中国农业科学 ›› 2022, Vol. 55 ›› Issue (6): 1095-1109.doi: 10.3864/j.issn.0578-1752.2022.06.004
秦羽青(),程宏波,柴雨葳,马建涛,李瑞,李亚伟,常磊,柴守玺(
)
收稿日期:
2021-06-02
接受日期:
2021-11-05
出版日期:
2022-03-16
发布日期:
2022-03-25
通讯作者:
柴守玺
作者简介:
秦羽青,E-mail: 基金资助:
QIN YuQing(),CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi(
)
Received:
2021-06-02
Accepted:
2021-11-05
Online:
2022-03-16
Published:
2022-03-25
Contact:
ShouXi CHAI
摘要:
【目的】明确中国北方地区秸秆覆盖和地膜覆盖技术对小麦生产的影响,探索两种覆盖体系的适宜推广区域。【方法】在近40年的时间跨度中检索并筛选出165篇相关文献,将其置于荟萃分析(Meta-analysis)的框架下,通过效应分析的不同展现形式(如变化率及反应比)开展理论研究。整体采用随机效应模型,分析对比不同覆盖模式下小麦农艺指标和农田水分状况的变化情况。进而以亚组分析的形式,重点揭示覆盖增产效应对不同环境条件(海拔、降水量、气温、日照)及田间管理措施(覆盖周期、种植密度、耕作、施肥)的响应规律,对其进行函数拟合、权重分析及统计检验。并且通过皮尔逊相关性分析量化本研究涉及的各个变量之间的相关性。【结果】相较于露地栽培,秸秆和地膜覆盖分别使小麦产量显著提高了19.53%(95%CI = 0.55%—38.52%)和24.91%(95%CI = 3.18%—46.64%),并且抑制了农田蒸散。不同覆盖模式下产量构成因素对增产的贡献率亦存在一定差异,分别为有效穗数>穗粒数>千粒重(秸秆覆盖);有效穗数>千粒重>穗粒数(地膜覆盖)。其中秸秆覆盖下的穗粒数增幅较高,达5.7%(95%CI = -4.10%—15.50%);而覆膜的有效穗数和千粒重增长更显著,分别为25.2%(95%CI = 14.11%—36.29%)和6.4%(95%CI = 1.50%—11.30%)。除了具有促产优势,覆膜的生物量和水分利用效率同样比覆秸秆高出18.17%和14.39%。具体表现为在大部分气象亚区中地膜覆盖的增产率相较于秸秆覆盖高出0.89%—23.34%。同时,随着地势的下降,覆膜的增产效应相对于非覆盖呈现出增长趋势,在低海拔地区(<800 m)增产率可达34.26%。然而,塑料薄膜相对于秸秆的增产优势会随着覆盖年限的增加而逐渐缩小,在超过8年的试验中,覆盖秸秆的整体增产率反而更高。秸秆覆盖产量还受到施肥和耕作措施的影响,尤其是在免耕,不施肥以及单施磷肥这3种处理中,增产率分别达到32.68%,25.94%和21.71%。由统计学检验可知,在海拔、年均日照时数和种植密度3个亚组中,组间异质Q的检验量整体较大,说明该组内各效应量的变异程度更高。秸秆和地膜覆盖条件下,同产量相关度最高的因子分别为有效穗数(r = 0.808)和水分利用效率(r = 0.718),而影响两种覆盖体系中土壤含水量的首要因子分别为蒸散量(r = -0.859)以及水分利用效率(r = 0.856)。【结论】两种覆盖模式皆具有明显的增产效应,且地膜覆盖在低海拔、偏旱、偏寒地区更具优势;而秸秆覆盖更适合融入长期的保护性耕作体系,从而实现生产和生态的多元协调式发展。因此,因地制宜、因时制宜选择科学的覆盖方法是我国北方小麦覆盖技术取得成功的关键。
秦羽青,程宏波,柴雨葳,马建涛,李瑞,李亚伟,常磊,柴守玺. 中国北方地区小麦覆盖栽培增产效应的荟萃(Meta)分析[J]. 中国农业科学, 2022, 55(6): 1095-1109.
QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis[J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
表2
环境因素对产量影响的亚组分析"
变量 Variable | 亚组 Sub-group | Qtra | P-Qtra | Qter | P-Qter | CV (%) | Weight (%) |
---|---|---|---|---|---|---|---|
海拔 Altitude (m) | < 800 | 25.42(17.65) | <0.05(<0.05) | 79.56(53.68) | <0.01(<0.01) | 20.54(12.81) | 14.05(7.44) |
800-1 150 | 9.55(4.98) | <0.05(0.255) | 13.56(12.54) | 9.92(15.98) | |||
1 150-1 250 | 15.30(7.29) | <0.01(<0.05) | 13.05(21.65) | 26.17(13.77) | |||
> 1 250 | 49.15(16.36) | <0.01(<0.05) | 15.45(12.25) | 7.99(4.68) | |||
年均降水量 Annual mean precipitation (mm) | < 450 | 7.61(4.09) | <0.05(0.296) | 15.93(33.54) | <0.05(<0.01) | 10.53(12.00) | 8.73(9.98) |
450-550 | 5.22(6.05) | 0.262(0.080) | 14.62(15.11) | 11.47(7.23) | |||
550-650 | 4.34(4.90) | 0.133(0.116) | 13.20(13.68) | 19.20(26.18) | |||
> 650 | 2.31(5.57) | 0.523(0.122) | 20.55(9.03) | 4.99(12.22) | |||
年均气温 Annual mean air temperature (℃) | < 9 | 4.49(5.16) | 0.207(0.195) | 6.63(10.50) | 0.057(<0.05) | 11.64(14.74) | 8.06(12.24) |
9-10.5 | 6.55(1.12) | <0.05(0.551) | 10.25(15.07) | 11.64(19.70) | |||
10.5-12.5 | 4.22(6.85) | 0.376(<0.05) | 13.87(12.51) | 4.78(8.69) | |||
> 12.5 | 1.25(2.27) | 0.415(0.364) | 8.32(1.99) | 19.10(15.52) | |||
年均日照时数 Annual mean sunshine hours (h) | < 2 200 | 43.68(52.02) | <0.05(<0.01) | 77.68(120.54) | <0.01(<0.01) | 15.36(21.60) | 10.96(14.04) |
2 200-2 500 | 33.98(12.84) | <0.01(<0.05) | 19.09(11.68) | 16.67(15.79) | |||
> 2200 | 27.58(60.17) | <0.05(<0.01) | 12.25(11.87) | 17.98(24.56) |
表3
田间管理因素对产量影响的亚组分析"
变量 Variable | 亚组 Sub-group | Qtra | P-Qtra | Qter | P-Qter | CV (%) | Weight (%) |
---|---|---|---|---|---|---|---|
覆盖周期 Mulching period | 1~2 | 3.80(10.35) | 0.327(<0.05) | 9.66(42.56) | 0.604(<0.01) | 15.81(17.15) | 7.62(19.06) |
3~4 | 5.43(18.54) | 0.092(<0.01) | 12.73(15.59) | 14.37(17.01) | |||
5~8 | 1.89(15.42) | 0.578(<0.05) | 8.92(13.72) | 12.61(10.26) | |||
> 8 | 2.57(13.32) | 0.436(<0.01) | 22.97(10.54) | 15.25(3.81) | |||
种植密度 Planting density (×104 plants/hm2) | < 300 | 35.01(18.74) | <0.01(<0.05) | 151.40(36.15) | <0.01(<0.01) | 13.56(15.74) | 7.76(10.05) |
300~400 | 99.55(10.37) | <0.01(<0.05) | 20.99(22.52) | 17.81(21.00) | |||
> 400 | 41.03(14.28) | <0.01(<0.05) | 19.40(15.17) | 19.63(23.74) | |||
耕作模式 Tillage pattern | 传统耕作CT | 12.84(9.35) | <0.05(<0.05) | 25.19(33.21) | <0.05(<0.01) | 10.97(10.51) | 8.51(13.62) |
免耕NT | 11.27(7.34) | <0.05(0.063) | 15.28(7.71) | 21.70(10.21) | |||
旋耕RT | 6.55(1.90) | 0.075(0.449) | 14.32(13.94) | 14.04(5.11) | |||
深松耕ST | 14.43(8.54) | <0.01(<0.05) | 11.56(8.57) | 16.60(10.21) | |||
施肥方式 Fertilization measure | 不施肥NF | 11.35(2.16) | <0.05(0.389) | 50.66(14.20) | <0.01(<0.05) | 18.55(13.06) | 10.99(4.71) |
单施氮肥AN | 15.23(2.26) | <0.01(0.397) | 12.80(14.49) | 3.93(5.76) | |||
单施磷肥AP | 41.31(2.48) | <0.01(0.303) | 13.15(20.92) | 3.93(5.76) | |||
单施有机肥AO | 5.24(6.55) | 0.856(0.527) | 14.06(14.28) | 9.42(7.59) | |||
单施无机肥AI | 18.80(5.54) | <0.01(<0.05) | 10.83(9.54) | 4.97(7.07) | |||
有机无机配施OIF | 5.17(3.11) | 0.127(0.278) | 11.98(15.77) | 15.45(20.42) |
表4
覆盖模式下小麦主要农艺指标及农田水分状况的相关性分析"
产量 Yield | 生物产量 Biomass | 有效穗数Effective spike number | 穗粒数 Grain number per spike | 千粒重 1000-grain weight | 蒸散量 ET | 水分利用效率 WUE | 土壤含水量 Soil water content | |
---|---|---|---|---|---|---|---|---|
产量 Yield | 1 | |||||||
生物产量 Biomass | 0.686** 0.443* | 1 | ||||||
有效穗数 Effective spike number | 0.808** 0.677** | 0.201 0.165 | 1 | |||||
穗粒数 Grain number per spike | 0.796** 0.364 | 0.548* 0.501* | -0.537* -0.887** | 1 | ||||
千粒重 1000-grain weight | 0.549* 0.586* | 0.086 0.340 | -0.563* 0.760* | -0.532* -0.391 | 1 | |||
蒸散量 ET | -0.064 -0.054 | -0.112 -0.438** | -0.368 0.845** | 0.336 0.224 | -0.517* -0.758** | 1 | ||
水分利用效率 WUE | 0.312 0.718** | 0.195 0.667** | 0.224 0.167 | 0.428 0.875** | 0.258 0.490* | -0.561* -0.913** | 1 | |
土壤含水量 Soil water content | 0.473* 0.492* | 0.632* 0.145 | 0.460* 0.259 | 0.227 0.456* | 0.524* 0.411 | -0.859** -0.783** | 0.414 0.856** | 1 |
[1] | WANG C R, TIAN X H, LI S X. Effects of plastic sheet-mulching on ridge for rainwater-harvesting cultivation on WUE and yield of winter wheat. Scientia Agricultura Sinica, 2004,37(2):208-214. |
[2] |
RAMAKRISHNA A, TAM H M, WANI S P, LONG T D. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crops Research, 2006,95(2/3):115-125.
doi: 10.1016/j.fcr.2005.01.030 |
[3] |
CHAKRABORTY D, NAGARAJAN S, AGGARWAL P, GUPTA V K, TOMAR R K, GARG R N, SAHOO R N, SARKAR A, CHOPRA U K, SARMA K S, KALRA N. Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment. Agricultural Water Management, 2008,95(12):1323-1334.
doi: 10.1016/j.agwat.2008.06.001 |
[4] |
ZRIBI W, ARAGÜÉS R, MEDINA E, FACI J M. Efficiency of inorganic and organic mulching materials for soil evaporation control. Soil and Tillage Research, 2015,148:40-45.
doi: 10.1016/j.still.2014.12.003 |
[5] |
LIN W, LIU W Z, XUE Q W. Spring maize yield, soil water use and water use effciency under plastic film and straw mulches in the Loess Plateau. Scientific Reports, 2016,6:38995.
doi: 10.1038/srep38995 |
[6] |
REN A T, ZHOU R, MO F, LIU S T, LI J Y, CHEN Y L, ZHAO L, XIONG Y C. Soil water balance dynamics under plastic mulching in dryland rainfed agroecosystem across the Loess Plateau. Agriculture Ecosystems & Environment, 2021,312:107354.
doi: 10.1016/j.agee.2021.107354 |
[7] |
HE G, WANG Z H, LI F C, DAI J, LI Q, XUE C, CAO H B, WANG S, MALHI S S. Soil water storage and winter wheat productivity affected by soil surface management and precipitation in dryland of the Loess Plateau, China. Agricultural Water Management, 2016,171:1-9.
doi: 10.1016/j.agwat.2016.03.005 |
[8] |
FANG H, LI Y N, GU X B, LI Y P, CHEN P P. Can ridge-furrow with film and straw mulching improve wheat-maize system productivity and maintain soil fertility on the Loess Plateau of China? Agricultural Water Management, 2021,246:106686.
doi: 10.1016/j.agwat.2020.106686 |
[9] |
FU W, FAN J, HAO M D, HU J S, WANG H. Evaluating the effects of plastic film mulching patterns on cultivation of winter wheat in a dryland cropping system on the Loess Plateau, China. Agricultural Water Management, 2021,244:106550.
doi: 10.1016/j.agwat.2020.106550 |
[10] | GAN Y T, SIDDIQUE K, TURNER N C, LI X G, NIU J Y, YANG C, LIU L P, CHAI Q. Ridge-furrow mulching systems—an innovative technique for boosting crop productivity in semiarid rain-fed environments. Advances in Agronomy, 2013,118:429-476. |
[11] |
ZHOU L M, ZHANG F, LIU C A. Improved yield by harvesting water with ridges and subgrooves using buried and surface plastic mulchs in a semiarid area of China. Soil and Tillage Research, 2015,150:21-29.
doi: 10.1016/j.still.2015.01.006 |
[12] |
LI C J, WEN X X, WAN X J, LIU Y, HAN J, LIAO Y C, WU W. Towards the highly effective use of precipitation by ridge-furrow with plastic film mulching instead of relying on irrigation resources in a dry semi-humid area. Field Crops Research, 2016,188:62-73.
doi: 10.1016/j.fcr.2016.01.013 |
[13] |
LUO L C, WANG Z H, HUANG M, HUI X L, WANG S, ZHAO Y, HE H X, ZHANG X, DIAO C P, CAO H B, MA Q X, LIU J S. Plastic film mulch increased winter wheat grain yield but reduced its protein content in dryland of northwest China. Field Crops Research, 2018,218:69-77.
doi: 10.1016/j.fcr.2018.01.005 |
[14] |
MO F, WANG J Y, XIONG Y C, NGULUU S N, LI F M. Ridge-furrow mulching system in semiarid Kenya: A promising solution to improve soil water availability and maize productivity. European Journal of Agronomy, 2016,80:124-136.
doi: 10.1016/j.eja.2016.07.005 |
[15] |
QIN X L, LI Y Z, HAN Y L, HU Y C, LI Y J, WEN X X, LIAO Y C, SIDDIQUE-KADAMBOT H M. Ridge-furrow mulching with black plastic film improves maize yield more than white plastic film in dry areas with adequate accumulated temperature. Agricultural and Forest Meteorology, 2018,262:206-214.
doi: 10.1016/j.agrformet.2018.07.018 |
[16] |
SUBRAHMANIYAN K, VEERAMANI P, HARISUDAN C. Heat accumulation and soil properties as affected by transparent plastic mulch in Blackgram (Vigna mungo) doubled cropped with Groundnut (Arachis hypogaea) in sequence under rainfed conditions in Tamil Nadu, India. Field Crops Research, 2018,219:43-54.
doi: 10.1016/j.fcr.2018.01.024 |
[17] |
FAN Y Q, DING R S, KANG S Z, HAO X M, DU T S, TONG L, LI S. Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland. Agricultural Water Manage, 2017,179:122-231.
doi: 10.1016/j.agwat.2016.08.019 |
[18] | 董孔军, 杨天育, 何继红, 任瑞玉, 张磊. 西北旱作区不同地膜覆盖种植方式对谷子生长发育的影响. 干旱地区农业研究, 2013,31(1):37-40. |
DONG K J, YANG T Y, HE J H, REN R Y, ZHANG L. Effects of different plastic film mulching planting methods on millet growth and development in arid areas of Northwest China. Agricultural Research in Arid Areas, 2013,31(1):37-40. (in Chinese) | |
[19] |
ZHAO H B, LIU J F, CHEN X W, WANG Z H. Straw mulch as an alternative to plastic film mulch: Positive evidence from dryland wheat production on the Loess Plateau. Science of the Total Environment, 2019,676:782-791.
doi: 10.1016/j.scitotenv.2019.04.320 |
[20] |
POWLSON D S, STIRLING C M, JAT M L, GERARD B G, PALM C A, SANCHEZ P A, CASSMAN K G. Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change, 2014,4(8):678-683.
doi: 10.1038/nclimate2292 |
[21] |
KADER M A, SENGE M, MOJID M A, ITO K. Recent advances in mulching materials and methods for modifying soil environment. Soil and Tillage Research, 2017,168:155-166.
doi: 10.1016/j.still.2017.01.001 |
[22] |
ZHANG S L, LI P R, YANG X Y, WANG Z H, CHEN X P. Effects of tillage and plastic mulch on soil water, growth and yield of spring-sown maize. Soil and Tillage Research, 2011,112(1):92-97.
doi: 10.1016/j.still.2010.11.006 |
[23] |
AULAKH M S, WALTERS D T, DORAN J W, FRANCIS D D, MOSLER A R. Crop residue type and placement effects on denitrification and mineralization. Soil Science Society of America Journal, 1991,55(4):1020-1025.
doi: 10.2136/sssaj1991.03615995005500040022x |
[24] |
KLADIVKO E J. Tillage systems and soil ecology. Soil and Tillage Research, 2001,61(1/2):61-76.
doi: 10.1016/S0167-1987(01)00179-9 |
[25] |
LAFITTE H R, ISMAIL A, BENNETT J. Abiotic stress tolerance in rice for Asia: Progress and the future. Crop Science, 2004,26:1-17.
doi: 10.2135/cropsci1986.0011183X002600010001x |
[26] |
CHEN Q Y, LIU Z J, ZHOU J B, XU X P, ZHU Y J. Long-term straw mulching with nitrogen fertilization increases nutrient and microbial determinants of soil quality in a maize-wheat rotation on China's Loess Plateau. Science of The Total Environment, 2021,775(25):145930.
doi: 10.1016/j.scitotenv.2021.145930 |
[27] |
WANG L F, SHANGGUAN Z P. Water-use efficiency of dryland wheat in response to mulching and tillage practices on the Loess Plateau. Scientific Reports, 2015,5:12225.
doi: 10.1038/srep12225 |
[28] |
LI S X, WANG Z H, LI S Q, GAO Y J, TIAN X H. Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water loss by evaporation in dryland areas of China. Agricultural Water Management, 2013,116(2):39-49.
doi: 10.1016/j.agwat.2012.10.004 |
[29] |
ZHANG M M, ZHAO G X, LI Y Z, WANG Q, DANG P F, QIN X L, ZOU Y F, CHEN Y L, SIDDIQUE H M. Straw incorporation with ridge-furrow plastic film mulch alters soil fungal community and increases maize yield in a semiarid region of China. Applied Soil Ecology, 2021,167:104038.
doi: 10.1016/j.apsoil.2021.104038 |
[30] |
MA Z Z, ZHANG X C, ZHENG B Y, YUE S C, ZHANG X C, ZHAI B N, WANG Z H, ZHENG W, LI Z Y, ZAMANIAN K, RAZAVI B S. Effects of plastic and straw mulching on soil microbial P limitations in maize fields: Dependency on soil organic carbon demonstrated by ecoenzymatic stoichiometry. Geoderma, 2021,388(15):114928.
doi: 10.1016/j.geoderma.2021.114928 |
[31] |
GUREVITCH J, KORICHEVA J, NAKAGAWA S, STEWART G. Meta-analysis and the science of research synthesis. Nature, 2018,555(7695):175-182.
doi: 10.1038/nature25753 |
[32] |
SPINELI L M, PANDIS N. Fixed-effect versus random-effects model in meta-regression analysis. American Journal of Orthodontics and Dentofacial Orthopedics, 2020,158(5):770-772.
doi: 10.1016/j.ajodo.2020.07.016 |
[33] |
ZHANG Y Q, WANG J D, GONG S H, XU D, MO Y, ZHANG B Z. Straw mulching improves soil water content, increases flag leaf photosynthetic parameters and maintaines the yield of winter wheat with different irrigation amounts. Agricultural Water Management, 2021,249(1):106809.
doi: 10.1016/j.agwat.2021.106809 |
[34] |
WANG H M, ZHENG J, FAN J L, ZHANG F C, HUANG C H. Grain yield and greenhouse gas emissions from maize and wheat fields under plastic film and straw mulching: A meta-analysis. Field Crops Research, 2021,270:108210.
doi: 10.1016/j.fcr.2021.108210 |
[35] |
HU Y J, MA P H, WU S F, SUN B H, FENG H, PAN X L, ZHANG B B, CHEN G J, DUAN C X, LEI Q, SIDDIQUE H M, LIU B Y. Spatial-temporal distribution of winter wheat (Triticum aestivum L.) roots and water use efficiency under ridge-furrow dual mulching. Agricultural Water Management, 2020,240:106301.
doi: 10.1016/j.agwat.2020.106301 |
[36] |
YU Y Y, TURNER N C, GONG Y H, LI F M, FANG C, GE L J, YE J S. Benefits and limitations to straw- and plastic-film mulch on maize yield and water use efficiency: A meta-analysis across hydrothermal gradients. European Journal of Agronomy, 2018,99:138-147.
doi: 10.1016/j.eja.2018.07.005 |
[37] |
QIN W, HU C S, OENEMA O. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: A meta-analysis. Scientific Reports, 2015,5:16210.
doi: 10.1038/srep16210 |
[38] |
GUPTA N, HUMPHREYS E, EBERBACH P L, SINGH B, YADAV S, KUKAL S S. Effects of tillage and mulch on soil evaporation in a dry seeded rice-wheat cropping system. Soil and Tillage Research, 2021,209:104976.
doi: 10.1016/j.still.2021.104976 |
[39] | 毛安然, 赵护兵, 杨慧敏, 王涛, 陈秀文, 梁文娟. 不同覆盖时期和覆盖方式对旱地冬小麦经济和环境效应的影响. 中国农业科学, 2021,54(3):608-618. |
MAO A R, ZHAO H B, YANG H M, WANG T, CHEN X W, LIANG W J. Effects of different mulching periods and mulching practices on economic return and environment. Scientia Agricultura Sinica, 2021,54(3):608-618. (in Chinese) | |
[40] |
MO F, YU K L, CROWTHER T W, WANG J Y, ZHAO H, XIONG Y C, LIAO Y C. How plastic mulching affects net primary productivity, soil C fluxes and organic carbon balance in dry agroecosystems in China. Journal of Cleaner Production, 2020,263:121470.
doi: 10.1016/j.jclepro.2020.121470 |
[41] |
LIU Y, SUI Y W, GU D D, WEN X X, CHEN Y, LI C J, LIAO Y C. Effects of conservation tillage on grain filling and hormonal changes in wheat under simulated rainfall conditions. Field Crops Research, 2013,144:43-51.
doi: 10.1016/j.fcr.2013.01.009 |
[42] | 张丹, 刘宏斌, 马忠明, 唐文雪, 魏焘, 杨虎德, 李俊改, 王洪媛. 残膜对农田土壤养分含量及微生物特征的影响. 中国农业科学, 2017,50(2):310-319. |
ZHANG D, LIU H B, MA Z M, TANG W X, WEI T, YANG H D, LI J G, WANG H Y. Effect of residual plastic film on soil nutrient contents and microbial characteristics in the farmland. Scientia Agricultura Sinica, 2017,50(2):310-319. (in Chinese) | |
[43] | 张林森, 刘富庭, 张永旺, 李雪薇, 李丙智, 胥生荣, 谷洁, 韩明玉. 不同覆盖方式对黄土高原地区苹果园土壤有机碳组分及微生物的影响. 中国农业科学, 2013,46(15):3180-3190. |
ZHANG L S, LIU F T, ZHANG Y W, LI X W, LI B Z, XU S R, GU J, HAN M Y. Effects of different mulching on soil organic carbon fractions and soil microbial community of apple orchard in Loess Plateau. Scientia Agricultura Sinica, 2013,46(15):3180-3190. (in Chinese) | |
[44] | 高洪军, 彭畅, 张秀芝, 李强, 朱平, 王立春. 秸秆还田量对黑土区土壤及团聚体有机碳变化特征和固碳效率的影响. 中国农业科学, 2020,53(22):4613-4622. |
GAO H J, PENG C, ZHANG X Z, LI Q, ZHU P, WANG L C. Effects of corn straw returning amounts on carbon sequestration efficiency and organic carbon change of soil and aggregate in the black soil area. Scientia Agricultura Sinica, 2020,53(22):4613-4622. (in Chinese) | |
[45] |
YIN W, YU A Z, GUO Y, ET AL WANG Y F, ZHAO C, FAN Z L, HU F L, CHAI Q. Straw retention and plastic mulching enhance water use via synergistic regulation of water competition and compensation in wheat-maize intercropping systems. Field Crops Research, 2018,229:78-94.
doi: 10.1016/j.fcr.2018.10.003 |
[46] |
LI Y Z, SONG D P, DANG P F, WEI L N, QIN X L, SIDDIQUE H M. Combined ditch buried straw return technology in a ridge-furrow plastic film mulch system: Implications for crop yield and soil organic matter dynamics. Soil and Tillage Research, 2020,199:104596.
doi: 10.1016/j.still.2020.104596 |
[47] |
LI Q, LI H B, ZHANG L, ZHANG S Q, GHEN Y L. Mulching improves yield and water-use efficiency of potato cropping in China: A meta-analysis. Field Crops Research, 2018,221:50-60.
doi: 10.1016/j.fcr.2018.02.017 |
[48] |
WANG N J, DING D Y, MALONE R W, CHEN H X, WEI Y S, ZHANG T B, LUO X Q, LI C, CHU X S, FENG H. When does plastic-film mulching yield more for dryland maize in the Loess Plateau of China? A meta-analysis. Agricultural Water Management, 2020,240:106290.
doi: 10.1016/j.agwat.2020.106290 |
[49] |
HU Y J, MA P H, ZHANG B B, HILL R L, WU S F, DONG Q G, CHEN G J. Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China. Agricultural Water Management, 2019,219:59-71.
doi: 10.1016/j.agwat.2019.04.004 |
[50] |
DAI Z J, HU J S, FAN J, FU W, WANG H, HAO M D. No-tillage with mulching improves maize yield in dryland farming through regulating soil temperature, water and nitrate-N. Agriculture Ecosystems & Environment, 2021,309:107288.
doi: 10.1016/j.agee.2020.107288 |
[51] |
LI N, ZHOU C J, SUN X, JING J Y, TIAN X X, WANG L Q. Effects of ridge tillage and mulching on water availability, grain yield, and water use efficiency in rain-fed winter wheat under different rainfall and nitrogen conditions. Soil and Tillage Research, 2018,179:86-95.
doi: 10.1016/j.still.2018.01.003 |
[52] |
LUO C L, ZHANG X F, DUAN H X, MBURU D M, KAVAGI L, NASEER M, DAI R Z, NYENDE A B, BATOOL A, XIONG Y C. Allometric relationship and yield formation in response to planting density under ridge-furrow plastic mulching in rainfed wheat. Field Crops Research, 2020,251:107785.
doi: 10.1016/j.fcr.2020.107785 |
[53] |
STEINMETZ Z, WOLLMANN C, SCHAEFER M, BUCHMANN C, DAVID J, TRÖGER J, MUÑOZ K, FRÖR O, SCHAUMANN G E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Science of the Total Environment, 2016,550:690-705.
doi: 10.1016/j.scitotenv.2016.01.153 |
[54] |
ZHANG H Y, HOBBIE E A, FENG P Y, ZHOU Z X, NIU L A, DUAN W K, HAO J M, HU K L. Responses of soil organic carbon and crop yields to 33-year mineral fertilizer and straw additions under different tillage systems. Soil and Tillage Research, 2021,209(1):104943.
doi: 10.1016/j.still.2021.104943 |
[1] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, $\boxed{\hbox{兰秀锦}}$, 魏育明, 周景忠, 马建. 四倍体小麦胚大小性状QTL定位与分析[J]. 中国农业科学, 2023, 56(2): 203-216. |
[2] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[3] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[4] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[5] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[6] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[7] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[8] | 张玮,严玲玲,傅志强,徐莹,郭慧娟,周梦瑶,龙攀. 播期对湖南省双季稻产量和光热资源利用效率的影响[J]. 中国农业科学, 2023, 56(1): 31-45. |
[9] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[10] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[11] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[12] | 唐华苹,陈黄鑫,李聪,苟璐璐,谭翠,牟杨,唐力为,兰秀锦,魏育明,马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析[J]. 中国农业科学, 2022, 55(8): 1492-1502. |
[13] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
[14] | 廖萍,孟轶,翁文安,黄山,曾勇军,张洪程. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546-1556. |
[15] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
|