Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (22): 4740-4747.doi: 10.3864/j.issn.0578-1752.2011.22.023

• RESEARCH NOTES • Previous Articles     Next Articles

Screening of the Interaction Proteins of TaDREB6 Transcription Factor in Wheat

 SUN  Hai-Tao, XU  Zhao-Shi, HOU  Jian-Hua, YU  Zhuo, ZHAO  Yue, LI  Lian-Cheng, CHEN  Ming, MA  You-Zhi   

  1. 1.内蒙古农业大学农学院,呼和浩特010019
    2.中国农业科学院作物科学研究所/国家农作物基因资源与基因改良重大科学工程/农业部作物遗传育种重点开放实验室,北京100081
  • Received:2011-04-22 Online:2011-11-15 Published:2011-05-27

Abstract: 【Objective】TaDREB6 was used as a bait to screen the interaction proteins from wheat cDNA library by yeast-two hybrid system to further explore the DREB-mediated stress resistance mechanism in wheat.【Method】The TaDREB6 gene was amplified using wheat cDNA as the template. The wheat cDNA library and bait vector pGBKT7-TaDREB6 were constructed, respectively. The mixture of bait vectors pGBKT7-TaDREB6, pGADT7 and wheat cDNA library was introduced into yeast competent cells AH109 and cultured on SD/-Ade/-His/-Leu/-Trp plates for incubation at 30℃ for 3-5 days. Then the clones whose diameter was greater than 2 mm were selected for incubation on the plates containing X-α-gal to screen blue clones.【Result】A total of 102 candidate positive clones were sequenced and analyzed through homology analysis using the BLAST in NCBI. Homology analysis showed that those candidate proteins were related to energy metabolism, stress and defense, transport, transcription and translation, signal transduction, growth and development.【Conclusion】Function prediction of the candidate proteins suggested that TaDREB6 was possibly involved in several stress signal transduction pathways and play a important role in regulation stress resistance.

Key words: common wheat, yeast two-hybrid, DREB, interaction protein, stress-resistant mechanism

[1]Boyer J S. Plant productivity and environment. Science, 1982, 218: 443-448.

[2]Chen W J, Zhu T. Networks of transcription factors with roles in environmental stress response. Trends in Plant Science, 2004, 9(12): 591-596.

[3]Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular response and tolerance to dehydration and cold stresses. The Annual Review of Plant Biology, 2006, 57: 781-803.

[4]Liu Q, Zhang G Y, Chen S Y. Structure and regulatory function of plant transcription factors. Chinese Science Bulletin, 2001, 46(4): 271-278.

[5]Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology, 2006, 140: 411-432.

[6]Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain, separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression, respectively, in Arabidopsis. The Plant Cell, 1998, 10: 1391-1406.

[7]Okamuro J K, Caster B, Villarroel R, Van Montaqu M, Jofuku K D. The AP2 domain of APETELA2 defines a large new family of DNA binding proteins in Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 1997, 94: 7076-7081.

[8]Yamaguchi-Shinozakiaib K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high-salt stress. The Plant Cell, 1994, 6: 251-264.

[9]Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proceedings of the National Academy of Sciences of the USA, 1997, 94(3): 1035-1040.

[10]Xu Z S, Ni Z Y, Liu L, Nie L N, Li L C, Chen M, Ma Y Z. Characterization of the TaAIDFa gene encoding a CRT/DRE-binding factor responsive to drought, high-salt, and cold stress in wheat. Molecular Genetics and Genomics, 2008, 280: 497-508.

[11]Shen Y G, Zhang W K, He S J, Zhang J S, Liu Q, Chen S Y. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theoretical and Applied Genetics, 2003, 106(5): 923-930.

[12]Oh S J, Kwon C W, Choi D W, Song S I, Kim J K. Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnology Journal, 2007, 5: 646-656.

[13]Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proceedings of the National Academy of Sciences of the USA, 2006, 103: 18822-18827.

[14]高世庆, 徐惠君, 程宪国, 陈  明, 徐兆师, 李连城, 杜丽璞, 叶兴国, 郝晓燕, 马有志. 转大豆GmDREB基因增强小麦的耐旱及耐盐性. 科学通报, 2005, 50(23): 2617-2625.

Gao S Q, Xu H J, Cheng X G, Chen M, Xu Z S, Li L C, Du L P, Ye X G, Hao X Y, Ma Y Z. Improvement of wheat drought and salt tolerance by expression of a stress-inducible transcription factor GmDREB of soybean (Glycine max). Chinese Science Bulletin, 2005,    50(23): 2714-2723. (in Chinese) 

[15]Xu Z S, Chen M, Li L C, Ma Y Z. Functions of the ERF transcription factor family in plants. Botany, 2008, 86: 969-977.

[16]Saumonneau A, Agasse A, Bidoven M T, Lallemand M, Cantereau A, Medici A, Laloi M, Atanassova R. Interaction of grape ASR proteins with a DREB transcription factor in the nucleus. FEBS Letters, 2008, 582: 3281-3287.

[17]倪志勇, 徐兆师, 刘  丽, 李连成, 柴  岩, 陈  明, 马有志. 小麦转录因子TaDREB6基因的克隆及鉴定. 麦类作物学报, 2008, 28(3): 357-363.

Ni Z Y, Xu Z S, Liu L, Li L C, Chai Y, Chen M, Ma Y Z. Isolation and characterization of a transcription factor TaDREB6 gene from Triticum aestivum L.. Journal of Triticeae Crops, 2008, 28(3): 357-363. (in Chinese) 

[18]Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature, 1989, 340: 245-247.

[19]Oh S J, Kim Y S, Kwon C W, Park H K, Jeong J S, Kim J K. Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiology, 2009, 150: 1368-1379.

[20]Ban Q Y, Liu G F, Wang Y C. A DREB gene from Limonium bicolor mediates molecular and physiological responses to copper stress in transgenic tobacco. Journal of Plant Physiology, 2010, 168(5): 449-458.

[21]Schramm F, arkindale L, Kiehlmann E, Ganguli A, Englich G, Vierling E, von Koskull-Döring P. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. The Plant Journal, 2008, 53(2): 264-274.

[22]Saleh A, Lumbreras V, Lopez C, Puigjaner E, Kizis D, Pagès M. Maize DBF1-interactor protein 1 containing an R3H domain is a potential regulator of DBF1 activity in stress responses. The Plant Journal, 2006, 46: 747-757.

[23]Streb P, Shang W, Feierabend J, Bligny R. Divergent strategies of photoprotection in high-mountain plants. Planta, 2008, 207:  313-324.

[24]Feussner K, Feussner I, Leopold I, Wasternack C. Isolation of a cDNA coding for an ubiquitin-conjugating enzyme UBC1 of tomato--the first stress-induced UBC of higher plants. FEBS Letters, 1997, 409(2): 211-215.

[25]徐晨曦, 姜  静, 刘甜甜, 王玉成, 刘桂丰, 杨传平. 柽柳泛素结合酶基因(E2s)的序列分析及功能验证. 东北林业大学学报, 2007, 35(11): 1-4.

Xu C X, Jiang J, Liu T T, Wang Y C, Liu G F, Yang C P. Sequence analysis and function determination of E2s gene from Tamarix androssowii. Journal of Northeast Forestry University, 2007, 35(11): 1-4. (in Chinese)

[26]Peng R H, Yao Q H, Xiong A S, Fan H Q, Peng Y L. Ubiquitin-conjugating enzyme (E2) confers rice UV protection through phenylalanine ammonia-lyase gene promoter unit. Acta Botanica Sinica, 2003, 45(11): 1351-1358.

[27]Saijo Y, Hata S, Kvozuka J, Shimamoto K, Izui K. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. The Plant Journal, 2000, 23: 319-327.

[28]Sheen J. Ca2+-dpendent protein kinases and stress signal transduction in plants. Science, 1996, 274: 1900-1902.

[29]Chico J M, Raices M, Téllez-Iñón M T, Ulloa R M. A calcium-dependent protein kinase is systemically induced upon wounding in tomato plants. Plant Physiology, 2002, 128: 256-270.
[1] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[2] LI TianCong,ZHU Hang,WEI Ning,LONG Feng,WU JianYing,ZHANG Yan,DONG JinGao,SHEN Shen,HAO ZhiMin. The Expression Pattern and Interaction Analysis of the Homologues of Splicing Factor SC35 in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2021, 54(4): 733-743.
[3] SUN YuChen,JIA RuiPu,FAN KuoHai,SUN Na,SUN YaoGui,SUN PanPan,LI HongQuan,YIN Wei. Detection of Interaction Between Porcine Type I Complement Receptor and C3b Active Fragment in Vitro [J]. Scientia Agricultura Sinica, 2021, 54(19): 4243-4254.
[4] ZHANG Yong,YAN Jun,XIAO YongGui,HAO YuanFeng,ZHANG Yan,XU KaiJie,CAO ShuangHe,TIAN YuBing,LI SiMin,YAN JunLiang,ZHANG ZhaoXing,CHEN XinMin,WANG DeSen,XIA XianChun,HE ZhongHu. Characterization of Wheat Cultivar Zhongmai 895 with High Yield Potential, Broad Adaptability, and Good Quality [J]. Scientia Agricultura Sinica, 2021, 54(15): 3158-3167.
[5] LIU HaiYing,FENG BiDe,RU ZhenGang,CHEN XiangDong,HUANG PeiXin,XING ChenTao,PAN YinYin,ZHEN JunQi. Relationship Between Phytohormones and Male Sterility of BNS and BNS366 in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(1): 1-18.
[6] Xiao ZHANG,Man LI,DaTong LIU,Wei JIANG,Yong ZHANG,DeRong GAO. Analysis of Quality Traits and Breeding Inspiration in Yangmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2020, 53(7): 1309-1321.
[7] YUAN GuiBo,MO ShuangRong,QIAN Ying,ZANG DongNan,YANG Fan,JIANG HongLiang,WU Yuan,DING HaiDong. Screening of Interacting Protein of Tomato SIVQ6 by GST Pull-Down [J]. Scientia Agricultura Sinica, 2020, 53(15): 3146-3157.
[8] CHEN Peng,BAO XiYan,KANG TaoTao,DONG ZhanQi,ZHU Yan,PAN MinHui,LU Cheng. Screening and Identification of Proteins Interacting with Bombyx mori IAP and Their Effects on BmNPV Proliferation [J]. Scientia Agricultura Sinica, 2019, 52(3): 558-567.
[9] DONG ZhanQi,JIANG YaMing,PAN MinHui. Screening and Identification of Candidate Proteins Interacting with BmHSP60 in the Silkworm (Bombyx mori) [J]. Scientia Agricultura Sinica, 2019, 52(2): 376-384.
[10] YAN YiChao, WAN ChunYan, GU XianBin, GUO ChengBao, CHEN YueHong, GAO ZhiHong. Effect of RdreB1BI Gene Overexpression on Fruit Quality and Related Gene Expression in Strawberry [J]. Scientia Agricultura Sinica, 2018, 51(7): 1353-1367.
[11] ZHANG HuiYuan,LIU YongWei,YANG JunFeng,ZHANG ShuangXi,YU TaiFei,CHEN Jun,CHEN Ming,ZHOU YongBin,MA YouZhi,XU ZhaoShi,FU JinDong. Identification and Analysis of Salt Tolerance of Wheat Transcription Factor TaWRKY33 Protein [J]. Scientia Agricultura Sinica, 2018, 51(24): 4591-4602.
[12] XU HaiFeng,YANG GuanXian,ZHANG Jing,ZOU Qi,WANG YiCheng,QU ChangZhi,JIANG ShengHui,WANG Nan,CHEN XueSen. Molecular Mechanism of Apple MdWRKY18 and MdWRKY40 Participating in Salt Stress [J]. Scientia Agricultura Sinica, 2018, 51(23): 4514-4521.
[13] YANG YanHui,MA Xiao,ZHANG ZiShan,GUO Jun,LI YueNan,LIANG Ying,SONG JianMin,ZHAO ShiJie. Effects of Drought Stress on Photosynthetic Characteristics of Wheat Near-Isogenic Lines with Different Wax Contents [J]. Scientia Agricultura Sinica, 2018, 51(22): 4241-4251.
[14] WANG YuKui,BAI XiaoJing,LIAN XiaoPing,ZHANG HeCui,LUO ShaoLan,PU Min,ZUO TongHong,LIU QianYing,ZHU LiQuan. Cloning and Expression Analysis of BoSPx in Brassica oleracea [J]. Scientia Agricultura Sinica, 2018, 51(22): 4328-4338.
[15] ZHAN ShuaiShuai, BAI Lu, XIE Lei, XIA XianChun, REN Yi, Lü WenJuan, QU YanYing, GENG HongWei. Arabinoxylan Feruloyl Transferase Gene Cloning and Development of Functional Markers in Common Wheat [J]. Scientia Agricultura Sinica, 2018, 51(19): 3639-3650.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!