Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (22): 4728-4737.doi: 10.3864/j.issn.0578-1752.2012.22.020

• RESEARCH NOTES • Previous Articles     Next Articles

Ananlysis of Differential Stigma Proteins Between a Pollination- Deficiency Mutant in Brassica napus L.and Its Wild Type

 LI  Chun-Hong, FU  San-Xiong, QI  Cun-Kou   

  1. Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Sub-center of National Rapeseed Development Center, Nanjing 210014
  • Received:2012-07-13 Online:2012-11-15 Published:2012-10-09

Abstract: 【Objective】The difference in protein expression was identified between a pollination-deficiency mutant FS-M1 in Brassica napus L. and its wild type at proteomics level. 【Method】 Two-dimensional electrophoresis (2-DE) was used to study the variation expression of stigma proteins between FS-M1 and its wild-type (NY10). The characteristics and functions of proteins expressed up-regulated in the B. napus L. stigma were analyzed with MALDI-TOF-TOF/MS and Protein Data Bank. 【Result】 A total of 33 up-regulated proteins expressed in the wild-type stigma were identified, which were involved in 7 functional categories, including stress response and defense, regulation of redox homeostasis, carbohydrate metabolism, proteolysis proteins, protein folding, amino acid and nitrogen metabolism, nucleotid metabolism, and unclassified. 【Conclusion】 The functions of protein up-regulated in the wild-type stigma were extensive,which could be related to pollination regulation of B. napus L..

Key words: Brassica napus L. , stigma , 2-DE , MALDI-TOF-MS

[1]Kang Y R, Nasrallah J B. Use of genetically ablated stigmas for the isolation of genes expressed specifically in the stigma epidermis. Sex Plant Reprod, 2001, 14: 85-94.

[2]Li M, Xu W, Yang W, Kong Z, Xue Y. Genome-wide gene expression profiling reveals conserved and novel molecular functions of the stigma of rice. Plant Physiology, 2007, 144: 1797-1812.

[3]Chapman L A, Goring D R. Pollen-pistil interactions regulating successful fertilization in the Brassicaceae. The Journal of Experimental Botany, 2010, 61(7): 1987-1999.

[4]Stone S L, Anderson E M, Mullen R T, Goring D R. ARC1is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. The Plant Cell, 2003, 15: 885-898.

[5]Kubo K, Entani T, Takara A. Collaborative non-self recognition system in S-RNase-based self-incompatibility. Science, 2010, 330(6005): 796-799.

[6]Dixit R, Rizzo C, Nasrallah M, Nasrallah J. The brassica MIP-MOD gene encodes a functional water channel that is expressed in the stigma epidermis. Plant Molecular Biology, 2001, 45: 51-62.

[7]Otsu C T, daSilva I, de Molfetta J B, da Silva L R, de Almeida-Engler J, Engler G, Torraca P C, Goldman G H. MH NtWBC1, an ABC transporter gene specifically expressed in tobacco reproductive organs. The Journal of Experimental Botany, 2004, 55: 1643-1654.

[8]McInnis S M, Emery D C, Porter R, Desikan R, Hancock J T, Hiscock S J. The role of stigma peroxidases in flowering plants: Insights from further characterization of a stigma-specific peroxidase (SSP) from Senecio squalidus (Asteraceae). The Journal of Experimental Botany, 2006, 57: 1835-1846.

[9]Kovaleva L V, Zakharova E V, Skorobogatova I V, Karsunkina N P. Gametophyte-sporophyte interactions in the pollen-pistil system: 3. Hormonal status at the progamic phase of fertilization. Russian Journal of Plant Physiology, 2002, 49: 492-495.

[10]Samuel M A, Chonga Y T, Haasena K E, Aldea-Brydgesa M G, Stone S L, Goring D R. Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of the exocyst complex. The Plant Cell, 2009, 21: 2655-2671.

[11]Tung C W, Dwyer K G, Nasrallah M E, Nasrallah J B. Genome-wide identification of genes expressed in Arabidopsis pistils specifically along the path of pollen tube growth. Plant Physiology, 2005, 138: 977-989.

[12]Swanson R, Clark T, Preuss D. Expression profiling of Arabidopsis stigma tissue identifies stigma-specific genes. Sexual Plant Reproduction, 2005, 18: 163-171.

[13]Allen A M, Lexer C, Hiscock S M. Comparative analysis of pistil transcriptomes reveals conserved and novel genes expressed in dry, wet, and semidry stigmas. Plant Physiology, 2010, 154: 1347-1360.

[14]李春宏, 付三雄, 陈新军, 戚存扣. 甘蓝型油菜雌性不育突变体FS-M1乳突细胞的细胞学观察. 植物学报, 2012, 47(1): 36-43.

Li C H, Fu S X, Chen X J, Qi C K. Anatomy of papilla cells of a female sterile mutant FS-M1 in Brassica napus. Chinese Bulletin of Botany, 2012, 47(1): 36-43. (in Chinese)

[15]刘海衡, 胡胜武, 刘胜毅, 黄军艳, 董彩华. 油菜不同器官高质量总蛋白提取方法和双向电泳体系的优化. 中国油料作物学报, 2009, 31(4): 426-433.

Liu H H, Hu S W, Liu S Y, Huang J Y, Dong C H. Optimization of high quality total protein extraction and two-dimensional gel electrophoresis system for different Brassica napus organs. Chinese Journal of Oil Crop Sciences, 2009, 31(4): 426-433. (in Chinese)

[16]Bradford M M. A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72: 248-254.

[17]刘怀华, 王莉雯, 刘  楠, 刘  旭, 马  侠, 宁丽华, 张  华, 崔德周, 姜  川, 陈化榜. 玉米花粉与花丝早期互作的蛋白质组学分析. 中国农业科学, 2010, 43(24): 5000-5008.

Liu H H, Wang L W, Liu N, Liu X, Ma X, Ning L H, Zhang H, Cui D Z, Jiang C, Chen H B. Proteomic analyses of the early pollen-silk interaction in maize. Scientia Agricultura Sinica, 2010, 43(24): 5000-5008. (in Chinese)

[18]Zhao P, Wang L L, Han L, Wang J, Yao Y, Wang H, Du X, Luo Y, Xia G. Proteomic identification of differentially expressed proteins in the Ligon lintless mutant of upland cotton (Gossypium hirsutum L.). Journal of Proteome Research, 2010, 9(2): 1076-1087.

[19]Jiang Y Q, Yang B, Harris N S, Deyholos M K. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. Journal of Experimental Botany, 2007, 58(13): 3591-3607.

[20]Leung D W M. lnvolvement of plant chitinase in sexual reproduction of higher plants. Phytochemistry, 1992, 31: 1899-1900.

[21]Atkinson A, Heath R, Simpson R, Clarke A, Anderson M. Proteinase inhibitors in Nicotiana alata stigmas are derived from a precursor protein which is processed into five homologous inhibitors. The Plant Cell, 1993, 5: 203-213.

[22]Fu A, He Z, Cho H S, Amparo L, Buchanan B B, Sheng L. A chloroplast cyclophilin functions in the assembly and maintenance of photosystem II in Arabidopsis thaliana. Proceedings of the National Academy of Scinces of the USA, 2007, 104(40): 15947-15952.

[23]Jones A M, Thomas V, Bennett M H, Mansfield J, Grant M. Modifications to the Arabidopsis defense proteome occur prior to significant transcriptional change in response to inoculation with Pseudomonas syringae. Plant Physiology, 2006, 142: 1603-1620.

[24]陈亚州, 阎秀峰. 芥子油苷在植物-生物环境关系中的作用. 生态学报, 2007, 6: 44-48.

Chen Y Z, Yan X F. The role of glucosinolates in plant-biotic environment interactions. Acta Ecologica Sinica, 2007, 6: 44-48. (in Chinese)

[25]Attieh J, Djiana R, Koonjul P, Etienne C, Sparace S A, Saini H S. Cloning and functionalexpression of two plant thiolmethyltransferases: A new class of enzymes involved in the biosynthesis of sulfur volatiles. Plant Molecular Biology, 2002, 50: 511-521.

[26]Ma H, Song L, Shu Y, Wan S, Niu J, Wang Z, Yu T, Gub W, Ma H. Comparative proteomic analysis of seedling leaves of different salt tolerant soybean genotypes. Journal of Proteomics, 2012: 1529-1546.

[27]陈昌福, 陈  萱, 陈超然, 梁运祥, 王建华. 水产甲壳动物的免疫防御机能及其免疫预防研究进展. 华中农业大学学报, 2003, 22(2): 197-203.

Chen C F, Chen X, Chen C R, Liang Y X, Wang J H. Advances in aquatic crustacean immunologic defence mechanisms and immunoprophylaxis. Journal of Huazhong Agricultural University, 2003, 22(2): 197-203. (in Chinese)

[28]王彦华, 侯喜林, 史公军. 白菜β-1,3-葡聚糖酶基因cDNA 的克隆及序列分析. 园艺学报, 2004, 31(5): 670-672.

Wang Y H, Hou X L, Shi G J. Cloning and sequence analysis of beta-1,3-glucanase gene cDNA in B.campestris ssp. chinensis. Acta Horticulturae Sinice, 2004, 31(5): 670-672. (in Chinese)

[29]Singh B N, Mishra R N, Agarwal P K, Goswami M, Nair S, Sopory S K, Reddy M K. A pea chloroplast translation elongation factor that is regulated by abiotic factors. Biochemical and Biophysical Research Communications, 2004, 320: 523-530.

[30]Bae M S, cho E J, choi E Y, Park O K. Analysis of the Arabidopsis nuclear proteome and its response to cold stress. The Plant Journal, 2003, 36: 652-663.

[31]Abbasi F M, Komatsu S. A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics, 2004, 4(7): 2072-2081.

[32]Annamalai P, Yanagihara S. Identification and characterization of a heat-stress induced gene in Cabbage encodes a Kunitz type protease inhibitor. Journal of Plant Physiology, 1999, 155: 226-233.

[33]Lan L, Li M, Lai Y, Xu W, Kong Z, Ying K, Han B, Xue Y. Microarray analysis reveals similarities and variations in genetic programs controlling pollination/fertilization and stress responses in rice (Oryza sativa L.). Plant Molecular Biology, 2005, 59: 151-164.

[34]Li N, Zhang Z Z, Zhang W, Wei Q. Calcineurin B subunit interacts with proteasome subunit alpha type 7 and represses hypoxia-inducible factor-1a activity via the proteasome pathway. Biochemical and Biophysical Research Communications, 2011, 405: 468-472.

[35]Siegel D, Gustafson D L, Dehn D L, Han J Y, Boonchoong P, Berliner L J, Ross D. NAD(P)H: Quinone Oxidoreductase 1: Role as a Superoxide Scavenger. Molecular Pharmacology, 2004, 65: 1238-1247.

[36]Yoo K S, Ok S H, Jeong B C, Jung K W, Cui M H, Hyoung S, Lee M R, Song H K, Shin J S. Single cystathionine β-synthase domain-containing proteins modulate development by regulating the thioredoxin system in Arabidopsis. The Plant Cell, 2011, 23: 3577-3594.

[37]Portis A R, Parry M A J. Discoveries in Rubisco (Ribulose 1,5-bisphosphate carboxylase/oxygenase): A historical perspective. Photosynth Reserch, 2007, 94: 121-143.

[38]Mcreynolds M S, Kitto G B. Purification and properties of drosophila malate dehydrogenases. Biochimica et Biophysica Acta, 1970, 198 (2): 165-175.

[39]Dielen A S, Sassaki F T, Walter J, Michon T, Ménard G, Pagny G, Krause-Sakate R, Maia Ide G, Badaoui S, Le Gall O, Candresse T, German-Retana S. The 20S proteasome a5 subunit of Arabidopsis thaliana carries an RNase activity and interacts in planta with the Lettuce mosaic potyvirus HcPro protein. Molecular Plant Pathology, 2011, 12: 137-150.

[40]Romano P, He Z, Luan S. Introducing immunophilins, from organ transplantation to plant biology. Plant Physiology, 2004, 134(4): 1241-1243.

[41]Lepedu H, Toma A, Juri S, Katani Z, Cesar V, Fulgosi H. Photochemistry of PSII in A. thaliana Mutant. Food Technology and Biotechnology, 2009, 47(3) 275-280.

[42]陈胜勇, 李观康, 汪  云, 何霭如, 陈  傲, 余小丽. 谷氨酰胺合成酶的研究进展. 中国农学通报, 2010, 26(22): 45-49.

Chen S Y, Li G K, Wang Y, He A R, Chen A, Yu X L. The research progress of glutamine synthetase Chinese. Agricultural Science Bulletin, 2010, 26(22): 45-49. (in Chinese) 

[43]Hoshida H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, TakabeT, Takabe T. Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Molecular Biology, 2000, 43: 103-111.

[44]Rawlings N D, Barrett A J. Evolutionary families of metallopeptidases. Methods in Enzymology, 1995, 248: 183-228.

[45]Grover G J, Marone P A, Koetzner L, Seto-Young D. Energetic signalling in the control of mitochondrial F1F0 ATP synthase activity in health and disease. The International Journal of Biochemistry & Cell Biology, 2008, 40: 2698-2701.
[1] HAO WenYuan, LI FeiWu, YAN Wei, LI CongCong, HAO DongYun, GUO ChangHong. Assessment of the Unintended Effects of Four Genetically Modified Maize Varieties by Proteomic Approach [J]. Scientia Agricultura Sinica, 2017, 50(19): 3652-3664.
[2] DING Xin-Lun, XIE Li-Yan, WU Zu-Jian. Identification and Analysis of Differentially Expressed Proteins of Host Rice (Oryza sativa) Infected with Rice Grassy Stunt Virus [J]. Scientia Agricultura Sinica, 2014, 47(9): 1725-1734.
[3] XU Jian-Feng-1, LONG Yan-2, WU Jian-Guo-3, ZHAO Zhi-Gang-4, XU Hai-Ming-1, WEN Juan-1, MENG Jin-Ling-2, SHI Chun-Hai-1. QTL Mapping Based on Embryo and Maternal Genetic Systems for Oil and Protein Contents in Rapeseed (Brassica napus L.) [J]. Scientia Agricultura Sinica, 2014, 47(8): 1471-1480.
[4] . Proteome Analysis of Cytoplasmic Male Sterility and Its Maintaince in JA-CMS Cotton [J]. Scientia Agricultura Sinica, 2014, 47(20): 3929-3940.
[5] XIAO Hua-Gui, YANG Huan-Wen, RAO Yong, YANG Bin, ZHU Ying, ZHANG Wen-Long. 甘蓝型油菜黄化突变体的叶绿体超微结构、 气孔特征参数及光合特性 [J]. Scientia Agricultura Sinica, 2013, 46(4): 715-727.
[6] XIE Xiao-Yu, ZHANG Xia, ZHANG Bing. Evaluation of Drought Resistance and Analysis of Variation of Relevant Parameters at Seedling Stage of Rapeseed (Brassica napus L.) [J]. Scientia Agricultura Sinica, 2013, 46(3): 476-485.
[7] DU Kun, GAO Ya-Nan, KONG Yue-Qin, FAN Yun, WANG You-Ping. Effects of OsLTP Gene on Salt Tolerance of Transgenic Brassica napus [J]. Scientia Agricultura Sinica, 2013, 46(13): 2625-2632.
[8] ZHENG Ben-Chuan, ZHANG Jin-Fang, LI Hao-Jie, CHAI Liang, CUI Cheng, JIANG Jun, PU Xiao-Bin, NIU Ying-Ze, JIANG Liang-Cai. Analysis of Quantitative Expression of the Flowering-Regulating Transcription Factor CONSTANS Gene in Brassica napus L. [J]. Scientia Agricultura Sinica, 2013, 46(12): 2592-2598.
[9] ZHANG Teng-Guo, CHANG Yan, WANG Juan, WANG Ning, WANG Yuan-Yuan, CHEN Qiong-Qiong, SUN Wan-Cang. Cloning and Expression Analysis of a BnICE1 from Brassica napus L. [J]. Scientia Agricultura Sinica, 2013, 46(1): 205-214.
[10] ZOU Yong, ZHONG Xiao-Wu, ZHANG Li-Ping, ZHAO Ping, XIA Qing-You. Proteomic Comparison on Malpighian Tubules Between Larvae Stage and Pupal Stage of Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2012, 45(9): 1833-1839.
[11] HU Mao-Long, PU Hui-Ming, GAO Jian-Qin, LONG Wei-Hua, QI Cun-Kou, ZHANG Jie-Fu, CHEN Song. Inheritance and Gene Cloning of an ALS Inhabiting Herbicide- Resistant Mutant Line M9 in Brassica napus [J]. Scientia Agricultura Sinica, 2012, 45(20): 4326-4334.
[12] QI Jian-Min, JIANG Hai-Qing, CHEN Mei-Xia, XU Jian-Tang, MA Hong-Bo, FANG Ping-Ping, LIN Li-Hui, TAO Ai-Fen, CHEN Wei. Differential Protein Analysis of Kenaf Leaves Under Drought Stress [J]. Scientia Agricultura Sinica, 2012, 45(17): 3632-3638.
[13] ZHU Zong-he; ZHENG Wen-yin; ZHANG Xue-kun. Principal Component Analysis and Comprehensive Evaluation on Morphological and Agronomic Traits of Drought Tolerance in Rapeseed (Brassica napus L.) [J]. Scientia Agricultura Sinica, 2011, 44(9): 1775-1787.
[14] ZOU Juan,LU Jian-wei,CHEN Fang,LI Yin-shui,LI Xiao-kun
. Study on Yield Increasing and Nutrient Uptake Effect by Nitrogen Application and Nitrogen Use Efficiency for Winter Rapeseed
[J]. Scientia Agricultura Sinica, 2011, 44(4): 745-752 .
[15] LIU Xiao-Wei, LU Jian-Wei, LI Xiao-Kun, BU Rong-Yan, LIU Bo, CI Dan. Dry Matter Accumulation and N, P, K Absorbtion and Utilization in Direct Seeding Winter Oilseed (Brassica napus L.) [J]. Scientia Agricultura Sinica, 2011, 44(23): 4823-4832.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!