Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (4): 794-800.doi: 10.3864/j.issn.0578-1752.2012.04.021

• VETERINARY SCIENCE • Previous Articles     Next Articles

Expression, Sequence Analysis and Immunohistochemical Localization of Mitf-M Transcription Factor in Alpaca Skin

 ZHU  Zhi-Wei, HE  Jun-Ping, YU  Xiu-Ju, CHENG  Zhi-Xue, DONG  Chang-Sheng   

  1. 1.山西农业大学生命科学学院,山西太谷 030801
    2.山西农业大学动物科技学院,山西太谷 030801
  • Received:2011-09-12 Online:2012-02-15 Published:2011-12-08

Abstract: 【Objective】 Cloning, sequence analysis and tissue location of the Mitf-M CDS domain sequence of alpaca skin could provide a foundation for studying coat color expression mechanism.【Method】The CDS domain sequence of Mitf-M was amplified by RT-PCR, multiple sequence alignment of the amino acid sequence was analyzed by Clustal X and BioEdit software. The distribution of Mitf-M protein in alpaca skin was studied by immunohistochemistry.【Result】Mitf-M CDS domain of alpaca is composed by 419 amino acids, with bHLH-zip conserved domain of transcription factor family. Phylogenetic analysis showed that Mitf-M had the highest homology with cattle (Bos Taurus) and dogs (Canis familiaris). The Mitf-M protein was mainly located in melancytes during the basal cells of hair bulb and around dermis papilla. 【Conclusion】 Compared with other species, Mitf-M in alpaca skin are highly conservative, indicating that Mitf-M plays an important role in the transcriptional regulation and pigmentation.

Key words: alpaca (Lama pacos), skin, hair follicles, Mitf-M, PCR, immunohistochemistry

[1]McGregor B A. Production, attributes and relative value of alpaca fleeces in southern Australia and implications for industry development. Small Ruminant Research, 2006, 61(2/3): 93-111.

[2]Hertwig P. Neue mutationen und Kopplungsgruppen bei der Hausmaus. Z. Indukt. Abstammungs- u. Vererbungsl, 1942, 80: 220-246.

[3]Arnheiter H. The discovery of the microphthalmia locus and its gene, Mitf. Pigment Cell Melanoma Research, 2010, 23(6): 729-735.

[4]Levy C, Khaled M, Fisher D E. MITF: master regulator of melanocyte development and melanoma oncogene. Trends in Molecular Medicine, 2006, 12(9): 406-414.

[5]Amae S, Fuse N, Yasumoto K, Sato S, Yajima I, Yamamoto H, Udono T, Durlu Y K, Tamai M, Takahashi K, Shibahara S. Identification of a novel isoform of microphthalmia-associated transcription factor that is enriched in retinal pigment epithelium. Biochemical and Biophysical Research Communications, 1998, 247(3): 710-715.

[6]Fuse N, Yasumoto K, Takeda K, Amae S, Yoshizawa M, Udono T, Takahashi K, Tamai M, Tomita Y, Tachibana M, Shibahara S. Molecular cloning of cDNA encoding a novel microphthalmia- associated transcription factor isoform with a distinct amino-terminus. Journal of Biochemistry, 1999, 126(6): 1043-1051.

[7]Shibahara S, Yasumoto K, Amae S, Udono T, Watanabe K, Saito H, Takeda K. Regulation of pigment cell-specific gene expression by MITF. Pigment Cell Research, 2000, 13(Suppl.8): 98-102.

[8]Park H Y, Gilchrest B A. More on MITF. The Journal of Investigative Dermatology, 2002, 119(6): 1218-1219.

[9]Selzer E, Wacheck V, Lucas T, Heere-Ress E, Wu M, Weilbaecher KN, Schlegel W, Valent P, Wrba F, Pehamberger H, Fisher D, Jansen B. The melanocyte-specific isoform of the microphthalmia transcription factor affects the phenotype of human melanoma. Cancer Research, 2002, 62(7): 2098-2103.

[10]Roundy K, Smith R, Weis J J, Weis J H. Overexpression of RANKL implicates IFN-beta-mediated elimination of B-cell precursors in the osteopetrotic bone of microphthalmic mice. Journal of Bone and Mineral Research, 2003, 18(2): 278-288.

[11]Hughes A E, Newton V E, Liu X Z, Read A P. A gene for Waardenburg syndrome type 2 maps close to the human homologue of the microphthalmia gene at chromosome 3p12-p14.1. Nature Genetics, 1994, 7(4): 509-512.

[12]Smith S D, Kelley P M, Kenyon J B, Hoover D. Tietz syndrome (hypopigmentation/deafness) caused by mutation of MITF. Journal of Medicine Genetics, 2000, 37(6): 446-448.

[13]Sato S, Roberts K, Gambino G, Cook A, Kouzarides T, Goding CR. CBP/p300 as a co-factor for the Microphthalmia transcription factor. Oncogene, 1997, 14 (25): 3083-3092.

[14]Hallsson J H, Haflidadóttir B S, Schepsky A, Arnheiter H, Steingrímsson E. Evolutionary sequence comparison of the Mitf gene reveals novel conserved domains. Pigment Cell Research, 2007, 20(3): 185-200.

[15]Zirlinger M, Lo L, McMahon J, McMahon A P, Anderson D J. Transient expression of the bHLH factor neurogenin-2 marks a subpopulation of neural crest cells biased for a sensory but not a neuronal fate. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 8084-8089.

[16]Lu J R, Bassel-Duby R, Hawkins A, Chang P, Valdez R, Wu H, Gan L, Shelton J M, Richardson J A, Olson E N. Control of facial muscle development by MyoR and capsulin. Science, 2002, 298(5602): 2378-2381.

[17]Li L, Olson E N. Regulation of muscle cell growth and differentiation by the MyoD family of helix-loop-helix proteins. Advances in Cancer Research, 1992, 58: 95-119.

[18]Tachibana M. MITF: a stream flowing for pigment cells. Pigment Cell Research, 2000, 13(4): 230-240.

[19]Lin J Y, Fisher D E. Melanocyte biology and skin pigmentation. Nature, 2007, 445: 843-850.

[20]Reid K, Turnley A M, Maxwell G D, Kurihara Y, Kurihara H, Bartlett P F, Murphy M. Multiple roles for endothelin in melanocyte development: regulation of progenitor number and stimulation of differentiation. Development,1996, 122: 3911-3919.

[21]Botchkareva N V, Khlgatian M, Longley B J, Botchkarev V A, Gilchrest B A. Scf/c-Kit signaling is required for cyclic regeneration of the hair pigmentation unit. The FASEB Journal, 2001, 15(3): 645-658.

[22]Horikawa T, Norris D A, Johnson T W, Zekman T, Dunscomb N, Bennion S D, Jackson R L, Morelli J G. Dopa-negative melanocytes in the outer root sheath of human hair follicles express premelanosomal antigens but not a melanosomal antigen or the melanosomeassociated glycoproteins tyrosinase, TRP-1, and TRP-2. The Journal of Investigative Dermatology, 1996, 106(1): 28-35.
[1] ZHAI XiaoHu,LI LingXu,CHEN XiaoZhu,JIANG HuaiDe,HE WeiHua,YAO DaWei. Quantitative Detection Technology of Porcine-Derived Materials in Meat by Real-time PCR [J]. Scientia Agricultura Sinica, 2023, 56(1): 156-164.
[2] WANG YiDan,YANG FaLong,CHEN DiShi,XIANG Hua,REN YuPeng. One-Step Multiple TaqMan Real-time RT-PCR for Simultaneous Detection of Swine Diarrhea Viruses [J]. Scientia Agricultura Sinica, 2023, 56(1): 179-192.
[3] WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda [J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578.
[4] QIU YiLei,WU Fan,ZHANG Li,LI HongLiang. Effects of Sublethal Doses of Imidacloprid on the Expression of Neurometabolic Genes in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(8): 1685-1694.
[5] GENG RenHao,LIU Bo,WANG Fang,LUO YuFeng,QU HongFei,FAN XueZheng,QIN YuMing,DING JiaBo,XU GuanLong,SHEN QingChun,QIN AiJian. Establishment and Application of PCR Assay for Mycoplasma Contamination in Cell Culture and Live Virus Vaccine [J]. Scientia Agricultura Sinica, 2022, 55(7): 1458-1468.
[6] TU YunJie,JI GaiGe,ZHANG Ming,LIU YiFan,JU XiaoJun,SHAN YanJu,ZOU JianMin,LI Hua,CHEN ZhiWu,SHU JingTing. Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken [J]. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780.
[7] XIE LiXue,ZHANG XiaoYan,ZHANG LiJie,ZHENG Shan,LI Tao. Complete Genome Sequence Characteristics and TC-RT-PCR Detection of East Asian Passiflora Virus Infecting Passiflora edulis [J]. Scientia Agricultura Sinica, 2022, 55(22): 4408-4418.
[8] WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486.
[9] CUI JiangKuan,REN HaoHao,CAO MengYuan,CHEN KunYuan,ZHOU Bo,JIANG ShiJun,TANG JiHua. SCAR-PCR Rapid Molecular Detection Technology of Heterodera zeae [J]. Scientia Agricultura Sinica, 2022, 55(17): 3334-3342.
[10] MA XueMeng,YU ChengMin,SAI XiaoLing,LIU Zhen,SANG HaiYang,CUI BaiMing. PSORA: A Strategy Based on High-Throughput Sequence for Analysis of T-DNA Insertion Sites [J]. Scientia Agricultura Sinica, 2022, 55(15): 2875-2882.
[11] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[12] LI XiaoJing,ZHANG SiYu,LIU Di,YUAN XiaoWei,LI XingSheng,SHI YanXia,XIE XueWen,LI Lei,FAN TengFei,LI BaoJu,CHAI ALi. Establishment and Application of Rapid Quantitative Detection of Viable Plasmodiophora brassicae by PMAxx-qPCR Method [J]. Scientia Agricultura Sinica, 2022, 55(10): 1938-1948.
[13] XU Chen,WANG WenJing,CAO Shan,LI RuXue,ZHANG BeiBei,SUN AiQing,ZHANG ChunQing. Mechanism of DA-6 Treatment Regulating Wheat Seed Vigor After Anthesis [J]. Scientia Agricultura Sinica, 2021, 54(9): 1821-1834.
[14] Can CHEN,NanNan HAN,Yang LIU,XiaoWei SHI,HongQi SI,ChuanXi MA. Analysis of Copy Number Variation of Glu-3 Locus in Common Wheat [J]. Scientia Agricultura Sinica, 2021, 54(6): 1092-1103.
[15] Tao WANG,Yu HAN,Li PAN,Bing WANG,MaoWen SUN,Yi WANG,YuZi LUO,HuaJi QIU,Yuan SUN. Development of a TaqMan Real-Time PCR Targeting the MGF360-13L Gene of African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2021, 54(5): 1073-1080.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!