Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (24): 4998-5012.doi: 10.3864/j.issn.0578-1752.2012.24.005

• PLANT PROTECTION • Previous Articles     Next Articles

Identification of the Characteristics for Forma Specials of Fusarium oxysporum Schl. Based on the Analysis of Fatty Acid Biomarkers

 LIU  Bo, HU  Gui-Ping, XIAO  Rong-Feng   

  1. 1.Agricultural Biological Resource Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003
    2.Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002
  • Received:2012-04-28 Online:2012-12-15 Published:2012-07-11

Abstract: 【Objective】 The objective of this study is to analyze the characteristics of PLFA biomarkers in Fusarium oxysporum Schl. by means of microbe identification system (MIDI system from USA). 【Method】 Twenty-two strains of F. oxysporum isolated from different hosts, e.g. watermelon, banana and peanut, were detected by MIDI system, the homogeneity of fatty acid from the fungi was analysed by clustering, and the key fatty acids of F. oxysporum were acquired by the method of PCA. The discriminant model for the forma specials of F. oxysporum was figured out by stepwise discriminant analysis.【Result】Eight fatty acids were identified in 22 strains of the forma specials, and there were 3 types of fatty acids such as 16:0, 18:0 and 18:2 CIS 9,12/18:0a related to existance in all strains. Using the cluster analysis method the 22 strains were classified into 4 groups based on the phospholipid fatty acids (PLFAs) biomarkers, which had association with origin, biochemical variant and pathotype of F. oxysporum. The 5 key fatty acids obtained 14:0 (X1), 16:0 (X2), 16:1 CIS 9 (W7) (X3), 18:0 (X4) and 18:2 CIS 9,12/18:0a (X5) were acquired by Principal Component Analysis (PCA). Bayes discrimination method was used to establish discriminant models. Four fatty acids of 14:0 (X1), 16:0 (X2), 18:0 (X4), 18:2 CIS 9,12/18:0a (X5) were put into the model set as follow: Y1=-183.06+12.24X1+8.05X2+5.39X4+ 3.58X5, Y2=-174.09+10.40X1+7.96X2+5.40X4+3.42X5, Y3=-173.97+14.85X1+7.25X2+ 6.58X4+ 3.53X5. The accurate rate for discrimination was up to 92.86%.【Conclusion】Fatty acids, e.g. 14:0, 16:0, 18:0, 18:2 CIS 9,12/18:0a, are the key factors in discriminating the host of F. oxysporum. The discriminant model is accord with the practice and should be well applied into use.

Key words: Fusarium oxysporum Schl. , fatty acid , forma special , discriminant model , biomarker

`[1]祝  雯, 詹家绥. 植物病原物的群里遗传学. 遗传, 2012, 34(2): 157-166.

Zhu W, Zhan J S. Population genetics of plant pathogens. Hereditas, 2012, 34(2): 157-166. (in Chinese)

[2]Brown J K M. The choice of molecular marker methods for population genetic studies of plant pathogens. New Phytologist, 1996, 133: 183-195.

[3]刘志辉, 蔡杏姗, 竺澎波, 关  平, 许婉花, 吴龙章. 应用气相色谱技术分析全细胞脂肪酸快速鉴定分枝杆菌. 中华结核和呼吸杂志, 2005, 28(6): 403-406.

Liu Z H, Cai X S, Zhu P B, Guan P, Xu W H, Wu L Z. Study on species identification of Mycobacteria by gas chromatography analysis of whole-cell fatty acid. Chinese Journal of Tuberculosis and Respiratory Diseases, 2005, 28(6): 403-406. (in Chinese)

[4]Rapp P. Prodution, regulation, and some properties of lipase activity from Fusarium oxysporum f. sp. vasinfectum. Enzyme and Microbial Technology, 1995, 17: 832-838.

[5]Ellis R J, Geuns J, Zarnowski R. Fatty acid composition from an epiphytic strain of Fusarium oxysporum associated with algal crusts. Acta Microbiologica Polonica, 2002, 51(4): 391-394.

[6]Rambo G W, Bean G A. Fatty acids of the mycelia and conidia of Fusarium oxysporum and Fusarium roseum. Canadian Journal of Microbiology, 1969, 15(8): 967-968.

[7]刘  波, 蓝江林, 车建美, 林营志, 王秋红, 朱育菁. 青枯雷尔氏菌脂肪酸型与致病性的关系. 中国农业科学, 2009, 42(2): 511-522.

Liu B, Lan J L, Che J M, Lin Y Z, Wang Q H, Zhu Y J. Fatty acid type of Ralstonia solancearum strains and the relationship with pathogenicity. Scientia Agricultura Sinica, 2009, 42(2): 511-522. (in Chinese)

[8]Boyd J C, Lewis J W, Marr J J, Harper A M, Kowalski B R. Effect of atypical antibiotic resistance on microorganism identification by pattern recognition. Journal of Clinical Microbiology, 1978, 8(6): 689-694.

[9]Thoen C O, Karlson A G, Ellefson R D. Differentiation between Mycobacterium kansasii and Mycobacterium marinum by gas-liquid chromatographic analysis of cellular fatty acids. Applied Microbiology, 1972, 24(6): 1009-1010.

[10]宋红梅, 李  波, 李丽婕, 曹春红, 田  润, 张雅薇. 气相色谱法分析沙门氏菌脂肪酸组成的研究. 现代预防医学, 2009, 36(22): 4324-4326.

Song H M, Li B, Li L J, Cao C H, Tian R, Zhang Y W. Study on the cellular fatty acids composition of salmonella by unqualification rates analysis. Modern Preventive Medicine, 2009, 36(22): 4324-4326. (in Chinese)

[11]Farshy D C, Moss C W. Characterization of clostridia by gas chromatography: differentiation of species by trimethylsilyl derivatives of whole-cell hydrolysates. Applied Microbiology, 1970, 20(1): 78-84.

[12]Stahl P D, Klug M J. Characterization and differentiation of filamentous fungi based on fatty acid composition. Applied and Environmental Microbiology, 1996, 62(11): 4136-4146.

[13]Bentivenga S P, Morton J B. Congruence of fatty acid methyl ester profiles and morphological characters of arbuscular mycorrhizal fungi in Gigasporaceae. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93: 5659-5662.

[14]Fraga M E, Santana D M N, Gatti M J, Direito G M, Cavaglieri L R, Rosa C A R. Characterization of Aspergillus species based on fatty acid profiles. Memórias do Instituto Oswaldo Cruz, 2008, 103(6): 540-544.

[15]张晓霞, 王直强, 李世贵, 顾金刚, 姜瑞波. 脂肪酸组分分析在不动杆菌鉴定中的应用. 生物技术通报, 2009(6): 151-154.

Zhang X X, Wang Z Q, Li S G, Gu J G, Jiang R B. Identification of Acinetobacter spp. using fatty acid compositions analysis. Biotechnology Bulletin, 2009(6): 151-154. (in Chinese)

[16]Augustyn O P H, Kock J L F, Ferreira D. Differentiation between yeast species, and strains within a species, by cellular fatty acid analysis. 3. Saccharomyces sensu lato, Arxiozyma and Pachytichospora. Systematic and Applied Microbiology, 1990, 13(1): 44-55.

[17]Augustyn O P H, Kock J L F. Differentiation of yeast species, and strains within a species, by cellular fatty acid analysis. 1. Application of an adapted technique to differentiate between strains of Saccharomyces cerevisiae. Journal of Microbiological Methods, 1989, 10(1): 9-23.

[18]Augustyn O P H, Kock J L F, Ferreira D. Differentiation between yeast species, and strains within a species, by cellular fatty acid analysis 5. A feasible technique? Systematic and Applied Microbiology, 1992, 15(1): 105-115.

[19]岳田利, 王  军, 袁亚宏, 高振鹏. 基于 FT-NIR 的微生物快速鉴定方法研究. 光谱学与光谱分析, 2010, 30(11): 2945-2949.

Yue T L, Wang J, Yuan Y H, Gao Z P. Rapid identification of microorganisms based on fourier transform near infrared spectroscopy. Spectroscopy and Spectral Analysis, 2010, 30(11): 2945-2949. (in Chinese)

[20]黄建锋, 赵广英, 窦文超. 智舌快速检测副溶血弧菌簇类独立软模式识别的建立. 微生物学报, 2011, 51(4): 538-546.

Huang J F, Zhao G Y, Dou W C. Development of the soft independent modelling of class analogies model to discrimination Vibrio parahemolyticus by Smartongue. Acta Microbiologica Sinica, 2011, 51(4): 538-546. (in Chinese)

[21]Schmid U, Rösch P, Krause M, Harz M, Popp J, Baumann K. Gaussian mixture discriminant analysis for the single-cell differentiation of bacteria using micro-Raman spectroscopy. Chemometrics and Intelligent Laboratory Systems, 2009, 96: 159-171.

[22]Snyder A P, Wang T T, Greenberg D B. Pattern recognition analysis of in vivo enzyme-substrate fluorescence velocities in microorganism detection and identification. Applied and Environmental Microbiology, 1986, 51(5): 969-977.

[23]王秋红, 陈  亮, 林营志, 朱育菁, 蓝江林, 杨淑佳, 刘  波. 福建省青枯雷尔氏菌脂肪酸多态性研究. 中国农业科学, 2007, 40(8): 1675-1687.

Wang Q H, Chen L, Lin Y Z, Zhu Y J, Lan J L, Yang S J, Liu B. Polymorphism of fatty acid of Ralstonia solanacearum in fujian province. Scientia Agricultura Sinica, 2007, 40(8): 1675-1687. (in Chinese)
[1] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[2] SHI Xi, NING LiHua, GE Min, WU Qi, ZHAO Han. Screening and Application of Biomarkers Related to Maize Nitrogen Status [J]. Scientia Agricultura Sinica, 2022, 55(3): 438-450.
[3] YU ZhengWang,ZHOU ZhongXin. Functions of Antibacterial and Inducing Defense Peptide Expression of Medium-Chain Fatty Acid and Its Application in Piglet Feeds [J]. Scientia Agricultura Sinica, 2021, 54(13): 2895-2905.
[4] Xiao WEI,Qi ZHANG,Wen ZHANG,Hui LI,PeiWu LI. Improving the Sensitivity of ELISA by Large-Capacity Reaction System of Aflatoxigenic Fungi-Biomarker in Agro-products [J]. Scientia Agricultura Sinica, 2020, 53(7): 1473-1481.
[5] ZHANG AiJing,LI LinQiong,WANG PengJie,GAO YuLong. Effects of Heat Stress on Cell Membrane and Membrane Protein of Escherichia coli [J]. Scientia Agricultura Sinica, 2020, 53(5): 1046-1057.
[6] YE Sang,CUI Cui,GAO HuanHuan,LEI Wei,WANG LiuYan,WANG RuiLi,CHEN LiuYi,QU CunMin,TANG ZhangLin,LI JiaNa,ZHOU QingYuan. QTL Identification for Fatty Acid Content in Brassica napus Using the High Density SNP Genetic Map [J]. Scientia Agricultura Sinica, 2019, 52(21): 3733-3747.
[7] HAO QingTing,ZHANG Fei,JI XiaJie,XUE JinAi,LI RunZhi. Phenotypic Analysis of Epoxygenase-Transgenic Soybeans [J]. Scientia Agricultura Sinica, 2019, 52(2): 191-200.
[8] WEI HaiDian, CHEN XueQiu, HUANG Yan, SHI HengZhi, ZHOU JingRu, WU Fei, DU AiFang, YANG Yi. The Expression Pattern and Ligand Binding Ability of Hc-FAR-4 Protein of Haemonchus contortus [J]. Scientia Agricultura Sinica, 2019, 52(17): 3059-3068.
[9] Jian YUAN,Teng ZHAO,Chao DING,ChangRui XING,Bin ZHANG,ShangBing CHEN,Rong HE,XingRong JU. Effects of Microwave Treatments on Rice Quality and Lipase Activity [J]. Scientia Agricultura Sinica, 2018, 51(21): 4131-4142.
[10] ZHANG Lan, GAO TianLi, LIU YongFeng, ZHAO Jing, LIAO Jing, KU Ting. Effects of Eight Chinese Style Cuisine Methods on Polycyclic Aromatic Hydrocarbons, Trans-Fatty Acids and Nitrite of Beef [J]. Scientia Agricultura Sinica, 2017, 50(6): 1126-1138.
[11] HUANG XingLin, LU JunXing, LIAO BingNan, BAI HuiYang, GUAN Li, ZHANG Tao. Cloning and Expression Analysis of Fatty Acid Desaturase Gene FAD3 from Oil Peony [J]. Scientia Agricultura Sinica, 2017, 50(10): 1914-1921.
[12] SHI Yu-qian, ZHAO Yan. Growth and Lipid Accumulation Promotion of Chlorella by Endophytic Pantoea sp. from Rice Seeds [J]. Scientia Agricultura Sinica, 2016, 49(8): 1429-1442.
[13] SUN Li, DING Yu-duan, HE Yi-zhong, CHEN Ling-ling, CHENG Yun-jiang. Biomarker Sieving for Fruit Storage Life of Satsuma Mandarin (Citrus unshiu Marc.) [J]. Scientia Agricultura Sinica, 2016, 49(7): 1346-1359.
[14] ZHANG Ting, WANG Zhen-yu, LI Zheng, LIN Zu-song, LI Xiang, TIAN Jian-wen, ZHANG De-quan. In?uence of Barley-Based Diets on Physico-Chemical Characteristics and Fatty Acid Composition of Dry-Cured Ham Produced with Dahe Black Pig’s Hind Leg [J]. Scientia Agricultura Sinica, 2016, 49(2): 331-338.
[15] GAO Xi-xi, ZHANG Shu-wen, LU Jing, LIU Lu, PANG Xiao-yang, YUE Xi-qing, Lü Jia-ping. Chemical Compositions and Physicochemical Properties of Milk Fat and Fractions Obtained by Short-Path Distillation [J]. Scientia Agricultura Sinica, 2016, 49(11): 2183-2193.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!