meloidogyne mayaguensis parasitando plantas de tomate e pimentao resistentes à meloidoginose no estado de Sao Paulo. Nematologia Brasileira, 2006, 30(1): 81-86.

[15]Brito J A, Stanley J D, Mendes M L, Cetintas R, Dickson D W. Host status of selected cultivated plants to Meloidogyne mayaguensis in Florida. Nematropica, 2007, 37(1): 65-71.

[16]Brito J A, Stanley J, Cetintas R, Power T O, Inserra R N, McAvoy E J, Mendes M L, Crow W T, Dickson D W. Identification and host preference of Meloidogyne mayaguensis and other root-knot nematodes from Florida, and their susceptibility to Pasteuria penetrans. Journal of Nematology, 2004, 36: 308-309.

[17]EPPO. An emerging root-knot nematode, Meloidogyne enterolobii: addition to the EPPO Alert List. EPPO Reporting Service, 2008 ⁄ 105.

[18]Blok V C, Philips M S, Fargette M. Comparison of sequences from the ribosomal DNA intergenic region of Meloidogyne mayaguensis and other major tropical root-knot nematodes. The Journal of Nematology, 1997, 29(1): 16-22.

[19]Long H, Liu H, Xu J H. Development of a PCR Diagnostic for the root-knot nematode Meloidogyne enterolobii. Acta Phytopathologica Sinica, 2006, 36(2): 109-115.

[20]Adam M A M, Phillips M S, Blok V C. Molecular diagnostic key identification of single juveniles of seven common and economically important species of root-knot nematode (Meloidogyne spp.). Plant Pathology, 2007, 56(1): 190-197.

[21]Tigano M, de Siqueira K, Castagnone-Sereno P, Mulet K, Queiroz P, dos Santos M, Teixeira C, Almeida M, Silva J, Carneiro R. Genetic diversity of the root-knot nematode Meloidogyne enterolobii and development of a SCAR marker for this guava-damaging species. Plant Pathology, 2010, 59(6): 1054-1061.

[22]Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 2000, 28(12): e63.

[23]Kikuchi T, Aikawa T, Oeda Y, Karim N, Kanzaki N. A rapid and precise diagnostic method for detecting the pinewood nematode Bursaphelenchus xylophilus by loop-mediated isothermal amplification. Phytopathology, 2009, 99(12): 1365-1369.

[24]Niu J H, Guo Q X, Jian H, Chen C L, Yang D, Liu Q, Guo Y D. Rapid detection of Meloidogyne spp. by LAMP assay in soil and roots. Crop Protection, 2011, 30(8): 1063-1069.

[25]Niu J H, Jian H, Guo Q X, Chen C L, Wang X Y, Liu Q, Guo Y D. Evaluation of loop-mediated isothermal amplification (LAMP) assays based on 5S rDNA-IGS2 regions for detecting Meloidogyne enterolobii. Plant Pathology, 2012, 61(4): 809-819.

[26]Peng H, Peng D L, Hu X Q, He X F, Wang Q, Huang W K, He W T. Loop-mediated isothermal amplification for rapid and precise detection of the burrowing nematode, Radopholus similis, directly from diseased plant tissues. Nematology, 2012, 14(8): 977-986.

[27]万新龙, 李建洪, 彭德良. 根结线虫rDNA-ITS片段的克隆与序列分析. 华中农业大学学报, 2007, 26(5): 624-628.

Wan X L, Li J H, Peng D L. Cloning and sequence analysis of rDNA-ITS fragments of Meloidogyne species. Jounal of Huazhong Agricultural University, 2007, 26(5): 624-628. (in Chinese)

[28]Vrain T C, Wakarchuk D A, Levesque A C, Hamilton R I.  Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fundamental and Applied Nematology, 1992, 15(6): 563-573.

[29]Kumar S, Nei M, Dudley J, Tamura K. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics, 2008, 9(4): 299-306.

[30]Rahman S A S A, Mohamed Z, Othman R Y, Swennen R, Panis B, De Waele D, Remy S, Carpentier S C. In planta PCR-based detection of early infection of plant-parasitic nematodes in the roots: a step towards the understanding of infection and plant defence. European Journal of Plant Pathology, 2010, 128(3): 343-351.
[1] LI GuiXiang,LI XiuHuan,HAO XinChang,LI ZhiWen,LIU Feng,LIU XiLi. Sensitivity of Corynespora cassiicola to Three Common Fungicides and Its Resistance to Fluopyram from Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1359-1370.
[2] LI ZhenXi,LI WenTing,HUANG JiaQuan,ZHENG Zheng,XU MeiRong,DENG XiaoLing. Detection of ‘Candidatus Liberibacter asiaticus’ by Membrane Adsorption Method Combined with Visual Loop-Mediated Isothermal Amplification [J]. Scientia Agricultura Sinica, 2022, 55(1): 74-84.
[3] CAO HanBing,XIE JunYu,LIU Fei,GAO JianYong,WANG ChuHan,WANG RenJie,XIE YingHe,LI TingLiang. Mineralization Characteristics of Soil Organic Carbon and Its Temperature Sensitivity in Wheat Field Under Film Mulching [J]. Scientia Agricultura Sinica, 2021, 54(21): 4611-4622.
[4] WANG JunJie,WANG HaiGang,CAO XiaoNing,CHEN Ling,LIU SiChen,TIAN Xiang,QIN HuiBin,QIAO ZhiJun. Comprehensive Evaluation of Photoperiod Sensitivity Based on Different Traits of Broomcorn Millet [J]. Scientia Agricultura Sinica, 2020, 53(3): 474-485.
[5] DAI YuLi,GAN Lin,TENG ZhenYong,YANG JingMin,QI YueYue,SHI NiuNiu,CHEN FuRu,YANG XiuJuan. Establishment and Application of a Multiple PCR Method to Detect Mating Types of Exserohilum turcicum and Bipolaris maydis [J]. Scientia Agricultura Sinica, 2020, 53(3): 527-538.
[6] SHEN JingYuan,TANG MeiLing,YANG QingShan,GAO YaChao,LIU WanHao,CHENG JieShan,ZHANG HongXia,SONG ZhiZhong. Cloning, Expression and Electrophysiological Function Analysis of Potassium Channel Gene VviSKOR in Grape [J]. Scientia Agricultura Sinica, 2020, 53(15): 3158-3168.
[7] ZHANG ShuangNa, LI ZhengNan, FAN XuDong, ZHANG ZunPing, REN Fang, HU GuoJun, DONG YaFeng. Establishment of RT-LAMP Assay for Detection of Apple chlorotic leaf spot virus (ACLSV) [J]. Scientia Agricultura Sinica, 2018, 51(9): 1706-1716.
[8] HE LiFei, CHEN LeLe, XIAO Bin, ZHAO ShiFeng, LI XiuHuan, MU Wei, LIU Feng. Establishment of Sensitivity Baseline and Evaluation of Field Control Efficacy of Fludioxonil Against Fulvia fulva [J]. Scientia Agricultura Sinica, 2018, 51(8): 1475-1483.
[9] ZENG WeiYing, SUN ZuDong, LAI ZhenGuang, CAI ZhaoYan, CHEN HuaiZhu, YANG ShouZhen, TANG XiangMin. Correlation Analysis on Transcriptomic and Proteome of Soybean Resistance to Bean Pyralid(Lamprosema indicata) [J]. Scientia Agricultura Sinica, 2018, 51(7): 1244-1260.
[10] JIANG ShanShan, FENG Jia, ZHANG Mei, WANG ShengJi, XIN ZhiMei, WU Bin, XIN XiangQi. Development of RT-LAMP Assay for Rapid Detection of Sweet potato feathery mottle virus (SPFMV) [J]. Scientia Agricultura Sinica, 2018, 51(7): 1294-1302.
[11] ZHU Yang,LIU YongFeng,WEI YanChao,SHEN Qian,WANG YiFan. Qualitative and Quantitative Detection Methods of Pork in Beef and Its Chinese Processing Products [J]. Scientia Agricultura Sinica, 2018, 51(22): 4352-4363.
[12] HUANG XuePing, SONG YuFei, LUO Jian, ZHAO ShiFeng, MU Wei, LIU Feng. Sensitivity of Sclerotinia sclerotiorum to Fluopyram and Evaluation of Its Application Potential in Controlling Sclerotinia Stem Rot [J]. Scientia Agricultura Sinica, 2018, 51(14): 2711-2718.
[13] JIA XiaoPing, YUAN XiLei, LI JianFeng, ZHANG Bo, ZHANG XiaoMei, GUO XiuPu, CHEN ChunYan. Comprehensive Evaluation of Main Agronomic Traits of Millet Resources Under Different Light and Temperature Conditions [J]. Scientia Agricultura Sinica, 2018, 51(13): 2429-2441.
[14] KONG YouBin, LI XiHuan, ZHANG CaiYing. Construction and Activity Analysis of the Promoter of Purple Acid Phosphatase Gene GmPAP4 in Soybean [J]. Scientia Agricultura Sinica, 2017, 50(3): 582-590.
[15] CUI KaiDi, HUANG XuePing, HE LeiMing, ZHAI YongBiao, MU Wei, LIU Feng. The Inhibition Effect of Microbial Volatile Compound Benzothiazole on Botrytis cinerea [J]. Scientia Agricultura Sinica, 2017, 50(19): 3714-3722.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!