Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (9): 1833-1839.doi: 10.3864/j.issn.0578-1752.2012.09.019

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Proteomic Comparison on Malpighian Tubules Between Larvae Stage and Pupal Stage of Silkworm (Bombyx mori)

 ZOU  Yong, ZHONG  Xiao-Wu, ZHANG  Li-Ping, ZHAO  Ping, XIA  Qing-You   

  1. 1.西南大学蚕学与系统生物学研究所/家蚕基因组学国家重点实验室,重庆 400716
  • Received:2011-07-28 Online:2012-05-01 Published:2011-11-04

Abstract: 【Objective】 The objective of this study is to get more information of malpighian tubules on the proteome changes between larvae stage and pupal stage, and to provide new evidences on the protein level at different developmental stages of malpighian tubules of B. mori. 【Method】 The matrix-assisted laser desorption ionization time of flight mass spectrometry were applied for identifying the different spots which had more expression of the 2D map, and all the protein sequences from P50/Dazao on NCBI combined silkworm proteins database were used to build local-database by the software GPMAW 8.00. GPMAW was also used to analyze peptide fingerprint masses.【Result】 About 360-430 spots were obtained by silver staining from the malpighian tubules after 2D-PAGE. Most of them were distributed in the area from 15 to 80 kD with pI 4.0-9.5. Seventeen markedly different proteins between larvae stage and pupal stage were successfully identified, including not only the proteins in association with energy metabolism, but also heat shock proteins, vacuolar-type H+-transporting ATPase, 30K lipoprotein, and alanine-glyoxylate aminotransferase 2,3-hydroxyisobutyrate dehydrogenase which have important functions in mammal kidney. 【Conclusion】 The discovery and identification of these proteins can offer a valuable insights into functional differences of larvae stage and pupal stage of holometabolic insects.

Key words: Bombyx mori, malpighian tubule, 2D-PAGE, MALDI-TOF-MS

[1]Dow J A T. Insights into the malpighian tubule from functional genomics. Journal of Experimental Biology, 2009, 212(3): 435-445.

[2]Spring J H, Robichaux S R, Hamlin J A. The role of aquaporins in excretion in insects. Journal of Experimental Biology, 2009, 212(3): 358-362.

[3]Stergiopoulos K, Cabrero P, Davies S A, Dow J A T. Salty dog, an SLC5 symporter, modulates Drosophila response to salt stress. Physiological Genomics, 2009, 37(1): 1-11.

[4]O'Donnell M J. Too much of a good thing: how insects cope with excess ions or toxins in the diet. Journal of Experimental Biology, 2009, 212(3): 363-372.

[5]Wall B J, Ralph C L. Evidence for hormonal regulation of malpighian tubule excretion in the Insect, Periplaneta americana L. General and Comparative Endocrinology, 1964, 4(4): 452-456.

[6]Ryerse J S. Developmental changes in malpighian tubule cell structure. Tissue and Cell, 1979, 11(3): 533-551.

[7]Ryerse J S. The control of malpighian tubule developmental physiology by 20-hydroxyecdysone and juvenile hormone. Journal of Insect Physiology, 1980, 26(7): 449-457.

[8]Kerkut G A. Comprehensive Insect Physiology Biochemistry and Pharmacology. Cambridge: Cambridge University Press, 1984.

[9]Wigglesworth S V B. The Principles of the Insect Physiology. London: Chapman and Hall, 1972.

[10]向仲怀. 蚕丝生物学. 北京: 中国林业出版社, 2005: 46-48.

Xiang Z H. Biology of Sericulture. Beijing: China Forestry of Sericulture, 2005: 46-48. (in Chinese)

[11]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72: 248-254.

[12]Hou Y, Zou Y, Wang F, Gong J, Zhong X, Xia Q, Zhao P. Comparative analysis of proteome maps of silkworm hemolymph during different developmental stages. Proteome Science, 2010, 8: 45.

[13]肖  博, 马潞林, 肖春雷, 陆  敏, 徐  巍, 黄  毅, 张树栋, 侯小飞. 热休克蛋白70与体外补充镁在家兔肾缺血再灌注损伤中的保护性作用. 北京大学学报: 医学版, 2011, 43(4): 525-530.

Xiao B, Ma L L, Xiao C L, Lu M, Xu W, Huang Y, Zhang S D, Hou X F. Protective effect of heat shock protein 70 and magnesium sulfate supplementation on renal ischemia reperfusion injury. Journal of Peking University: Health Sciences, 2011, 43(4): 525-530. (in Chinese)

[14]Yoshioka T, Bills T, Moore-Jarrett T, Greene H L, Burr I M, Ichikawa I. Role of intrinsic antioxidant enzymes in renal oxidant injury. Kidney International, 1990, 38(2): 282-288.

[15]Arya R, Lakhotia S C. Hsp60D is essential for caspase-mediated induced apoptosis in Drosophila melanogaster. Cell Stress and Chaperones, 2008, 13(4): 509-526.

[16]Tchankouo-Nguetcheu S, Khun H, Pincet L, Roux P, Bahut M, Huerre M, Guette C, Choumet V. Differential protein modulation in midguts of Aedes aegypti infected with chikungunya and dengue 2 viruses. PLoS One, 2010, 5(10): e13149.

[17]Weng X H, Huss M, Wieczorek H, Beyenbach K W. The V-type H+-ATPase in malpighian tubules of Aedes aegypti: localization and activity. Journal of Experimental Biology, 2003, 206(13): 2211-2219.

[18]Du J, Kean L, Allan A K, Southall T D, Davies S A, McInerny C J, Dow J A. The SzA mutations of the B subunit of the Drosophila vacuolar H+ ATPase identify conserved residues essential for function in fly and yeast. Journal of Cell Science, 2006, 119(12): 2542-2551.

[19]Haley C, Donnell M. K+ reabsorption by the lower malpighian tubule of Rhodnius prolixus: inhibition by Ba2+ and blockers of H+/K+- ATPases. Journal of Experimental Biology, 1997, 200(1): 139-147.

[20]Lee I S, Muragaki Y, Ideguchi T, Hase T, Tsuji M, Ooshima A, Okuno E, Kido R. Molecular cloning and sequencing of a cDNA encoding alanine-glyoxylate aminotransferase 2 from rat kidney. The Journal of Biological Chemistry, 1995, 117(4): 856-862.

[21]Lee I S M, Nishikimi M, Inoue M, Muragaki Y, Ooshima A. Specific expression of alanine-glyoxylate aminotransferase 2 in the epithelial cells of Henle's loop. Nephron Physiology, 1999, 83(2): 184-185.

[22]Suhre K, Wallaschofski H, Raffler J, Friedrich N, Haring R, Michael K, Wasner C, Krebs A, Kronenberg F, Chang D, Meisinger C, Wichmann H E, Hoffmann W, Völzke H, Völker U, Teumer A, Biffar R, Kocher T, Felix S B, Illig T, Kroemer H K, Gieger C, Römisch-Margl W, Nauck M. A genome-wide association study of metabolic traits in human urine. Nature Genetics, 2011, 43(6): 565-569.

[23]Vallance P, Leiper J. Cardiovascular biology of the asymmetric dimethylarginine:dimethylarginine dimethylaminohydrolase pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24(6): 1023-1030.

[24]Boger R H, Cooke J P, Vallance P. ADMA: an emerging cardiovascular risk factor. Vascular Medicine, 2005, 10(Suppl. 1): S1-S2.

[25]Fliser D, Kronenberg F, Kielstein J T, Morath C, Bode-Böger S M, Haller H, Ritz E. Asymmetric dimethylarginine and progression of chronic kidney disease: the mild to moderate kidney disease study. Journal of the American Society of Nephrology, 2005, 16(8): 2456-2461.

[26]Leiper J, Nandi M, Torondel B, Murray-Rust J, Malaki M, O'Hara B, Rossiter S, Anthony S, Madhani M, Selwood D, Smith C, Wojciak-Stothard B, Rudiger A, Stidwill R, McDonald N Q, Vallance P. Disruption of methylarginine metabolism impairs vascular homeostasis. Nature Medicine, 2007, 13(2): 198-203.

[27]Ogawa T, Kimoto M, Sasaoka K. Dimethylarginine: pyruvate aminotransferase in rats. Purification, properties, and identity with alanine: glyoxylate aminotransferase 2. The Journal of Biological Chemistry, 1990, 265(34): 20938-20945.

[28]Rodionov R N, Murry D J, Vaulman S F, Stevens J W, Lentz S R. Human alanine-glyoxylate aminotransferase 2 lowers asymmetric dimethylarginine and protects from inhibition of nitric oxide production. The Journal of Biological Chemistry, 2010, 285(8): 5385-5391.

[29]Letto J, Brosnan M E, Brosnan J T. Valine metabolism. gluconeogenesis from 3-hydroxyisobutyrate. Biochemical Journal, 1986, 240(3): 909-912.

[30]Rougraff P M, Zhang B, Kuntz M J, Harris R A, Crabb D W. Cloning and sequence analysis of a cDNA for 3-hydroxyisobutyrate dehydrogenase. Evidence for its evolutionary relationship to other pyridine nucleotide-dependent dehydrogenases. The Journal of Biological Chemistry, 1989, 264(10): 5899-5903.

[31]孙  全. 家蚕30K蛋白基因组分析及蛋白质鉴定[D]. 重庆: 西南大学, 2006: 8-16.

Sun Q. Analysis of the genomic of the 30K protein genes and identify of the protein in silkworm[D]. Chongqing: Southwest University, 2006: 8-16. (in Chinese)

[32]Ujita M, Kimura A, Nishino D, Yokoyama E, Banno Y, Fujii H, Hara A. Specific binding of silkworm Bombyx mori 30-kDa lipoproteins to carbohydrates containing glucose. Bioscience, Biotechnology, and Biochemistry, 2002, 66(10): 2264-2266.

[33]Graham B H, Craigen W J. Mitochondrial voltage-dependent anion channel gene family in Drosophila melanogaster: complex patterns of evolution, genomic organization, and developmental expression. Molecular Genetics and Metabolism, 2005, 85(4): 308-317.

[34]Craigen W J, Graham B H. Genetic strategies for dissecting mammalian and Drosophila voltage-dependent anion channel functions. Journal of Bioenergetics and Biomembranes, 2008, 40(3): 207-212.

[35]Chintapalli V R, Wang J, Dow J A T. Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nature Genetics, 2007, 39: 715-720.

[36]Weavers H, Prieto-Sanchez S, Grawe F, Garcia-Lopez A, Artero R, Wilsch-Brauninger M, Ruiz-Gomez M, Skaer H, Denholm B. The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm. Nature, 2009, 457(7227): 322-326.
[1] LONG YanBi,WU YunFei,ZHANG Qian,CHEN Peng,PAN MinHui. Screening and Identification of HSP90 Interacting Proteins in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2022, 55(6): 1253-1262.
[2] CHEN Peng,BAO XiYan,KANG TaoTao,DONG ZhanQi,ZHU Yan,PAN MinHui,LU Cheng. Screening and Identification of Proteins Interacting with Bombyx mori IAP and Their Effects on BmNPV Proliferation [J]. Scientia Agricultura Sinica, 2019, 52(3): 558-567.
[3] DONG ZhanQi,JIANG YaMing,PAN MinHui. Screening and Identification of Candidate Proteins Interacting with BmHSP60 in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2019, 52(2): 376-384.
[4] YI Min,LÜ Qing,LIU KeKe,WANG LiJun,WU YuJiao,ZHOU ZeYang,LONG MengXian. Expression, Purification and Localization Analysis of Polar Tube Protein 2 (NbPTP2) from Nosema bombycis [J]. Scientia Agricultura Sinica, 2019, 52(10): 1830-1838.
[5] ZHANG Kui,LI ChongYang,SU JingJing,TAN Juan,XU Man,CUI HongJuan. Expression, Purification and Immunologic Function of Integrin β2 in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2019, 52(1): 181-190.
[6] ZHANG Kui, PAN GuangZhao, SU JingJing, TAN Juan, XU Man, LI YuTian, CUI HongJuan. Identification, Expression, Subcelluar Localization, and Function of glial cell missing (gcm) in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2018, 51(7): 1401-1411.
[7] WANG Fei, LI XianYang, HUA XiaoTing, XIA QingYou. Screening and Analysis of Anti-BmNPV Cytokines in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2018, 51(4): 789-799.
[8] Jie HU,XinYi WANG,Fei WANG. Functional Characterization of BmCaspase-8-Like (BmCasp8L) as an Immune Negative Regulatory Molecule in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2018, 51(21): 4188-4196.
[9] LONG DingPei, HAO ZhanZhang, XIANG ZhongHuai, ZHAO AiChun. Current Status of Transgenic Technologies for Safety Consideration in Silkworm (Bombyx mori) and Future Perspectives [J]. Scientia Agricultura Sinica, 2018, 51(2): 363-373.
[10] ZHANG Yan, DONG ZhaoMing, XI XingHang, ZHANG XiaoLu, YE Lin, GUO KaiYu, XIA QingYou, ZHAO Ping. Protein Components of Degumming Bombyx mori Silk [J]. Scientia Agricultura Sinica, 2018, 51(11): 2216-2224.
[11] ZHANG WeiWei, DONG ZhaoMing, ZHANG Yan, ZHANG XiaoLu, ZHANG ShouYa, ZHAO Ping. Expression Pattern and Chitin-Binding Mode Analyses of Cuticle Protein BmCPAP3-G in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2017, 50(9): 1723-1733.
[12] ZHANG Qian, LIU TaiHang, DONG XiaoLong, WU YunFei, YANG JiGui, ZHOU Liang, PAN CaiXia, PAN MinHui. Identification of the Interactions of CDK11 with RNPS1 and 9G8 in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2017, 50(22): 4398-4407.
[13] JIANG YaMing, DONG ZhanQi, CHEN TingTing, HU Nan, DONG FeiFan, HUANG Liang, TANG LiangTong, PAN MinHui. Identification the key areas of Bombyx mori Nucleopolyhedrovirus LEF-11 self-interaction [J]. Scientia Agricultura Sinica, 2017, 50(20): 4028-4035.
[14] PAN GuangZhao, ZHANG Kui, LI ChongYang, ZHAO YuZu, SHEN Li, XU Man, SU JingJing, LIN Xi, CUI HongJuan. Identification, Expression, and Functional Analysis of Cathepsin L in Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2017, 50(16): 3236-3246.
[15] HE HuaWei, WANG YeJing, HOU Li, LI Yu, WEI ShuGuang, ZHAO Peng, JIANG WenChao, ZHAO Ping. Expression, Purification, Structure and Activity Analysis of Alkaline Phosphatase of Bombyx mori [J]. Scientia Agricultura Sinica, 2017, 50(14): 2837-2850.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!