Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (15): 3142-3153 .doi: 10.3864/j.issn.0578-1752.2011.15.009

• PLANT PROTECTION • Previous Articles     Next Articles

Prediction and Analysis of Verticillium dahliae VdLs.17 Secretome

TIAN  Li, CHEN  Jie-Yin, CHEN  Xiang-Yong, WANG  Jia-Ni, DAI  Xiao-Feng   

  1. 1. 中国农业科学院作物科学研究所
  • Received:2011-03-31 Revised:2011-05-22 Online:2011-08-01 Published:2011-05-27
  • Contact: TIAN LI E-mail:tianligucas@yahoo.com.cn

Abstract: 【Objective】The aim of this study was to predict and analyze secretome of Verticillium dahliae, an important soil-born fungal pathogen that causes vascular wilt diseases. 【Method】The softwares SignalP, TargetP, TMHMM, Big-pi and PROSITE were used to predict the sectetome of V. dahliae. Protein databases were used for secretome annotation to find putative pectinase, cellulose and pathogen-host interaction proteins. The proteins with common fungal effector character were investigated by a set of computer algorithms. By using BLASTP, the secretome of V. dahliae and V. albo-atrum was compared to find V. dahliae specifically secreted proteins. 【Result】A total of 922 possible secreted proteins were identified in V. dahliae scretome. The most frequent amino acid in signal peptides is alanine, and the least is glutamic acid and aspartic acid. The amino acid in the position -3 and -1 are very conserved. The secretome is equipped with 158 carbohydrate-active enzymes which include 10 pectic hydrolases and 14 pectic lyases, 190 putative pathogen-host interaction proteins, 97 RxLx[EDQ] motif containing proteins and 52 small cysteine-rich secreted proteins, and 58 V. dahliae specifically secreted proteins compared with V. albo-atrum. 【Conclusion】This study has provided secretome prediction algorithms for V. dahliae. Length of signal peptides vary greatly. Composition of signal peptides are mainly aliphatic amino acid and sequences of signal peptides near C-terminal are conservative. V. dahliae secretome are rich in potential pectinase, pathogen–host interaction protein, RxLx[EDQ] motif containing protein and small cysteine-rich protein which may play roles in V. dahliae pathogenetic mechanism.

Key words: Verticillium dahliae, secreted protein, signal peptide, carbohydrate-active enzyme, effector

[1]Klosterman S J, Atallah Z K, Vallad G E, Subbarao K V. Diversity, pathogenicity, and management of Verticillium species. Annual Review of Phytopathology, 2009, 47: 39-62.

[2]徐荣旗, 汪佳妮, 陈捷胤, 戴小枫. 棉花黄萎病菌T-DNA插入突变体表型特征和侧翼序列分析. 中国农业科学,2010, 43(3): 489-496.

Xu R Q, Wang J N, Chen J Y, Dai X F. Analysis of T-DNA insertional flanking sequence and mutant phenotypic characteristics in Verticillium dahliae. Scientia Agricultura Sinica, 2010, 43(3): 489-496. (in Chinese)

[3]Fradin E F, Thomma B P. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Molecular Plant Pathology, 2006, 7(2): 71-86.

[4]Shi F M, Li Y Z. Verticillium dahliae toxins-induced nitric oxide production in Arabidopsis is major dependent on nitrate reductase. BMB Reports, 2008, 41(1): 79-85.

[5]陈继圣, 郑士琴, 郑  武, 周  洁, 鲁国东, 王宗华. 全基因组预测稻瘟菌的分泌蛋白. 中国农业科学, 2006, 39(12): 2474-2482.

Chen J S, Zheng S Q, Zheng W, Zhou J, Lu G D, Wang Z H. Prediction for secreted proteins from Magnaporthe grisea genome. Scientia Agricultura Sinica, 2006, 39(12): 2474-2482. (in Chinese)

[6]Martin F, Aerts A, Ahren D, Brun A, Danchin E G, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, Salamov A, Shapiro H J, Wuyts J, Blaudez D, Buee M, Brokstein P, Canback B, Cohen D, Courty P E, Coutinho P M, Delaruelle C, Detter J C, Deveau A, DiFazio S, Duplessis S, Fraissinet-Tachet L, Lucic E, Frey-Klett P, Fourrey C, Feussner I, Gay G, Grimwood J, Hoegger P J, Jain P, Kilaru S, Labbe J, Lin Y C, Legue V, Le Tacon F, Marmeisse R, Melayah D, Montanini B, Muratet M, Nehls U, Niculita-Hirzel H, Oudot-Le Secq M P, Peter M, Quesneville H, Rajashekar B, Reich M, Rouhier N, Schmutz J, Yin T, Chalot M, Henrissat B, Kues U, Lucas S, Van de Peer Y, Podila G K, Polle A, Pukkila P J, Richardson P M, Rouze P, Sanders I R, Stajich J E, Tunlid A, Tuskan G, Grigoriev I V. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature, 2008, 452: 88-92.

[7]Cantarel B L, Coutinho P M, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for Glycogenomics. Nucleic Acids Research, 2009, 37: 233-238.

[8]Gao Q, Jin K, Ying S H, Zhang Y, Xiao G, Shang Y, Duan Z, Hu X, Xie X Q, Zhou G, Peng G, Luo Z, Huang W, Wang B, Fang W, Wang S, Zhong Y, Ma L J, Leger R J, Zhao G P, Pei Y, Feng M G, Xia Y, Wang C. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genetics, 2011, 7(1): e1001264.

[9]Winnenburg R, Baldwin T K, Urban M, Rawlings C, Kohler J, Hammond-Kosack K E. PHI-base: a new database for pathogen host interactions. Nucleic Acids Research, 2006, 34: 459-464.

[10]于钦亮, 马  莉, 刘  林, 杨  静, 苏  源, 王云月, 朱有勇, 李成云. 禾谷镰刀菌基因组中含寄主靶向模体分泌蛋白功能的初步分析. 生物技术通报, 2008, 1: 160-165.

Yu Q L, Ma L, Liu L, Yang J, Su Y, Wang Y Y, Zhu Y Y, Li C Y. Primary analysis of host-targeting-motif harbored secreted proteins in genome of Fusarium graminearum. Biotechnology Bulletin, 2008, 1: 160-165. (in Chinese)

[11]Mueller O, Kahmann R, Aguilar G, Trejo-Aguilar B, Wu A. The secretome of the maize pathogen Ustilago maydis. Fungal Genetics and Biology, 2008, 45: 63-70.

[12]Ma L J, van der Does H C, Borkovich K A, Coleman J J, Daboussi M J, Di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B, Houterman P M, Kang S, Shim W B, Woloshuk C, Xie X, Xu J R, Antoniw J, Baker S E, Bluhm B H, Breakspear A, Brown D W, Butchko R A, Chapman S, Coulson R, Coutinho P M, Danchin E G, Diener A, Gale L R, Gardiner D M, Goff S, Hammond-Kosack K E, Hilburn K, Hua-Van A, Jonkers W, Kazan K, Kodira C D, Koehrsen M, Kumar L, Lee Y H, Li L, Manners J M, Miranda-Saavedra D, Mukherjee M, Park G, Park J, Park S Y, Proctor R H, Regev A, Ruiz-Roldan M C, Sain D, Sakthikumar S, Sykes S, Schwartz D C, Turgeon B G, Wapinski I, Yoder O, Young S, Zeng Q, Zhou S, Galagan J, Cuomo C A, Kistler H C, Rep M. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 2010, 464: 367-373.

[13]章元寿, 王建新, 周明国. 大丽轮枝菌毒素的多糖组份对棉花致萎作用的研究. 真菌学报, 1991, 10(2): 155-158.

Zhang Y S, Wang J X, Zhou G M. The wilting activities of the polysaccharicle component of verticillium dahliae toxin. Acta Mycologica Sinica, 1991, 10(2): 155-158. (in Chinese)

[14]Davis D A, Lowb P S, Heinstein P. Purification of a glycoprotein elicitor of phytoalexin formation from Verticillium dahliae. Physiological and Molecular Plant Pathology, 1998, 52: 259-273.

[15]Hulo N, Sigrist C J, Le Saux V, Langendijk-Genevaux P S, Bordoli L, Gattiker A, De Castro E, Bucher P, Bairoch A. Recent improvements to the PROSITE database. Nucleic Acids Research, 2004, 32: 134-137.

[16]Eisenhaber F, Eisenhaber B, Kubina W, Maurer-Stroh S, Neuberger G, Schneider G, Wildpaner M. Prediction of lipid posttranslational modifications and localization signals from protein sequences: big-Pi, NMT and PTS1. Nucleic Acids Research, 2003, 31(13): 3631-3634.

[17]Krogh A, Larsson B, von Heijne G, Sonnhammer E L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, 2001, 305: 567-580.

[18]Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. Journal of Molecular Biology, 2000, 300: 1005-1016.

[19]Bendtsen J D, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology, 2004, 340: 783-795.

[20]Käll L, Krogh A, Sonnhammer E L. A combined transmembrane topology and signal peptide prediction method. Journal of Molecular Biology, 2004, 338: 1027-1036.

[21]Park B H, Karpinets T V, Syed M H, Leuze M R, Uberbacher E C. CAZymes Analysis Toolkit (CAT): web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database. Glycobiology, 2010, 20(12): 1574-1584.

[22]de Koning-Ward T F, Gilson P R, Boddey J A, Rug M, Smith B J, Papenfuss A T, Sanders P R, Lundie R J, Maier A G, Cowman A F, Crabb B S. A newly discovered protein export machine in malaria parasites. Nature, 2009, 459: 945-949.

[23]Crooks G E, Hon G, Chandonia J M, Brenner S E. WebLogo: a sequence logo generator. Genome Research, 2004, 14(6): 1188-1190.

[24]Kyte J, Doolittle R F. A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 1982, 157(1): 105-132.

[25]Trembley M L, Ringli C, Honegger R. Hydrophobins DGH1, DGH2, and DGH3 in the lichen-forming basidiomycete Dictyonema glabratum. Fungal Genetics and Biology, 2002, 35: 247-259.

[26]Kim S, Ahn I P, Rho H S, Lee Y H. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Molecular Microbiology, 2005, 57(5): 1224-1237.

[27]唐  雯, 严  明. 里氏木霉分泌组的预测及分析. 微生物学报, 2008, 48(4): 473-447.

Tang W, Yan M. Prediction and analysis of the secreteomic in Trichoderma reese. Acta Microbiologica Sinica, 2008, 48(4): 473-447. (in Chinese)

[28]杨  静, 李成云, 王云月, 朱有勇, 李进斌, 何霞红, 刘  林, 业艳芬, 周晓罡, 唐  萍. 酿酒酵母分泌蛋白组的计算机分析. 中国农业科学, 2005, 38(3): 516-522.

Yang J, Li C Y, Wang Y Y, Zhu Y Y, Li J B, He X H, Liu L, Ye Y F, Zhou X G, Tang P. Computational analysis of signal peptide- dependent secreted proteins in Saccaromyces cerevisiae. Scientia Agricultura Sinica, 2005, 38(3): 516-522. (in Chinese)

[29]Durrandsa P K, Keenea R A, Coopera R M, Garroa L W, Clarkson J M. Polygalacturonase isozyme profiles of Verticillium dahliae isolates races 1 and 2 from different geographical origins. Transactions of the British Mycological Society, 1988, 91(3): 533-536.

[30]Wang J Y, Cai Y, Gou J Y, Mao Y B, Xu Y H, Jiang W H, Chen X Y.

 

VdNEP, an elicitor from Verticillium dahliae, induces cotton plant wilting. Applied Environmental Microbiology, 2004, 70(8): 4989-4995.

[31]Choi J, Park J, Kim D, Jung K, Kang S, Lee Y H. Fungal secretome database: integrated platform for annotation of fungal secretomes. BMC Genomics, 2010, 11: 105-120.

[32]Klimes A, Dobinson K F. A hydrophobin gene, VDH1, is involved in microsclerotial development and spore viability in the plant pathogen Verticillium dahliae. Fungal Genetics and Biology, 2006, 43: 283-294.

[33]Stergiopoulos I, Wit P J. Fungal effector proteins. Annual Reviews Phytopathology, 2009, 47: 233-263.
[1] ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513.
[2] HanXi LIU,Hao LÜ,GuangYu GUO,DongXu LIU,Yan SHI,ZhiJun SUN,ZeXin ZHANG,YanJiao ZHANG,YingNan WEN,JieQi WANG,ChunYan LIU,QingShan CHEN,DaWei XIN,JinHui WANG. Effect of rhcN Gene Mutation on Nodulation Ability of Soybean Rhizobium HH103 [J]. Scientia Agricultura Sinica, 2021, 54(6): 1104-1111.
[3] ZHAO WeiSong,GUO QingGang,SU ZhenHe,WANG PeiPei,DONG LiHong,HU Qing,LU XiuYun,ZHANG XiaoYun,LI SheZeng,MA Ping. Characterization of Fungal Community Structure in the Rhizosphere Soil of Healthy and Diseased-Verticillium Wilt Potato Plants and Carbon Source Utilization [J]. Scientia Agricultura Sinica, 2021, 54(2): 296-309.
[4] ZHANG XiaoXue,SUN TianGe,ZHANG YingChun,CHEN LiHua,ZHANG XinYu,LI YanJun,SUN Jie. Identification of Xylosidase Genes from Verticillium dahliae and Functional Analysis Based on HIGS Technology [J]. Scientia Agricultura Sinica, 2021, 54(15): 3219-3231.
[5] ZHAO WeiSong,GUO QingGang,LI SheZeng,WANG PeiPei,LU XiuYun,SU ZhenHe,ZHANG XiaoYun,MA Ping. Effect of Wilt-Resistant and Wilt-Susceptible Cotton on Soil Bacterial Community Structure at Flowering and Boll Stage [J]. Scientia Agricultura Sinica, 2020, 53(5): 942-954.
[6] XING QiKai,LI LingXian,CAO Yang,ZHANG Wei,PENG JunBo,YAN JiYe,LI XingHong. Prediction and Analysis of Candidate Secreted Proteins from the Genome of Lasiodiplodia theobromae [J]. Scientia Agricultura Sinica, 2020, 53(24): 5027-5038.
[7] SUN Qi,HE Fang,SHAO ShengNan,LIU Zheng,HUANG JiaFeng. Cloning and Functional Analysis of VdHP1 in Verticillium dahliae from Cotton [J]. Scientia Agricultura Sinica, 2020, 53(14): 2872-2884.
[8] QI Yue,LÜ JunYuan,ZHANG Yue,WEI Jie,ZHANG Na,YANG WenXiang,LIU DaQun. Puccinia triticina Effector Protein Pt18906 Triggered Two-Layer Defense Reaction in TcLr27+31 [J]. Scientia Agricultura Sinica, 2020, 53(12): 2371-2384.
[9] LIU HaiYang, WANG Wei, ZHANG RenFu, RAXIDA ·ABDURAHMAN, YAO Ju. Fungal Community Structure of Cotton-Field Soil Under Different Incidences of Cotton Verticillium Wilt [J]. Scientia Agricultura Sinica, 2019, 52(3): 455-465.
[10] WeiSong ZHAO,QingGang GUO,SheZeng LI,YaJiao WANG,XiuYun LU,PeiPei WANG,ZhenHe SU,XiaoYun ZHANG,Ping MA. Control Efficacy of Broccoli Residues on Cotton Verticillium Wilt and Its Effect on Soil Bacterial Community at Different Growth Stages [J]. Scientia Agricultura Sinica, 2019, 52(24): 4505-4517.
[11] LIANG YingBo,LI Ze,QIU DeWen,ZENG HongMei,LI GuangYue,YANG XiuFen. Identification and Analysis of Differentially Expressed Genes Induced by Protein Elicitor PevD1 in Nicotiana benthamiana [J]. Scientia Agricultura Sinica, 2019, 52(21): 3794-3805.
[12] LIU RuiChi,CHENG YouPu,CHAI ALi,SHI YanXia,XIE XueWen, PATIGULI,LI BaoJu. Establishment and Application of a Triplex PCR Detection System for Vegetable Soil-Borne Pathogens [J]. Scientia Agricultura Sinica, 2019, 52(12): 2069-2078.
[13] ZHANG YiHao, FENG HongJie, YUAN Yuan, JIN YuYing, SHI YongQiang, ZHANG ChaoJun, LI FuGuang. Induced Immunity Effect and Mechanism of the Weak Pathogenicity Isolate of Verticillium dahliae Vd171 Against Verticillium Wilt in Cotton [J]. Scientia Agricultura Sinica, 2018, 51(6): 1067-1078.
[14] WANG Yu-qiu, LI Guo-bang, YANG Juan, LI Liang, ZHAO Zhi-xue, FAN Jing, WANG Wen-ming. Construction and Application of a Yeast Two-Hybrid cDNA Library from Rice Spikelets Infected with Ustilaginoidea virens [J]. Scientia Agricultura Sinica, 2016, 49(5): 865-873.
[15] ZHAO Yu-lan, SU Xiao-feng, CHENG Hong-mei. Verification of Verticillium dahliae Pathogenicity of Glycometabolism Related Genes by Using Host-Induced Gene Silencing Method [J]. Scientia Agricultura Sinica, 2015, 48(7): 1321-1329.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!