中国农业科学 ›› 2022, Vol. 55 ›› Issue (8): 1546-1556.doi: 10.3864/j.issn.0578-1752.2022.08.006
廖萍1(),孟轶1,翁文安1,黄山2(),曾勇军2,张洪程1
收稿日期:
2021-06-28
接受日期:
2021-10-08
出版日期:
2022-04-16
发布日期:
2022-05-11
联系方式:
廖萍,E-mail: p.liao@yzu.edu.cn。
基金资助:
LIAO Ping1(),MENG Yi1,WENG WenAn1,HUANG Shan2(),ZENG YongJun2,ZHANG HongCheng1
Received:
2021-06-28
Accepted:
2021-10-08
Published:
2022-04-16
Online:
2022-05-11
摘要:
【目的】与常规稻相比,杂交稻具有更高的产量潜力。但是,对杂交稻和常规稻在氮素利用率上的差异尚存争议。本研究采用Meta分析以明确杂交稻对产量和氮素利用率的影响。【方法】以常规稻为对照,杂交稻为处理,筛选出56篇文献,建立了包含367对观测值的数据库。利用Meta分析方法,针对不同杂交稻类型、氮肥施用量及施用次数、土壤全氮、土壤碳氮比和土壤质地,探究了杂交稻对产量和氮素利用率的影响。【结果】与常规稻相比,杂交稻显著提高了产量(+11%)和生物量(+14%),而对收获指数无显著性影响。在各氮肥施用水平下,与常规稻相比,杂交稻均显著提高了产量;然而,随着氮肥施用量的增加,杂交稻的增产优势显著降低。另外,与常规稻相比,杂交稻显著提高了氮素吸收(+8.1%)、氮素生理利用率(+2.9%)和氮素回收率(+3.6个单位)。【结论】与常规稻相比,杂交稻能够提高产量和氮素利用率。本研究为评估杂交稻的推广应用对我国水稻产量和氮素利用率的影响提供了数据支撑。
廖萍, 孟轶, 翁文安, 黄山, 曾勇军, 张洪程. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546-1556.
LIAO Ping, MENG Yi, WENG WenAn, HUANG Shan, ZENG YongJun, ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis[J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
表1
本研究中的杂交稻试验文献概况"
参考文献1 Reference | 杂交稻 类型2 Hybrid type | 氮肥施用量 N rate (kg·hm-2) | 土壤全氮 Soil total N (g·kg-1) | 土壤碳氮比 Soil C﹕N | 土壤质地3 Soil texture | 产量 Yield | 生物量 Biomass | 收获指数 Harvest index | 氮素吸收 N uptake | 氮素生理 利用率 N physiological efficiency | 氮素回收率 N recovery efficiency |
---|---|---|---|---|---|---|---|---|---|---|---|
I | 0/100/125 | NA | NA | NA | ● | NA | NA | NA | NA | NA | |
I | 196 | NA | NA | NA | ● | NA | NA | NA | NA | NA | |
I | 0/150/225 | NA | NA | H | ● | NA | NA | ● | NA | ● | |
IJ | 0/200/300/400 | 2.09 | 6.9 | L | ● | ● | NA | ● | NA | NA | |
I/J | 143 | 2.00/2.50 | 9.8/9.0 | H | ● | NA | NA | NA | NA | NA | |
I | 0/200 | 2.18 | 11.3 | H | ● | NA | ● | ● | ● | ● | |
IJ | 200 | 2.02 | 11.1 | H | ● | NA | ● | NA | NA | NA | |
I | 0/90/180/270/ 360 | 1.52 | 5.5 | L | ● | NA | NA | ● | ● | ● | |
IJ | 0/270/300/360 | 1.35 | 10.0 | L | ● | NA | NA | ● | ● | ● | |
I | 150 | 2.70 | 9.9 | NA | ● | NA | ● | ● | ● | NA | |
IJ | 300 | 1.70 | 8.8 | H | ● | ● | ● | ● | NA | NA | |
I | 0/120/150 | 2.37 | 9.5 | H | ● | ● | ● | ● | ● | ● | |
I | 90/180 | 1.80 | 13.2 | H | ● | ● | ● | ● | ● | NA | |
I | 0/90 | 1.90/2.10 | 6.8/7.6 | H | ● | ● | ● | ● | ● | NA | |
I/IJ | 100 | 1.19 | 13.0 | H | ● | ● | ● | ● | ● | NA | |
J | 270 | 1.85 | 8.8 | H | ● | ● | NA | ● | ● | ● | |
I | 0/113/161/176/225 | 1.58/1.59/1.68 | 10.1/10.6/11.7 | NA | ● | ● | ● | ● | ● | ● | |
J/IJ | 0/60/120/180 | 1.26 | 9.6 | H | ● | NA | NA | NA | NA | NA | |
I | 0/120/165/210 | 2.40 | 9.0 | H | ● | NA | NA | NA | NA | NA | |
I | 0/150/180/225 | 2.40 | 9.0 | H | ● | ● | ● | ● | NA | ● | |
I | 0/135/150/225 | 2.40/3.30 | 7.5/9.0 | H | ● | NA | NA | ● | NA | ● | |
J | 0/150/300/450 | NA | NA | NA | ● | NA | NA | NA | NA | NA | |
J | 0/225 | 2.70 | 3.6 | L | ● | NA | NA | NA | NA | NA | |
I | 0/150 | 1.25 | 10.9 | L | ● | ● | NA | ● | ● | ● | |
I/IJ | 300 | 1.60 | 13.9 | NA | ● | NA | NA | ● | ● | NA | |
I | 150/300 | 1.12 | 10.9 | L | ● | NA | NA | ● | NA | NA | |
I | 0/40/80/120/ 160/200/240 | 2.54 | 10.7 | L | ● | ● | NA | NA | NA | NA | |
I/IJ | 263 | 1.30 | 10.7 | L | ● | NA | NA | ● | ● | NA | |
I | 0/120 | 1.14 | 19.9 | L | ● | ● | ● | NA | ● | ● | |
I | 0/90/180/270/ 360 | 1.97 | 5.9 | NA | ● | ● | NA | ● | NA | NA | |
I | 150 | NA | NA | H | ● | ● | ● | ● | NA | NA | |
I | 0/120/165/210 | 2.40 | 9.0 | H | ● | ● | ● | NA | NA | NA | |
I | 120/150 | 1.76 | NA | NA | ● | ● | NA | ● | NA | ● | |
I | 150 | 1.59 | 9.4 | L | ● | NA | NA | NA | NA | NA | |
参考文献1 Reference | 杂交稻 类型2 Hybrid type | 氮肥施用量 N rate (kg·hm-2) | 土壤全氮 Soil total N (g·kg-1) | 土壤碳氮比 Soil C﹕N | 土壤质地3 Soil texture | 产量 Yield | 生物量 Biomass | 收获指数 Harvest index | 氮素吸收 N uptake | 氮素生理 利用率 N physiological efficiency | 氮素回收率 N recovery efficiency |
I | 180 | 1.70 | 13.7 | NA | ● | ● | NA | NA | NA | NA | |
IJ | 0/150/225/300/375 | 1.77 | 14.0 | NA | ● | ● | NA | ● | NA | NA | |
I | 0/135/180/225 | NA | NA | NA | ● | ● | NA | NA | NA | NA | |
I | 200 | 1.59 | 9.4 | L | ● | NA | NA | NA | NA | NA | |
I | 0/90/130/170/ 210/250 | 2.34/2.62 | 7.3/8.0 | L | ● | ● | ● | ● | NA | NA | |
I/IJ | 270 | 1.60 | 13.9 | L | ● | NA | NA | ● | ● | NA | |
I | 0/50/100/150/ 200/250 | 1.49 | 10.0 | H | ● | ● | NA | NA | NA | ● | |
I/IJ | 263 | 1.70 | 9.1 | H | ● | ● | ● | ● | NA | NA | |
I/IJ | 263 | 1.40/1.70 | 9.1/10.5 | L/H | ● | NA | NA | NA | NA | NA | |
I/IJ | 263 | 1.60 | 10.6 | NA | ● | ● | NA | NA | NA | NA | |
I | 375 | NA | NA | NA | ● | ● | NA | ● | NA | NA | |
I | 0/150 | NA | NA | NA | ● | NA | NA | NA | NA | NA | |
I | 150/300 | 1.35 | 10.3 | L | ● | ● | ● | NA | NA | NA | |
IJ | 0/210 | 2.70/2.90 | 6.7/7.2 | H | ● | ● | NA | NA | NA | NA | |
I | 90/180 | 1.79/1.83 | 6.3/7.5 | H | ● | ● | ● | ● | ● | NA | |
I | 150/250 | NA | NA | L/H | ● | NA | NA | NA | NA | NA | |
I | 200 | 1.22 | 10.1 | L | ● | ● | NA | NA | NA | NA | |
IJ | 0/270/300 | 1.35 | 10.2 | L | ● | NA | NA | NA | ● | ● | |
J/IJ | 0/270/300 | 1.35 | 10.0 | L | ● | ● | ● | NA | NA | NA | |
I/J | 180 | 1.58 | 16.7 | NA | ● | NA | NA | ● | ● | NA | |
J | 0/140/180/220 | 1.28 | 14.1 | L | ● | ● | ● | NA | NA | NA | |
I | 150 | 2.20 | 7.7 | H | ● | ● | ● | NA | ● | NA |
表2
杂交稻对产量、生物量、收获指数、氮素吸收、氮素生理利用率和氮素回收率的影响(P值)"
分类变量 Categorical variable | 产量 Rice yield | 生物量 Biomass | 收获指数 Harvest index | 氮素吸收 N uptake | 氮素生理利用率 N physiological efficiency | 氮素回收率 N recovery efficiency |
---|---|---|---|---|---|---|
杂交稻类型 Hybrid type | <0.001 | <0.001 | 0.474 | <0.001 | 0.896 | 0.387 |
氮肥施用量 N rate | <0.001 | 0.681 | 0.676 | 0.328 | 0.727 | <0.001 |
氮肥施用次数 N application number | 0.198 | 0.914 | 0.124 | 0.740 | 0.079 | 0.570 |
土壤全氮 Soil total N | 0.296 | 0.760 | 0.700 | 0.982 | <0.05 | 0.198 |
土壤碳氮比 Soil C﹕N | <0.05 | 0.253 | 0.404 | 0.557 | 0.157 | <0.001 |
土壤质地 Soil texture | 0.873 | 0.288 | 0.137 | <0.05 | 0.131 | 0.236 |
[1] | ALEXANDRATOS N, BRUINSMA J. World Agriculture Towards 2030/2050: The 2012 Revision. Food and Agriculture Organization of the United Nations, Rome, 2012. https://www.fao.org/3/ap106e/ap106e.pdf. |
[2] | YUAN L P. Increasing yield potential in rice by exploitation of heterosis//Virmani S S. Hybrid Rice Technology: New Development and Future Prospects. International Rice Research Institute, Los Baños, Philippines,1-6. |
[3] |
JIANG P, XIE X B, HUANG M, ZHOU X F, ZHANG R C, CHEN J N, WU D D, XIA B, XIONG H, XU F X, ZOU Y B. Potential yield increase of hybrid rice at five locations in southern China. Rice, 2016, 9(1): 1-14.
doi: 10.1186/s12284-015-0073-2 |
[4] |
YUAN L P. Development of hybrid rice to ensure food security. Rice Science, 2014, 21(1): 1-2.
doi: 10.1016/S1672-6308(13)60167-5 |
[5] |
MA G H, YUAN L P. Hybrid rice achievements, development and prospect in China. Journal of Integrative Agriculture, 2015, 14(2): 197-205.
doi: 10.1016/S2095-3119(14)60922-9 |
[6] |
彭少兵. 转型时期杂交水稻的困境与出路. 作物学报, 2016, 42(3): 313-319.
doi: 10.3724/SP.J.1006.2016.00313 |
PENG S B. Dilemma and way-out of hybrid rice during the transition period in China. Acta Agronomica Sinica, 2016, 42(3): 313-319.
doi: 10.3724/SP.J.1006.2016.00313 |
|
[7] |
YUAN S, NIE L X, WANG F, HUANG J L, PENG S B. Agronomic performance of inbred and hybrid rice cultivars under simplified and reduced-input practices. Field Crops Research, 2017, 210: 129-135.
doi: 10.1016/j.fcr.2017.05.024 |
[8] |
XIA L L, LI X B, MA Q Q, LAM S K, WOLF B, KIESE R, BUTTERBACH-BAHL K, CHEN D L, LI Z A, YAN X Y. Simultaneous quantification of N2, NH3 and N2O emissions from a flooded paddy field under different N fertilization regimes. Global Change Biology, 2020, 26(4): 2292-2303.
doi: 10.1111/gcb.14958 |
[9] |
MA R Y, ZOU J W, HAN Z Q, YU K, WU S, LI Z F, LIU S W, NIU S L, HORWATH W R, ZHU-BARKER X. Global soil‐derived ammonia emissions from agricultural nitrogen fertilizer application: a refinement based on regional and crop‐specific emission factors. Global Change Biology, 2021, 27(4): 855-867.
doi: 10.1111/gcb.15437 |
[10] |
PENG S B, KHUSH G S, VIRK P, TANG Q Y, ZOU Y B. Progress in ideotype breeding to increase rice yield potential. Field Crops Research, 2008, 108(1): 32-38.
doi: 10.1016/j.fcr.2008.04.001 |
[11] |
LIAO P, SUN Y N, JIANG Y, ZENG Y J, WU Z M, HUANG S. Hybrid rice produces a higher yield and emits less methane. Plant, Soil and Environment, 2019, 65(11): 549-555.
doi: 10.17221/330/2019-PSE |
[12] |
HUANG L Y, YANG D S, LI X X, PENG S B, WANG F. Coordination of high grain yield and high nitrogen use efficiency through large sink size and high post-heading source capacity in rice. Field Crops Research, 2019, 233: 49-58.
doi: 10.1016/j.fcr.2019.01.005 |
[13] | 高帅, 潘勇辉, 孙玉明, 郭俊杰, 王成孜, 凌宁, 张燕, 郭世伟. 不同供氮水平对常规稻与杂交稻产量及氮素利用效率的影响. 南京农业大学学报, 2018, 41(6): 1061-1069. |
GAO S, PAN Y H, SUN Y M, GUO J J, WANG C Z, LING N, ZHANG Y, GUO S W. Effects of different nitrogen supply on yield and nitrogen utilization of conventional rice and hybrid rice. Journal of Nanjing Agricultural University, 2018, 41(6): 1061-1069. (in Chinese) | |
[14] | 吕茹洁, 商庆银, 陈乐, 曾勇军, 胡水秀, 杨秀霞. 基于临界氮浓度的水稻氮素营养诊断研究. 植物营养与肥料学报, 2018, 24(5): 1396-1405. |
LÜ R J, SHANG Q Y, CHEN L, ZENG Y J, HU S X, YANG X X. Study on diagnosis of nitrogen nutrition in rice based on critical nitrogen concentration. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1396-1405. (in Chinese) | |
[15] |
ZHANG H, HOU D P, PENG X L, MA B J, SHAO S M, JING W J, GU J F, LIU L J, WANG Z Q, LIU Y Y, YANG J C. Optimizing integrative cultivation management improves grain quality while increasing yield and nitrogen use efficiency in rice. Journal of Integrative Agriculture, 2019, 18(12): 2716-2731.
doi: 10.1016/S2095-3119(19)62836-4 |
[16] | 马立晓, 李婧, 邹智超, 蔡岸冬, 张爱平, 李贵春, 杜章留. 免耕和秸秆还田对我国土壤碳循环酶活性影响的荟萃分析. 中国农业科学, 2021, 54(9): 1913-1925. |
MA L X, LI J, ZOU Z C, CAI A D, ZHANG A P, LI G C, DU Z L. Effect of no-tillage and straw returning on soil C-cycling enzyme activities in China: Meta-analysis. Scientia Agricultura Sinica, 2021, 54(9): 1913-1925. (in Chinese) | |
[17] | 苑俊丽, 梁新强, 李亮, 叶玉适, 傅朝栋, 宋清川. 中国水稻产量和氮素吸收量对高效氮肥响应的整合分析. 中国农业科学, 2014, 47(17): 3414-3423. |
YUAN J L, LIANG X Q, LI L, YE Y S, FU C D, SONG Q C. Response of rice yield and nitrogen uptake to enhanced efficiency nitrogen fertilizer in China: A meta-analysis. Scientia Agricultura Sinica, 2014, 47(17): 3414-3423. (in Chinese) | |
[18] |
LIAO P, HUANG S, ZENG Y J, SHAO H, ZHANG J, VAN GROENIGEN K J. Liming increases yield and reduces grain cadmium concentration in rice paddies: A meta-analysis. Plant and Soil, 2021, 465: 157-169.
doi: 10.1007/s11104-021-05004-w |
[19] | 魏颖娟, 夏冰, 赵杨, 邹应斌. 15N示踪不同施氮量对超级稻产量形成及氮素吸收的影响. 核农学报, 2016, 30(4): 783-791. |
WEI Y J, XIA B, ZHAO Y, ZOU Y B. Effects of nitrogen application on yield formation and the nitrogen absorption and utilization of super rice based on 15N-tracing. Journal of Nuclear Agricultural Sciences, 2016, 30(4): 783-791. (in Chinese) | |
[20] |
XU L, YUAN S, WANG X Y, YU X, PENG S B. High yields of hybrid rice do not require more nitrogen fertilizer than inbred rice: A meta-analysis. Food and Energy Security, 2021, 10(2): 341-350.
doi: 10.1002/fes3.276 |
[21] |
LIU X, MAO P N, LI L H, MA J. Impact of biochar application on yield-scaled greenhouse gas intensity: A meta-analysis. Science of the Total Environment, 2019, 656: 969-976.
doi: 10.1016/j.scitotenv.2018.11.396 |
[22] |
JIANG Y, CARRIJO D, HUANG S, CHEN J, BALAINE N, ZHANG W J. VAN GROENIGEN K J, LINQUIST B A. Water management to mitigate the global warming potential of rice systems: A global meta-analysis. Field Crops Research, 2019, 234: 47-54.
doi: 10.1016/j.fcr.2019.02.010 |
[23] |
DE GRAAFF M A, VAN GROENIGEN K J, SIX J, HUNGATE B, VAN KESSEL C. Interactions between plant growth and soil nutrient cycling under elevated CO2: A meta-analysis. Global Change Biology, 2006, 12(11): 2077-2091.
doi: 10.1111/j.1365-2486.2006.01240.x |
[24] |
HEDGES L V, GUREVITCH J, CURTIS P S. The meta-analysis of response ratios in experimental ecology. Ecology, 1999, 80(4): 1150-1156.
doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 |
[25] |
VAN GROENIGEN K J, OSENBERG C W, TERRER C, CARRILLO Y, DIJKSTRA F A, HEATH J, NIE M, PENDALL E, PHILLIPS R P, HUNGATE B A. Faster turnover of new soil carbon inputs under increased atmospheric CO2. Global Change Biology, 2017, 23(10): 4420-4429.
doi: 10.1111/gcb.13752 |
[26] |
BUENO C S, LAFARGE T. Higher crop performance of rice hybrids than of elite inbreds in the tropics: 1. Hybrids accumulate more biomass during each phonological phase. Field Crops Research, 2009, 112: 229-237.
doi: 10.1016/j.fcr.2009.03.006 |
[27] |
LIAO P, HUANG S, VAN GESTEL N C, ZENG Y J, VAN GROENIGEN K J. Liming and straw retention interact to increase nitrogen uptake and grain yield in a double rice-cropping system. Field Crops Research, 2018, 216: 217-224.
doi: 10.1016/j.fcr.2017.11.026 |
[28] |
WEI H H, LI C, XING Z P, WANG W T, DAI Q G, ZHOU G S, WANG L, XU K, HUO Z Y, GUO B W, WEI H Y, ZHANG H C. Suitable growing zone and yield potential for late-maturity type of Yongyou japonica/indica hybrid rice in the lower reaches of Yangtze River, China. Journal of Integrative Agriculture, 2016, 15(1): 50-62.
doi: 10.1016/S2095-3119(15)61082-6 |
[29] |
WEI H H, HU L, ZHU Y, XU D, ZHENG L M, CHEN Z F, HU Y J, CUI P Y, GUO B W, DAI Q G, ZHANG H C. Different characteristics of nutrient absorption and utilization between inbred japonica super rice and inter-sub-specific hybrid super rice. Field Crops Research, 2018, 218: 88-96.
doi: 10.1016/j.fcr.2018.01.012 |
[30] |
KAMIJI Y, YOSHIDA H, PALTA J A, SAKURATANI T, SHIRAIWA T. N applications that increase plant N during panicle development are highly effective in increasing spikelet number in rice. Field Crops Research, 2011, 122(3): 242-247.
doi: 10.1016/j.fcr.2011.03.016 |
[31] |
HUANG L Y, SUN F, YUAN S, PENG S B, WANG F. Responses of candidate green super rice and super hybrid rice varieties to simplified and reduced input practice. Field Crops Research, 2018, 218: 78-87.
doi: 10.1016/j.fcr.2018.01.006 |
[32] | 刘秋员, 周磊, 田晋钰, 程爽, 陶钰, 邢志鹏, 刘国栋, 魏海燕, 张洪程. 长江中下游地区常规中熟粳稻氮效率综合评价及高产氮高效品种筛选. 中国农业科学, 2021, 54(7): 1397-1409. |
LIU Q Y, ZHOU L, TIAN J Y, CHENG S, TAO Y, XING Z P, LIU G D, WEI H Y, ZHANG H C. Comprehensive evaluation of nitrogen efficiency and screening of varieties with high grain yield and high nitrogen efficiency of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze river. Scientia Agricultura Sinica, 2021, 54(7): 1397-1409. (in Chinese) | |
[33] |
TANG J C, SUN Z G, CHEN Q H, DAMARIS R N, LU B L, HU Z R. Nitrogen fertilizer induced alterations in the root proteome of two rice cultivars. International Journal of Molecular Sciences, 2019, 20(15): 3674.
doi: 10.3390/ijms20153674 |
[34] | 易艳红, 王文霞, 曾勇军, 谭雪明, 吴自明, 陈雄飞, 潘晓华, 石庆华, 曾研华. 人工模拟机械开沟穴直播提高早籼稻茎秆抗倒伏能力及产量. 中国农业科学, 2019, 52(15): 2729-2742. |
YI Y H, WANG W X, ZENG Y J, TAN X M, WU Z M, CHEN X F, PAN X H, SHI Q H, ZENG Y H. Artificial simulation of hill-drop drilling mechanical technology to improve yield and lodging resistance of early season indica rice. Scientia Agricultura Sinica, 2019, 52(15): 2729-2742. (in Chinese) | |
[35] | 王少博, 曹亚倩, 冯倩倩, 郭亮亮, 梁海, 王雪洁, 韩惠芳, 宁堂原. 保护性耕作对棕壤粒径分形特征及碳氮比分布的影响. 植物营养与肥料学报, 2019, 25(5): 792-804. |
WANG S B, CAO Y Q, FENG Q Q, GUO L L, LIANG H, WANG X J, HAN H F, NING T Y. Impacts of conservation tillage on soil particulate composition and distribution of soil carbon and nitrogen in brown soil. Journal of Plant Nutrition and Fertilizers, 2019, 25(5): 792-804. (in Chinese) | |
[36] | 袁隆平. 中国超级杂交稻育种技术的未来展望. 中国乡村发现, 2015, 30(1): 18-21. |
YUAN L P. The prospect of Chinese super hybrid rice breeding techniques. Chinese Rural Discovery, 2015, 30(1): 18-21. (in Chinese) | |
[37] | 夏冰, 刘清波, 邓念丹. 不同基因型水稻氮素的吸收和利用效率研究综述. 作物研究, 2008, 22(4): 288-292. |
XIA B, LIU Q B, DENG N D. Review on genotype differences in nitrogen uptake and utilization efficiency in rice. Crop Research, 2008, 22(4): 288-292. (in Chinese) | |
[38] |
WALKER T W, BOND J A, OTTIS B V, GERARD P D, HARRELL D L. Hybrid rice response to nitrogen fertilization for midsouthern United States rice production. Agronomy Journal, 2008, 100(2): 381-386.
doi: 10.2134/agronj2007.0047 |
[39] | 彭少兵, 黄见良, 钟旭华, 杨建昌, 王光火, 邹应斌, 张福锁, 朱庆森, BURESH R, WITT C. 提高中国稻田氮肥利用率的研究策略. 中国农业科学, 2002, 35(9): 1095-1103. |
PENG S B, HUANG J L, ZHONG X H, YANG J C, WANG G H, ZOU Y B, ZHANG F S, ZHU Q S, BURESH R, WITT C. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Scientia Agricultura Sinica, 2002, 35(9): 1095-1103. (in Chinese) | |
[40] | 彭卫福, 吕伟生, 黄山, 曾勇军, 潘晓华, 石庆华. 土壤肥力对红壤性水稻土水稻产量和氮肥利用效率的影响. 中国农业科学, 2018, 51(18): 3614-3624. |
PENG W F, LÜ W S, HUANG S, ZENG Y J, PAN X H, SHI Q H. Effects of soil fertility on rice yield and nitrogen use efficiency in a red paddy soil. Scientia Agricultura Sinica, 2018, 51(18): 3614-3624. (in Chinese) | |
[41] |
QUAN Z, ZHANG X, FANG Y T, DAVIDSON E A. Different quantification approaches for nitrogen use efficiency lead to divergent estimates with varying advantages. Nature Food, 2021, 2(4): 241-245.
doi: 10.1038/s43016-021-00263-3 |
[42] |
霍中洋, 李杰, 张洪程, 戴其根, 许轲, 魏海燕, 龚金龙. 不同种植方式下水稻氮素吸收利用的特性. 作物学报, 2012, 38(10): 1908-1919.
doi: 10.3724/SP.J.1006.2012.01908 |
HUO Z Y, LI J, ZHANG H C, DAI Q G, XU K, WEI H Y, GONG J L. Characterization of nitrogen uptake and utilization in rice under different planting methods. Acta Agronomica Sinica, 2012, 38(10): 1908-1919. (in Chinese)
doi: 10.3724/SP.J.1006.2012.01908 |
|
[43] | 李玥, 李应洪, 赵建红, 孙永健, 徐徽, 严奉君, 谢华英, 马均. 缓控释氮肥对机插稻氮素利用特征及产量的影响. 浙江大学学报, 2015, 41(6): 673-684. |
LI Y, LI Y H, ZHAO J H, SUN Y J, XU H, YAN F J, XIE H Y, MA J. Effects of slow- and controlled-release nitrogen fertilizer on nitrogen utilization characteristics and yield of machine-transplanted rice. Journal of Zhejiang University, 2015, 41(6): 673-684. (in Chinese) |
[1] | 尉亚囡, 薄其飞, 唐安, 高嘉瑞, 马田, 尉熊熊, 张方方, 周祥利, 岳善超, 李世清. 长期覆膜和施用有机肥对黄土高原春玉米产量和品质的效应[J]. 中国农业科学, 2023, 56(9): 1708-1717. |
[2] | 韩紫璇, 房静静, 武雪萍, 姜宇, 宋霄君, 刘晓彤. 长期秸秆配施化肥下土壤团聚体碳氮分布、微生物量与小麦产量的协同效应[J]. 中国农业科学, 2023, 56(8): 1503-1514. |
[3] | 刘梦洁, 梁飞, 李全胜, 田宇欣, 王国栋, 贾宏涛. 膜下滴灌与细流沟灌对玉米生长及产量的影响[J]. 中国农业科学, 2023, 56(8): 1515-1530. |
[4] | 王宁, 冯克云, 南宏宇, 丛安琪, 张铜会. 水分亏缺下有机无机肥配施比例对棉花水氮利用效率的影响[J]. 中国农业科学, 2023, 56(8): 1531-1546. |
[5] | 王鹏飞, 于爱忠, 王玉珑, 苏向向, 李悦, 吕汉强, 柴健, 杨宏伟. 绿肥还田结合减量施氮对玉米干物质积累分配及产量的影响[J]. 中国农业科学, 2023, 56(7): 1283-1294. |
[6] | 南瑞, 杨玉存, 石芳慧, 张礼宁, 米彤茜, 张立强, 李春艳, 孙风丽, 奚亚军, 张超. 小麦源库优异种质的鉴定与源库类型的划分[J]. 中国农业科学, 2023, 56(6): 1019-1034. |
[7] | 李小勇, 黄威, 刘红菊, 李银水, 顾炽明, 代晶, 胡文诗, 杨璐, 廖星, 秦璐. 不同轮作模式下氮肥施用对油菜产量形成及养分利用的影响[J]. 中国农业科学, 2023, 56(6): 1074-1085. |
[8] | 贾晓昀, 王士杰, 朱继杰, 赵红霞, 李妙, 王国印. 陆地棉高密度遗传图谱的构建及产量相关性状的QTL定位[J]. 中国农业科学, 2023, 56(4): 587-598. |
[9] | 刘娜, 谢畅, 黄海云, 姚瑞, 徐爽, 宋海玲, 于海秋, 赵新华, 王婧, 蒋春姬, 王晓光. 施钾量对花生根系和根瘤特性、养分吸收及产量的影响[J]. 中国农业科学, 2023, 56(4): 635-648. |
[10] | 刘丹, 安雨丽, 陶笑笑, 王孝忠, 吕典秋, 郭彦军, 陈新平, 张务帅. 西北地区制种玉米产量及氮素吸收对供氮水平的响应[J]. 中国农业科学, 2023, 56(3): 441-452. |
[11] | 赵建涛, 杨开鑫, 王旭哲, 马春晖, 张前兵. 施磷对苜蓿叶片生理参数及抗氧化能力的影响[J]. 中国农业科学, 2023, 56(3): 453-465. |
[12] | 刘明慧, 田虹雨, 刘之广, 巩彪. 减磷条件下含褪黑素的尿素缓释功能肥对番茄生长、产量、品质和磷素利用效率的影响[J]. 中国农业科学, 2023, 56(3): 519-528. |
[13] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[14] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[15] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
|