中国农业科学 ›› 2022, Vol. 55 ›› Issue (8): 1492-1502.doi: 10.3864/j.issn.0578-1752.2022.08.002
唐华苹1(),陈黄鑫1(
),李聪1,苟璐璐1,谭翠2,牟杨1,唐力为3,兰秀锦1,魏育明1,马建1(
)
收稿日期:
2021-10-20
接受日期:
2021-12-16
出版日期:
2022-04-16
发布日期:
2022-05-11
联系方式:
唐华苹,E-mail: 707952940@qq.com。|陈黄鑫,E-mail: 1252153393@qq.com。
基金资助:
TANG HuaPing1(),CHEN HuangXin1(
),LI Cong1,GOU LuLu1,TAN Cui2,MU Yang1,TANG LiWei3,LAN XiuJin1,WEI YuMing1,MA Jian1(
)
Received:
2021-10-20
Accepted:
2021-12-16
Published:
2022-04-16
Online:
2022-05-11
摘要:
【目的】进一步挖掘小麦穗长具有利用价值的数量遗传位点(QTL),同时深入探究穗长与其他重要农艺性状之间的遗传关系,为精细定位和分子辅助选择育种奠定基础。【方法】以20828为母本、SY95-71为父本,构建126份F7代重组自交系群体。将亲本及其重组自交系分别于2016—2017年和2017—2018年生长季种植在中国四川省成都市温江区试验基地、中国四川省崇州市试验基地、中国四川省雅安市试验基地以及孟加拉国库尔纳市试验田,调查7个不同环境下的穗长表型。利用基于小麦55K SNP芯片构建的遗传连锁图谱进行非条件QTL的定位,并分析其效应。分别以株高、穗茎长、每穗小穗数和千粒重为条件,对定位到的主效QTL进行条件QTL分析,分析穗长与它们的遗传关系。【结果】通过非条件QTL定位到13个穗长QTL,分别位于1A、1D、2B、2D、4B、6D和7A染色体,LOD值为2.79—6.19,贡献率为5.35%—12.77%。其中,定位到3个稳定遗传的主效QTL:QSl-sau-2SY-2B、QSl-sau-2SY-2D.5和QSl-sau-2SY-4B,贡献率分别为6.54%—11.72%、10.16%—12.57%和5.35%—10.92%。这三个主效QTL在多环境分析中也可以检测到。进一步聚合分析表明,聚合QSl-sau-2SY-2B、QSl-sau-2SY-2D.5和QSl-sau-2SY-4B增效位点的株系穗长表型显著长于聚合任意2个主效QTL或仅含单个主效QTL增效位点的株系。同时,发现QSl-sau-2SY-2B对于株高、穗茎长、每穗小穗数和千粒重均没有显著影响,QSl-sau-2SY-2D.5对于千粒重有显著影响,达到3.98%,而对于株高、穗茎长和每穗小穗数没有显著影响,QSl-sau-2SY-4B对于株高和穗茎长有极显著影响,分别达到-12.28%和-22.26%,而对于每穗小穗数和千粒重没有显著影响。条件QTL分析结果表明,在QTL水平上,QSl-sau-2SY-2B与株高和穗茎长无关,但受到每穗小穗数和千粒重的影响,QSl-sau-2SY-2D.5与穗茎长、每穗小穗数和千粒重无关,但受到株高的影响,QSl-sau-2SY-4B与穗茎长和千粒重无关,但受到株高和每穗小穗数的影响。【结论】定位到3个控制穗长且稳定遗传的主效QTL——QSl-sau-2SY-2B、QSl-sau-2SY-2D.5和QSl-sau-2SY-4B。其中,QSl-sau-2SY-2B可能为新的QTL,独立于株高和穗茎长遗传。
唐华苹, 陈黄鑫, 李聪, 苟璐璐, 谭翠, 牟杨, 唐力为, 兰秀锦, 魏育明, 马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析[J]. 中国农业科学, 2022, 55(8): 1492-1502.
TANG HuaPing, CHEN HuangXin, LI Cong, GOU LuLu, TAN Cui, MU Yang, TANG LiWei, LAN XiuJin, WEI YuMing, MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array[J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
表1
2SY群体亲本及其RIL穗长表型变异"
环境 Environment | 亲本Parent (cm) | 重组自交系RIL | |||||||
---|---|---|---|---|---|---|---|---|---|
20828 | SY95-71 | 范围 Range (cm) | 均值 Mean (cm) | 标准差 SD | 偏度 Skewness | 峰度 Kurtosis | 遗传力 H2 | ||
E1 | 15.60** | 9.50 | 8.10—16.80 | 12.63 | 1.68 | -0.03 | 0.06 | ||
E2 | 15.43** | 9.83 | 7.83—17.20 | 12.28 | 1.95 | 0.34 | -0.07 | ||
E3 | 14.70** | 9.80 | 6.57—15.50 | 11.49 | 1.51 | -0.08 | 0.36 | ||
E4 | 12.55** | 8.42 | 7.41—14.65 | 10.90 | 1.47 | -0.07 | -0.47 | ||
E5 | 13.15** | 8.46 | 7.10—16.12 | 10.73 | 1.56 | 0.20 | 0.15 | ||
E6 | 11.28** | 7.54 | 5.84—15.62 | 9.91 | 1.80 | 0.29 | 0.12 | ||
E7 | 15.13** | 8.55 | 6.08—16.33 | 10.71 | 1.96 | 0.64 | 0.56 | ||
BLUP | 13.65 | 9.15 | 8.70—14.27 | 11.23 | 1.14 | 0.18 | -0.02 | 0.63 |
表2
2SY群体的穗长在不同环境中的相关性"
环境Environment | E1 | E2 | E3 | E4 | E5 | E6 | E7 | BLUP |
---|---|---|---|---|---|---|---|---|
E1 | 1 | |||||||
E2 | 0.696** | 1 | ||||||
E3 | 0.755** | 0.699** | 1 | |||||
E4 | 0.581** | 0.568** | 0.539** | 1 | ||||
E5 | 0.642** | 0.591** | 0.571** | 0.731** | 1 | |||
E6 | 0.545** | 0.636** | 0.488** | 0.570** | 0.607** | 1 | ||
E7 | 0.329** | 0.424** | 0.383** | 0.231* | 0.192* | 0.279** | 1 | |
BLUP | 0.838** | 0.867** | 0.817** | 0.767** | 0.788** | 0.772** | 0.556** | 1 |
表3
2SY群体穗长的非条件QTL"
非条件QTL Unconditional QTL | 环境 Environment | 染色体 Chromosome | 位置 Position (cM) | 标记区间 Marker interval | LOD | 贡献率 PVE (%) | 加性效应 Add |
---|---|---|---|---|---|---|---|
QSl-sau-2SY-1A | E7 | 1A-1 | 59 | AX-110961101—AX-108871459 | 2.93 | 11.30 | 0.69 |
QSl-sau-2SY-1D.1 | E5 | 1D | 44 | AX-94498629—AX-89319035 | 4.78 | 9.32 | 0.54 |
QSl-sau-2SY-1D.2 | E4 | 1D | 84 | AX-111087365—AX-110640947 | 4.80 | 9.41 | 0.48 |
QSl-sau-2SY-1D.3 | E2 | 1D | 116 | AX-110766802—AX-111575769 | 2.97 | 7.26 | 0.56 |
QSl-sau-2SY-2B | E4 | 2B-2 | 141 | AX-111019809—AX-109451490 | 5.91 | 11.72 | -0.53 |
E5 | 2B-2 | 147 | AX-94441014—AX-109521609 | 3.49 | 6.54 | -0.46 | |
BLUP | 2B-2 | 147 | AX-94441014—AX-109521609 | 3.97 | 9.86 | -0.37 | |
QSl-sau-2SY-2D.1 | BLUP | 2D-1 | 19 | AX-86163393—AX-109785183 | 3.23 | 10.04 | 0.37 |
QSl-sau-2SY-2D.2 | E5 | 2D-2 | 47 | AX-110977542—AX-109417243 | 5.85 | 12.53 | 0.63 |
QSl-sau-2SY-2D.3 | E6 | 2D-3 | 25 | AX-108767381—AX-111722527 | 3.44 | 12.77 | 0.65 |
QSl-sau-2SY-2D.4 | E2 | 2D-3 | 35 | AX-111722527—AX-109421761 | 4.44 | 12.66 | 0.73 |
QSl-sau-2SY-2D.5 | BLUP | 2D-3 | 70 | AX-109291628—AX-111093303 | 3.93 | 11.28 | 0.39 |
E1 | 2D-3 | 72 | AX-111093303—AX-109338052 | 2.96 | 10.16 | 0.55 | |
E4 | 2D-3 | 74 | AX-109338052—AX-111656957 | 6.19 | 12.57 | 0.55 | |
QSl-sau-2SY-4B | E4 | 4B-2 | 0 | AX-110928817—AX-111620391 | 2.88 | 5.35 | 0.36 |
E5 | 4B-2 | 0 | AX-110928817—AX-111620391 | 5.43 | 10.92 | 0.59 | |
E3 | 4B-2 | 4 | AX-111573292—AX-111233094 | 3.04 | 10.08 | 0.54 | |
QSl-sau-2SY-6D | E2 | 6-D | 31 | AX-111026969—AX-109353709 | 2.79 | 9.59 | 0.64 |
QSl-sau-2SY-7A | E2 | 7A-2 | 27 | AX-109417084—AX-108776518 | 3.00 | 7.63 | -0.58 |
表4
2SY群体穗长的多环境QTL"
检测到的QTL Detected QTL | 标记区间 Marker interval | LOD | LOD (A) | LOD (AbyE) | 贡献率 PVE (%) | PVE (A) | PVE (AbyE) | 加性效应 Add |
---|---|---|---|---|---|---|---|---|
QSl-sau-2SY-2B | AX-94498629—AX-89319035 | 7.11 | 3.60 | 3.51 | 1.23 | 0.76 | 0.47 | 0.21 |
AX-111019809—AX-109451490 | 9.82 | 5.55 | 4.27 | 1.63 | 1.16 | 0.47 | -0.25 | |
AX-94441014—AX-109521609 | 9.01 | 7.40 | 1.60 | 1.86 | 1.55 | 0.31 | -0.29 | |
AX-110872666—AX-110373068 | 7.01 | 5.87 | 1.13 | 1.54 | 1.21 | 0.33 | 0.26 | |
AX-110977542—AX-109417243 | 11.93 | 8.66 | 3.27 | 1.99 | 1.77 | 0.22 | 0.31 | |
AX-111722527—AX-109421761 | 7.68 | 5.65 | 2.03 | 1.64 | 1.16 | 0.48 | 0.25 | |
QSl-sau-2SY-2D.5 | AX-109338052—AX-111656957 | 12.32 | 7.68 | 4.65 | 1.97 | 1.60 | 0.37 | 0.30 |
QSl-sau-2SY-4B | AX-110928817—AX-111620391 | 10.59 | 4.14 | 6.45 | 1.80 | 0.88 | 0.92 | 0.22 |
表5
2SY群体穗长的条件QTL条件"
T1|T2 | 染色体 Chromosome | 位置 Position (cM) | 标记区间 Marker interval | LOD | 贡献率 PVE (%) | 加性效应 Add | 非条件QTL Unconditional QTL | LOD | 贡献率 PVE (%) | 加性效应 Add |
---|---|---|---|---|---|---|---|---|---|---|
SL|PH | 2B-2 | 147 | AX-94441014—AX-109521609 | 3.66 | 8.50 | -0.32 | QSl-sau-2SY-2B | 3.97 | 9.86 | -0.37 |
SL|PH | 2D-2 | 48 | AX-110977542—AX-109417243 | 2.87 | 6.80 | 0.29 | - | |||
SL|PH | 2D-3 | 74 | AX-109338052—AX-111656957 | 3.35 | 8.05 | 0.31 | QSl-sau-2SY-2D.5 | 3.93 | 11.28 | 0.39 |
SL|PH | 4B-2 | 3 | AX-111573292—AX-111233094 | 4.49 | 12.29 | 0.39 | QSl-sau-2SY-4B | |||
SL|PH | 7D | 20 | AX-109130875—AX-109379249 | 3.52 | 9.68 | 0.34 | - | |||
SL|SEL | 2B-2 | 147 | AX-94441014—AX-109521609 | 3.62 | 9.15 | -0.37 | QSl-sau-2SY-2B | 3.97 | 9.86 | -0.37 |
SL| SEL | 2D-1 | 18 | AX-86163393—AX-109785183 | 3.32 | 10.94 | 0.40 | - | |||
SL| SEL | 2D-3 | 71 | AX-109291628—AX-111093303 | 4.02 | 10.92 | 0.40 | QSl-sau-2SY-2D.5 | 3.93 | 11.28 | 0.39 |
SL|SNS | 2B-2 | 147 | AX-94441014—AX-109521609 | 2.85 | 6.47 | -0.29 | QSl-sau-2SY-2B | 3.97 | 9.86 | -0.37 |
SL|SNS | 2D-2 | 47 | AX-110977542—AX-109417243 | 3.09 | 7.70 | 0.31 | - | |||
SL|SNS | 2D-3 | 72 | AX-111093303—AX-109338052 | 4.01 | 9.30 | 0.34 | QSl-sau-2SY-2D.5 | 3.93 | 11.28 | 0.39 |
SL|SNS | 4B-2 | 3 | AX-111573292—AX-111233094 | 2.57 | 6.44 | 0.29 | QSl-sau-2SY-4B | |||
SL|SNS | 7A-2 | 103 | AX-110518554—AX-110442528 | 3.79 | 9.35 | -0.35 | - | |||
SL|TGW | 2B-2 | 146 | AX-108758148—AX-94441014 | 3.09 | 7.40 | -0.29 | QSl-sau-2SY-2B | 3.97 | 9.86 | -0.37 |
SL|TGW | 2D-3 | 72 | AX-111093303—AX-109338052 | 4.02 | 9.47 | 0.33 | QSl-sau-2SY-2D.5 | 3.93 | 11.28 | 0.39 |
SL|TGW | 6B-1 | 83 | AX-89344223—AX-110472291 | 2.59 | 6.07 | 0.27 | - | |||
SL|TGW | 7A-2 | 27 | AX-109417084—AX-108776518 | 4.05 | 10.10 | -0.35 | - | |||
SL|TGW | 7D | 20 | AX-109130875—AX-109379249 | 3.98 | 11.30 | 0.36 | - |
[1] |
SHIFERAW B, SMALE M, BRAUN H J, DUVEILLER E, REYNOLDS M, MURICHO G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security, 2013, 5(3): 291-317.
doi: 10.1007/s12571-013-0263-y |
[2] | YANG Y, KRISHNA K, DESHPANDE P, RANGANATHAN V, JAYARAMAN V, WANG T, BEI K, KRISHNAMURTHY H. High frequency of extractable nuclear autoantibodies in wheat-related disorders. Biomarker Insights, 2018, 13: 1-6. |
[3] | FAROOQ J, KHALIQ I, AKBAR M, PETRESCU-MAG I V, HUSSAIN M. Genetic analysis of some grain yield and its attributes at high temperature stress in wheat (Triticum aestivum L.). Ann RSCB, 2015, 19(3): 71-81. |
[4] |
MAUREEN T N, JACOB M, HUSSEIN S, ALFRED O. Agronomic and physiological traits, and associated quantitative trait loci (QTL) affecting yield response in wheat (Triticum aestivum L.): A review. Frontiers in Plant Science, 2019, 10: 1428.
doi: 10.3389/fpls.2019.01428 |
[5] |
JI G S, XU Z B, FAN X L, ZHOU Q, YU Q, LIU X F, LIAO S M, FENG B, WANG T.Identification of a major and stable QTL on chromosome 5A confers spike length in wheat (Triticum aestivum L.). Molecular Breeding, 2021, 41(9): 1-13.
doi: 10.1007/s11032-020-01191-z |
[6] |
LI T, DENG G B, SU Y, YANG Z, TANG Y Y, WANG J H. QIU X B, PU X, LI J, LIU Z H, ZHANG H L, LIANG J J, YANG W Y, YU M Q, WEI Y M, LONG H. Identification and validation of two major QTLs for spike compactness and length in bread wheat (Triticum aestivum L.) showing pleiotropic effects on yield-related traits. Theoretical and Applied Genetics, 2021, 134: 3625-3641.
doi: 10.1007/s00122-021-03918-8 |
[7] | ZHOU Y, CONWAY B, MILLER D, MARSHALL D, COOPER A, MURPHY P, CHAO S, BROWN-GUEDIRA G, COSTA J. Quantitative trait loci mapping for spike characteristics in hexaploid wheat. The Plant Genome, 2017, 10(2): plantgenome2016.10.0101. |
[8] |
LIU J, XU Z B, FAN X L, ZHOU Q, CAO J, WANG F, JI G S, YANG L, FENG B, WANG T. A genome-wide association study of wheat spike related traits in China. Frontiers in Plant Science, 2018, 9: 1584.
doi: 10.3389/fpls.2018.01584 |
[9] | ZHAI H J, FENG Z U, LI J, LIU X Y, XIAO S H, NI Z F, SUN Q X. QTL analysis of spike morphological traits and plant height in winter wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map. Frontiers in Plant Science, 2016, 7: 1617. |
[10] |
GUO L B, XING Y Z, MEI H W, XU C G, SHI C H, WU P, LUO L J. Dissection of component QTL expression in yield formation in rice. Plant Breeding, 2005, 124(2): 127-132.
doi: 10.1111/j.1439-0523.2005.01093.x |
[11] |
CUI F, ZHAO C H, LI J, DING A M, LI X F, BAO Y G, LI J M, JI J, WANG H G. Kernel weight per spike: What contributes to it at the individual QTL level? Molecular Breeding, 2013, 31(2): 265-278.
doi: 10.1007/s11032-012-9786-8 |
[12] |
LI C, TANG H P, LUO W, ZHANG X M, MU Y, DENG M, LIU Y X, JIANG Q T, CHEN G D, WANG J R, QI P F, PU Z E, JIANG Y F, WEI Y M, ZHENG Y L, LAN X J, MA J. A novel, validated, and plant height-independent QTL for spike extension length is associated with yield-related traits in wheat. Theoretical and Applied Genetics, 2020, 133(12): 3381-3393.
doi: 10.1007/s00122-020-03675-0 |
[13] |
ZHANG H, CHEN J S, LI R Y, DENG Z Y, ZHANG K P, LIU B, TIAN J C. Conditional QTL mapping of three yield components in common wheat (Triticum aestivum L.). The Crop Journal, 2016, 4(3): 220-228.
doi: 10.1016/j.cj.2016.01.007 |
[14] |
FAN X L, CUI F, JI J, ZHANG W, ZHAO X Q, LIU J J, MENG D Y, TONG Y P, WANG T, LI J M. Dissection of pleiotropic QTL regions controlling wheat spike characteristics under different nitrogen treatments using traditional and conditional QTL mapping. Frontiers in Plant Science, 2019, 10: 187.
doi: 10.3389/fpls.2019.00187 |
[15] |
AGATA A, ANDO K, OTA S, KOJIMA M, TAKEBAYASHI Y, TAKEHARA S, DOI K, UEGUCHI-TANAKA M, SUZUKI T, SAKAKIBARA H, MATSUOKA M, ASHIKARI M, INUKAI Y, KITANO H, HOBO T. Diverse panicle architecture results from various combinations of Prl5/GA20ox4 and Pbl6/APO1 alleles. Communications Biology, 2020, 3(1): 1-17.
doi: 10.1038/s42003-019-0734-6 |
[16] |
CUI F, LI J, DING A M, ZHAO C H, WANG L, WANG X Q, LI S S, BAO Y G, LI S F, FENG D S, KONG L G, WANG H G. Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theoretical and Applied Genetics, 2011, 122(8): 1517-1536.
doi: 10.1007/s00122-011-1551-6 |
[17] |
YU M, MAO S L, CHEN G Y, PU Z E, WEI Y M, ZHENG Y L. QTLs for uppermost internode and spike length in two wheat RIL populations and their affect upon plant height at an individual QTL level. Euphytica, 2014, 200(1): 95-108.
doi: 10.1007/s10681-014-1156-7 |
[18] |
SU Q N, ZHANG X L, ZHANG W, ZHANG N, SONG L, LIU L Q, LIU L, XUE X, LIUG T, LIU J J, MENG D Y, ZHI L Y, JI J, ZHAO X Q, YANG C L, TONG Y P, LIU Z Y, LI J M. QTL detection for kernel size and weight in bread wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map. Frontiers in Plant Science, 2018, 9: 1484.
doi: 10.3389/fpls.2018.01484 |
[19] |
MA J, QIN N N, CAI B, CHEN G Y, DING P Y, ZHANG H, YANG C C, HUANG L, MU Y, TANG H P, LIU Y X, WANG J R, QI P F, JIANG Q T, ZHENG Y L, LIU C J, LAN X J, WEI Y M. Identification and validation of a novel major QTL for all-stage stripe rust resistance on 1BL in the winter wheat line 20828. Theoretical and Applied Genetics, 2019, 132(5): 1363-1373.
doi: 10.1007/s00122-019-03283-7 |
[20] | 舒焕麟, 杨足君, 李光蓉. 创新诱发材料SY95-71选育和利用价值研究. 四川农业大学学报, 1999, 17(3): 249-253. |
SHU H L, YANG Z J, LI G R. Selection and evaluation of a wheat line SY95-71 as new yellow rust spreader. Journal of Sichuan Agricultural University, 1999, 17(3): 249-253. (in Chinese) | |
[21] |
DING P Y, MO Z Q, TANG H P, MU Y, DENG M, JIANG Q T, LIU Y X, CHEN G D, CHEN G Y, WANG J R, LI W, QI P F, JIANG Y F, KANG H Y, YAN G J, WEI Y M, ZHENG Y L, LAN X J, MA J. A major and stable QTL for wheat spikelet number per spike was validated in different genetic backgrounds. Journal of Integrative Agriculture, 2021. doi: 10.1016/S2095-3119(20)63602-4.
doi: 10.1016/S2095-3119(20)63602-4 |
[22] |
LIU J J, TANG H P, QU X R, LIU H, LI C, TU Y, LI S Q, HABIB A, MU Y, DAI S F, DENG M, JIANG Q T, LIU Y X, CHEN G Y, WANG J R, CHEN G D, LI W, JIANG Y F, WEI Y M, LAN X J, ZHENG Y L, MA J. A novel, major, and validated QTL for the effective tiller number located on chromosome arm 1BL in bread wheat. Plant Molecular Biology, 2020, 104(1): 173-185.
doi: 10.1007/s11103-020-01035-6 |
[23] | QU X R, LIU J J, XIE X L, XU Q, TANG H P, MU Y, PU Z E, LI Y, MA J, GAO Y T, JIANG Q T, LIU Y X, CHEN G Y, WANG J R, QI P F, HABIB A, WEI Y M, ZHENG Y L, LAN X J, MA J. Genetic mapping and validation of loci for kernel-related traits in wheat (Triticum aestivum L.). Frontiers in Plant Science, 2021, 12: 667493. |
[24] |
ZHU T, WANG L, RIMBERT H, RODRIGUEZ J C, DEAL K R, DE OLIVEIRA R, CHOULET F, KEEBLE-GAGNERE G, TIBBITS J, ROGERS J, EVERSOLE K, APPELS R, GU Y Q, MASCHER M, DVORAK J, LUO M C. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. The Plant Journal, 2021, 107: 303-314.
doi: 10.1111/tpj.15289 |
[25] |
PRETINI N, VANZETTI L S, TERRILE I I, DONAIRE G, GONZÁLEZ F G. Mapping QTL for spike fertility and related traits in two doubled haploid wheat (Triticum aestivum L.) populations. BMC Plant Biology, 2021, 21(1): 1-18.
doi: 10.1186/s12870-020-02777-7 |
[26] |
XU Y F, LI S S, LI L H, MA F F, FU X Y, SHI Z L, XU H X, MA P T, AN D G. QTL mapping for yield and photosynthetic related traits under different water regimes in wheat. Molecular Breeding, 2017, 37(3): 34.
doi: 10.1007/s11032-016-0583-7 |
[27] | 李聪, 马建, 刘航, 丁浦洋, 杨聪聪, 张涵. 兰秀锦. 基于小麦55K SNP芯片检测小麦穗长和株高性状QTL. 麦类作物学报, 2019, 39(11): 1284-1292. |
LI C, MA J, LIU H, DING P Y, YANG C C, ZHANG H, LAN X J. Detection of QTLs for spike length and plant height in wheat based on 55K SNP array. Journal of Triticeae Crops, 2019, 39(11): 1284-1292. (in Chinese) | |
[28] | MWADZINGENI L, SHIMELIS H, REES D J G, TSILO T J. Genome-wide association analysis of agronomic traits in wheat under drought-stressed and non-stressed conditions. PLoS ONE, 2017, 12(2): e0171692. |
[29] |
ELLIS M, REBETZKE G, AZANZA F, RICHARDS R, SPIELMEYER W. Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theoretical and Applied Genetics, 2005, 111(3): 423-430.
doi: 10.1007/s00122-005-2008-6 |
[30] |
REBETZKE G, APPELS R, MORRISON A, RICHARDS R, MCDONALD G, ELLIS M, SPIELMEYER W, BONNETT D.Quantitative trait loci on chromosome 4B for coleoptile length and early vigour in wheat (Triticum aestivum L.). Australian Journal of Agricultural Research, 2001, 52(12): 1221-1234.
doi: 10.1071/AR01042 |
[31] | 邹拓, 耿雷跃, 张薇, 张启星. 水稻抗病虫基因挖掘及聚合育种研究进展. 河北农业科学, 2018, 22(5): 47-67. |
ZOU T, GENG L Y, ZHANG W, ZHANG Q X. Research advances on gene mining resistant to disease and insect and polymerization breeding of rice. Journal of Hebei Agricultural Sciences, 2018, 22(5): 47-67. (in Chinese) | |
[32] | 鲁秀梅, 张宁, 陈劲枫, 钱春桃. 作物基因聚合育种的研究进展. 分子植物育种, 2017, 15(4): 1445-1454. |
LU X M, ZHANG N, CHEN J F, QIAN C T. The research progress in crops pyramiding breeding. Molecular Plant Breeding, 2017, 15(4): 1445-1454. (in Chinese) | |
[33] |
LI Q F, ZHANG Y, LIU T T, WANG F F, LIU K, CHEN J S, TIAN J C. Genetic analysis of kernel weight and kernel size in wheat (Triticum aestivum L.) using unconditional and conditional QTL mapping. Molecular Breeding, 2015, 35(10): 1-15.
doi: 10.1007/s11032-015-0202-z |
[34] |
LIU K Y, XU H, LIU G, GUAN P F, ZHOU X Y, PENG H R, NI Z F, SUN Q X, DU J K. QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2018, 131(4): 839-849.
doi: 10.1007/s00122-017-3040-z |
[1] | 张勇,阎俊,肖永贵,郝元峰,张艳,徐开杰,曹双河,田宇兵,李思敏,闫俊良,张赵星,陈新民,王德森,夏先春,何中虎. 中麦895高产稳产优质特性遗传解析[J]. 中国农业科学, 2021, 54(15): 3158-3167. |
[2] | 刘海英,冯必得,茹振钢,陈向东,黄培新,邢晨涛,潘茵茵,甄俊琦. BNS和BNS366小麦雄性不育与内源激素的关系[J]. 中国农业科学, 2021, 54(1): 1-18. |
[3] | 张晓,李曼,刘大同,江伟,张勇,高德荣. 扬麦系列品种品质性状分析及育种启示[J]. 中国农业科学, 2020, 53(7): 1309-1321. |
[4] | 衡燕芳,李健,王峥,陈卓,何航,邓兴旺,马力耕. 十倍体长穗偃麦草雄性育性基因ThMs1的克隆、表达及功能分析[J]. 中国农业科学, 2020, 53(23): 4727-4737. |
[5] | 战帅帅,白璐,谢磊,夏先春,任毅,吕文娟,曲延英,耿洪伟. 小麦阿拉伯木聚糖阿魏酸酰基转移酶基因的克隆与功能标记开发[J]. 中国农业科学, 2018, 51(19): 3639-3650. |
[6] | 武永峰, 胡新, 任德超, 史萍, 游松财. 晚霜冻胁迫后冬小麦株高降低及其与籽粒产量关系[J]. 中国农业科学, 2018, 51(18): 3470-3485. |
[7] | 贾小平,袁玺垒,李剑峰,张博,张小梅,郭秀璞,陈春燕. 不同光温条件谷子资源主要农艺性状的综合评价[J]. 中国农业科学, 2018, 51(13): 2429-2441. |
[8] | 张福彦,陈锋,程仲杰,杨保安,范家霖,陈晓杰,张建伟,陈云堂,崔龙. 小麦TaLox-B等位变异对脂肪氧化酶活性和面粉色泽的影响[J]. 中国农业科学, 2017, 50(8): 1370-1377. |
[9] | 董磊,董晴,张文利,胡晓龙,王洪刚,王玉海. 拟斯卑尔脱山羊草的FISH核型分析[J]. 中国农业科学, 2017, 50(8): 1378-1387. |
[10] | 辛明明,彭惠茹,倪中福,姚颖垠,孙其信. 小麦耐热性的生理遗传研究进展[J]. 中国农业科学, 2017, 50(5): 783-791. |
[11] | 张润琪,付凯勇,李超,祖赛超,李春艳,李诚. 磷素对小麦(Triticum aestivum L.)淀粉粒微观特性的影响及其形成机理[J]. 中国农业科学, 2017, 50(22): 4235-4246. |
[12] | 时佳,翟胜男,刘金栋,魏景欣,白璐,高文伟,闻伟锷,何中虎,夏先春,耿洪伟. 普通小麦籽粒过氧化物酶活性全基因组关联分析[J]. 中国农业科学, 2017, 50(21): 4212-4227. |
[13] | 刘新伦,王超,牛丽华,刘志立,张录德,陈春环,张荣琦,张宏,王长有,王亚娟,田增荣,吉万全. 普通小麦-十倍体长穗偃麦草衍生新品种抗赤霉病基因的分子鉴别[J]. 中国农业科学, 2017, 50(20): 3908-3917. |
[14] | 茹京娜,于太飞,陈隽,陈明,周永斌,马有志,徐兆师,闵东红. 小麦锌指转录因子TaDi19A对低温的响应及其互作蛋白的筛选[J]. 中国农业科学, 2017, 50(13): 2411-2422. |
[15] | 王坤杨,张伟,张双喜,刘宏伟,王轲,杜丽璞,林志珊,叶兴国. 化学杀雄剂SQ-1和阿拉伯葡聚糖蛋白对小麦品种间杂交及远缘杂交成胚率的影响[J]. 中国农业科学, 2016, 49(24): 4824-4832. |
|