Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (1): 16-25.doi: 10.3864/j.issn.0578-1752.2012.01.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Origin and Evolution of Jute Analysed by SRAP and ISSR Methods

 TAO  Ai-Fen, QI  Jian-Min, LI  Mu-Lan, FANG  Ping-Ping, LIN  Li-Hui, XU  Jian-Tang   

  1. 1.福建农林大学作物遗传育种与综合利用教育部重点实验室/福建农林大学生命科学学院,福州 350002
  • Received:2011-03-31 Online:2012-01-01 Published:2011-11-11

Abstract: 【Objective】The objective of this study is to make clear the origin and evolution of Corchorus with two molecular methods (SRAP and ISSR). 【Method】Ninety-six jute germplasms were analysed with sequence related amplified polymorphism (SRAP) combining with inter-simple sequence related (ISSR) method. The phylogenetic trees of Corchorus were constructed by MEGA and DPS software, and the divergence time of jute germplasm was calculated. 【Result】 The relative wild species located at the basic position of the dendrogram, and the divergence time of which was the longest, which indicated the relative wild species originated earliest and was the ancestors of cultivated jute. Africa was the center of origin of Corchorus, while China was the second original center of Corchorus. Among all the olitorius species, the divergence time of wild and cultivated species from Africa was the longest, so Africa was the center of origin for wild and cultivated olitorius species, while the areas which border on India, Burma and China was the second center of origin for cultivated olitorius species. South China, countries of South Asia and Southeast Asia which border on China were the origin center of wild capsularis species, and South region of China was the origin center of cultivated capsularis species. Taken together, the divergence time of the cultivated capsularis species was shorter than olitorius species, indicating this biotype originated later than olitorius species. 【Conclusion】 Africa has an important position in origin of Corchorus, which was the primary origin center of wild species, wild and cultivated olitorius species. South region of China was the origin center of cultivated capsularis species. The divergence time and phylogenetic trees of Corchorus were calculated more comprehensively by SRAP markers combining with ISSR molecular markers, and the scientific conclusion on origin and evolution of Corchorus was got with above methods.

Key words: Corchorus, origin, evolution, SRAP, ISSR

[1]熊和平. 麻类作物育种学. 北京: 中国农业科学技术出版社, 2008.

Xiong H P. Breeding Sciences of Bast and Leaf Fiber Crops. Beijing: China Agricultural Science and Technology Press, 2008. (in Chinese)

[2]方嘉禾, 常汝镇. 中国作物及其野生近缘植物. 经济作物卷. 北京: 中国农业出版社, 2007. 

Fang J H, Chang R Z. Crops and Their Wild Relatives in China, Volume of Economic Crops. Beijing: China Agriculture Press, 2007. (in Chinese)

[3]卢浩然. 中国农业志: 农作物卷, 麻类分支. 北京: 北京农业出版社, 1991.

Lu H R. Encyclopedia of Chinese Agriculture, Volume of Crops, Branch of Fiber Crops. Beijing: Beijing Agriculture Press, 1991. (in Chinese)

[4]祁建民, 李维明, 吴为人. 黄麻的起源与进化研究. 作物学报, 1997, 23(6): 677- 682.

Qi J M, Li W M, Wu W R. Studies on the origin and evolution of jute. Acta Agronomica Sinica, 1997, 23(6): 677- 682. (in Chinese)

[5]胡立勇, 丁艳锋. 作物栽培学. 北京: 高等教育出版社, 2008.

Hu L Y, Ding Y F. Cultivation Sciences of Crops. Beijing: Higher Education Press, 2008. (in Chinese)

[6]Edmonds J M. Herbarium Survey of Corchorus L. Species. Oxford: Oxford University Press, 1963.

[7]唐守伟. 黄麻长果种和圆果种的起源与分布. 中国麻作, 1993(3): 13-15.

Tang S W. Origin and distribution of Corchorus olitorius and capsularis. China’s Fiber Crops, 1993(3): 13-15. (in Chinese)

[8]黎  宇, 程新奇, 郭安平. 我国黄麻种质资源的研究进展概述. 中国麻作, 1998, 20(3): 38-41.

Li Y, Cheng X Q, Guo A P. Research overview of jute germplasm in China. China’s Fiber Crops, 1998, 20(3): 38-41. (in Chinese)

[9]李爱青. 肯尼亚黄麻红麻种质资源的考察报告. 中国麻作, 1990(1): 16-20.

Li A Q. Investigation report of jute and kenaf germplasm in Kenya. China’s Fiber Crops, 1990(1): 16-20. (in Chinese)

[10]Fu Y B, Peterson G, Diederichsen A, Richards K W. RAPD analysis of genetic relationships of seven flax species in the genus Linum L. Genetic Resources and Crop Evolution, 2002, 49: 253-259.

[11]何余堂, 陈宝元, 傅廷栋, 李殿荣, 涂金星. 白菜型油菜在中国的起源与进化. 遗传学报, 2003, 30(11): 1003-1012.

He Y T, Chen B Y, Fu T D, Li D R, Tu J X. Origins and evolution of Brassica campestris L. in China. Acta Genetica Sinica, 2003, 30(11): 1003-1012. (in Chinese)

[12]盖钧镒, 许东河, 高  忠, 岛本义也, 阿部纯, 福士泰史, 北岛俊二. 中国栽培大豆和野生大豆不同生态类型群体间遗传演化关系的研究. 作物学报, 2000, 26(5): 513-520.

Gai J Y, Xu D H, Gao Z, Shimamoto Y, Abe J, Fukushi H, Kitajima S. Studies on the evolutionary relationship among eco-types of G. max and G. soja in China. Acta Agronomica Sinica, 2000, 26(5): 513-520. (in Chinese)

[13]Cheng Z, Lu B R, Sameshima K, Fu D X, Chen J K. Identification and genetic relationships of kenaf (Hibiscus cannabinus L.) germplasm revealed by AFLP analysis. Genetic Resources and Crop Evolution, 2004, 51: 393-401.

[14]Bao Y, Ge S. Identification of Oryza species with the CD genome based on RFLP analysis of nuclear ribosomal ITS sequences. Acta Botanica Sinica, 2003, 45(7): 762-765.

[15]Roy A, Bandyopadhyay A, Mahapatra A K, Ghosh S K, Singh N K, Bansal K C, Koundal K R, Mohapatra T. Evaluation of genetic diversity in jute (Corchorus species) using STMS, ISSR and RAPD markers. Plant Breeding, 2006, 125(3): 292-297.

[16]Kochert G, Stalker H T, Cimenes M, Galgaro L, Lopes C R, Moore K. RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). American Journal of Botany, 1996, 83(10): 1282-1291.

[17]周东新, 祁建民, 吴为人, 李维明. 黄麻DNA提取与RAPD反应体系的建立. 福建农业大学学报, 2001, 30(3): 334-339.

Zhou D X, Qi J M, Wu W R, Li W M. Studies on DNA extraction and establishment of RAPD reaction system in jute. Journal of Fujian Agricultural University, 2001, 30(3): 334-339. (in Chinese)

[18]李亚玲, 韩国民, 何沙娥, 张智俊. 基于DNA分子标记数据构建系统进化树的新策略. 生物信息学, 2008, 4: 168-170.

Li Y L, Han G M, He S E, Zhang Z J. A new strategy for construction of phylogenetic tree based on DNA molecular mark data. China Journal of Bioinformatics, 2008, 4: 168-170. (in Chinese)

[19]曹红星, 孙程旭, 吴  翼, 陈良秋, 范海阔, 覃伟权, 王文泉. 分子标记在棕榈科植物遗传育种中的应用. 中国农学通报, 2009, 25(3): 279- 282.

Cao H X, Sun C X, Wu Y, Chen L Q, Fan H K, Qin W Q, Wang W Q. The application of molecular marker technique to the studies of genetic breeding of Plamae. Chinese Agricultural Science Bulletin, 2009, 25(3): 279-282. (in Chinese)

[20]闫华超, 高  岚, 李桂兰. 分子标记技术的发展及应用. 生物学通报, 2006, 41(2) : 17-19.

Yan H C, Gao L, Li G L. Development and application of molecular marker technique. Bulletin of Biology, 2006, 41(2): 17-19. (in Chinese)

[21]贺学勤, 刘庆昌, 翟  红, 王玉萍. 用RAPD、ISSR和AFLP标记分析系谱关系明确的甘薯品种的亲缘关系. 作物学报, 2005, 31(10): 1300-1304.

He X Q, Liu Q C, Zhai H, Wang Y P. The use of RAPD, ISSR and AFLP markers for analyzing genetic relationships among sweetpotato cultivars with known origin. Acta Agronomica Sinica, 2005, 31(10): 1300-1304. (in Chinese)

[22]Russell J R, Fuller J D, Macaulay M, Hatz B G, Jahoor A, Powell W, Waugh R. Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theoretical and Applied Genetics, 1997, 95: 714-722.

[23]Pejic I, Ajmone-Marsan P, Morgante M, Kozumplick V, Castiglioni P, Taramino G, Motto M. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs. Theoretical and Applied Genetics, 1998, 97: 1248-1255.

[24]Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics, 2001, 103: 455-461.

[25]易杨杰, 张新全, 黄琳凯, 凌  瑶, 马  啸, 刘  伟. 野生狗牙根种质遗传多样性的SRAP研究. 遗传, 2008, 30(1): 94-100.

Yi Y J, Zhang X Q, Huang L K, Ling Y, Ma X, Liu W. Genetic diversity of wild Cynodon dactylon germplasm detected by SRAP markers. Hereditas, 2008, 30(1): 94-100. (in Chinese)

[26]王日新, 任  民, 贾兴华, 冯全福, 杨爱国, 付宪奎, 王绍美, 罗成刚. 烟草主要栽培类型的SRAP标记研究. 生物技术通报, 2009(6): 100-104.

Wang R X, Ren M, Jia X H, Feng Q F, Yang A G, Fu X K, Wang S M, Luo C G. Study of SRAP markers in major cultivated forms of Nicotiana tabacum L.. Biotechnology Bulletin, 2009(6): 100-104. (in Chinese)

[27]Budak H, Shearman R C, Parmaksiz I, Gaussoin R E, Riordan T P, Dweikat I. Molecular characterization of Buffalograss germplasm using sequence-related amplified polymorphism markers. Theoretical and Applied Genetics, 2004, 108: 328-334.

[28]Li G, Gao M, Yang B, Quiros C F. Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theoretical and Applied Genetics, 2003, 107: 168-180.

[29]Ferriol M, Picó B, Nuez F. Genetic diversity of a germplasm collection of Cucuibita pepo using SRAP and AFLP markers. Theoretical and Applied Genetics, 2003, 107: 271-282.

[30]祁建民, 周东新, 吴为人, 林荔辉, 方平平. RAPD和ISSR在检测黄麻属遗传多样性上的比较. 中国农业科学, 2004, 37(12): 2006- 2011.

Qi J M, Zhou D X, Wu W R, Lin L H, Fang P P. A comparison between RAPD and ISSR technology in detection of genetic diversity of jute. Scientia Agricultura Sinica, 2004, 37(12): 2006-2011. (in Chinese)

[31]祁建民, 周东新, 吴为人, 林荔辉, 方平平. 用ISSR标记检测黄麻野生种与栽培种遗传多样性. 应用生态学报, 2003, 14(9): 1473- 1477.

Qi J M, Zhou D X, Wu W R, Lin L H, Fang P P. Application of ISSR technology in genetic diversity detection of jute. Chinese Journal of Applied Ecology, 2003, 14(9): 1473- 1477. (in Chinese)

[32]Reddy M P, Sarla N, Siddiq E A. Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica, 2002, 128: 9-17.
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] ZHANG Rui,ZHANG TianLiu,FAN TingTing,ZHU Bo,ZHANG LuPei,XU LingYang,GAO HuiJiang,LI JunYa,CHEN Yan,GAO Xue. Evolutionary Relationship Between Transposable Elements and Tandem Repeats in Bovinae Species [J]. Scientia Agricultura Sinica, 2022, 55(9): 1859-1867.
[3] HUA ChunLin,ZHANG JiuHong,JIN ShuQin. Analysis to Evolution Characteristics of Policies for Controlling Agricultural Non-Point Source Pollution in China: Based on Text Quantification [J]. Scientia Agricultura Sinica, 2022, 55(7): 1385-1398.
[4] JIA GuanQing, DIAO XianMin. Current Status and Perspectives of Innovation Studies Related to Foxtail Millet Seed Industry in China [J]. Scientia Agricultura Sinica, 2022, 55(4): 653-665.
[5] WANG YanWen,WANG MengJing,ZHANG Hong,GAO XinXin,GUO Jing,LI XuYong. Evolution of Human H9N2 Avian Influenza Virus in China from 1998 to 2021 [J]. Scientia Agricultura Sinica, 2022, 55(20): 4075-4090.
[6] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[7] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[8] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[9] YE FangTing,PAN XinFeng,MAO ZhiJun,LI ZhaoWei,FAN Kai. Molecular Evolution and Function Analysis of bZIP Family in Nymphaea colorata [J]. Scientia Agricultura Sinica, 2021, 54(21): 4694-4708.
[10] LI ZiTeng,CAO YuHan,LI Nan,MENG XiangLong,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Molecular Variation and Phylogenetic Relationship of Apple Scar Skin Viroid in Seven Cultivars of Apple [J]. Scientia Agricultura Sinica, 2021, 54(20): 4326-4336.
[11] WANG Qian,LI Zheng,ZHAO ShanShan,QIE MengJie,ZHANG JiuKai,WANG MingLin,GUO Jun,ZHAO Yan. Application of Stable Isotope Technology in the Origin Traceability of Sheep [J]. Scientia Agricultura Sinica, 2021, 54(2): 392-399.
[12] LI GuanMo,ZHANG WenJu,QU XiaoLin,QIAO Lei,HUANG YaPing,XU Hu,XU MingGang. Evolution Characteristics and Influencing Factors on Inherent Soil Productivity Across Dryland [J]. Scientia Agricultura Sinica, 2021, 54(19): 4132-4142.
[13] SHAO ChenBing,HUANG ZhiNan,BAI XueYing,WANG YunPeng,DUAN WeiKe. Identification, Systematic Evolution and Expression Analysis of HD-Zip Gene Family in Capsicum annuum [J]. Scientia Agricultura Sinica, 2020, 53(5): 1004-1017.
[14] ZHANG QingAn,CHEN BoYu. Research Progress of Four Sulfur Compounds Related to Red Wine Flavor [J]. Scientia Agricultura Sinica, 2020, 53(5): 1029-1045.
[15] ZOU LinFeng,TU LiQin,SHEN JianGuo,DU ZhenGuo,CAI Wei,JI YingHua,GAO FangLuan. The Evolutionary Dynamics and Adaptive Evolution of Tomato Chlorosis Virus [J]. Scientia Agricultura Sinica, 2020, 53(23): 4791-4801.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!